Factorization of heavy-to-light form factors in soft-collinear effective theory
更新时间:2023-05-25 14:04:01 阅读量: 实用文档 文档下载
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
PITHA03/11
CERN-TH/2003-286
hep-ph/0311335
November25,2003
arXiv:hep-ph/0311335v1 26 Nov 2003Factorizationofheavy-to-lightformfactorsinsoft-collineare ectivetheoryM.BenekeaandTh.FeldmannbaInstitutf¨urTheoretischePhysikE,RWTHAachenD–52056Aachen,GermanybCERN,TheoryDivision,CH-1211Geneva,SwitzerlandAbstractHeavy-to-lighttransitionformfactorsatlargerecoilenergyofthelightmesonhavebeenconjecturedtoobeyafactorizationformula,wherethesetofformfactorsisreducedtoasmallernumberofuniversalformfactorsuptohard-scattering
corrections.Inthispaperweextendourpreviousinvestigationofheavy-to-lightcurrentsinsoft-collineare ectivetheoryto nalstateswithinvariantmassΛ2asisappropriatetoexclusiveBmesondecays.Thee ectivetheorycontainssoftmodesandtwocollinearmodeswithvirtualitiesofordermbΛ(‘hard-collinear’)andΛ2.Integratingoutthehard-collinearmodesresultsinthehardspectator-scatteringcontributionstoexclusiveBdecays.Wediscusstherepresentationofheavy-to-lightcurrentsinthee ectivetheoryafterintegratingoutthehard-collinearscale,andshowthatthepreviouslyconjecturedfactorizationformulaisvalidtoallordersinperturbationtheory.Thenaivefactorizationofmatrixelementsinthee ectivetheoryintocollinearandsoftmatrixelementsmaybeinvalidatedbydivergencesinconvolutionintegrals.Inthefactorizationproofwecircumventtheexplicitregularizationofendpointdivergencesbyade nitionoftheuniversalformfactorsthatincludeshard-collinear,collinearandsofte ects.
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
1Introduction
ThepurposeofthispaperistodevelopfurtherthetheoryofexclusiveBdecaystolightenergeticmesons.Wearespeci callyinterestedin“hard-spectatorscattering”,i.e.scatter-¯meson.ThesoftexternalquarkingmechanismsthatinvolvethelightantiquarkintheB
lineisoneofthecrucialdi erencestothestandardsituationofhardexclusiveprocesses
[1]involvingonlylighthadrons,whereallexternallinescarrylargemomentum.Aconse-quenceofthisdi erenceisthatexclusiveBmesondecaysinvolvetwohardscales,m2bandmbΛ,whereΛisoforderofthestronginteractionscale.
Hard-spectatorscatteringisanimportantingredientinQCDfactorizationfornon-leptonicBdecaystocharmless nalstates[2,3],andisevenmoreimportantintheso-calledPQCDapproach[4].Abetterunderstandingofspectatorinteractionsisneededtojustifythefactorizationhypothesesofthetwoapproachestoallordersinperturbationtheoryandtoleadingorderintheheavy-quarklimit.However,evenapparentlysimplerprocessessuchasthesemi-leptonicdecayB→πlνatlargemomentumtransfertothepionarecurrentlynotcompletelyunderstood.TheoneexceptionisB→γlν,whichhasreceivedmuchattentionrecently[5,6,7,8].AfactorizationformulaoftheschematicformF=T φB,wherethestar-productdenotesconvolutionofahard-scatteringkernelwiththeBmesonlight-conedistributionamplitude,hasnowbeenshowntobevalidtoallordersinperturbationtheory[7,8].InthispaperweconsiderB→πlν(heavy-to-lightformfactors)atlargepionenergy.Asummaryoftheresultshasalreadybeengivenin[9].AstraightforwardextensionoftheresultsforB→γlνdecaytotheB→πformfactorsrelevanttosemi-leptonicdecaysfails.Ifonewritestheformfactorsasφπ T φBinanalogytotheπ→πtransitionformfactoratlargemomentumtransfer,one ndsthattheconvolutionintegralsdonotconvergeattheirendpoints.Inotherwords,theformfactorsreceiveleadingcontributionsfrommomentumcon gurationswheresomepartonsinthepionappeartohavesmallmomentum[10,11].In[12]thefactorizationformula
Fi=Ciξπ+φB Ti φπ(1)
hasbeenconjecturedforthethreeLorentzinvariantB→πformfactorsandshowntobevalidatorderαs.TheadditionaltermCiξπinvolvesashort-distancecoe cientandasingle“softformfactor”ξπ,whichobeysthelarge-recoilsymmetries[13].FactorizationfortheB→πformfactorsismorecomplicatedthanforboth,theπ→πandB→Dformfactors.Atlargemomentumtransfersoftinteractionscancelintheπ→πtransitionatleadingpower.Theremaininghardandcollineare ectsarefactoredintoconvolutionsasinthesecondtermontheright-handsideof(1).Whenbothmesonsareheavy,suchasinB→D,collineare ectsareirrelevant.Theremaininghardandsoftinteractionsfactorintoashort-distancecoe cientandtheIsgur-Wiseformfactor[14]similartothe rsttermontheright-handsideof(1).TheB→πformfactor,however,involveshard,collinearandsofte ects.Furthermore,duetothepresenceofseveralscalesonemustdistinguishshort-andlong-distancecollineare ects,aswediscussinmoredetailbelow.
Aseparationofallthesee ectsandanoperatorde nitionofthevariousshort-andlong-distancequantitiesin(1)toallordersinαsandtoleadingorderin1/mbhasnot
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Table1:TerminologyforthevariousmomentummodesrelevanttoexclusiveBde-
cays.Themomentumcomponentsaregivenas(n+p,p⊥,n p),butmassdimension
hastoberestoredbymultiplyingappropriatefactorsofmb.Twodi erenttermi-
nologiesforthesamemomentummodesareusedintheliterature.Inphysicalunits
λisoforder(Λ/mb)1/2,whereΛisthestrong-interactionscale.
MomentumscalingTerminologyII
([20],thiswork)
(1,1,1)
soft
collinear
(λ2,λ2,λ2)
(1,λ2,λ4)hardsoftcollinear
yetbeenachieved.Acomplicationwaspointedoutin[15],whereitwasshownthatsuper ciallysub-leadinginteractionsin1/mbcontributetotheB→πformfactorsatleadingpower.Someofthepreviousarguments[16,17]tojustifyorextendsomeaspectsof(1)mustthereforeberevised.Theformfactorshavebeenreconsideredin[15]intheframeworkofsoft-collineare ective eldtheory(SCET)[16,18]andthestructureoftheformula(1)wasseentoemerge.However,in[15]atechnicalde nitionof“factorizable”and“non-factorizable”termshasbeenadoptedthatdoesnotcorrespondtotheusualnotions,sothattheissuesofendpointsingularitiesandconvergenceofconvolutionintegralscouldnotbeclari ed.BelowweextendSCETintheposition-spaceformulation[17,19]tocoverthecaseofexclusivedecays,wheretheexternalcollinearlineshaveinvariantmassoforderΛ2asappropriateforexclusivedecays.Toobtainthefactorizationformula(1)wematchSCETtoane ectivetheoryfromwhichshort-distancecollinearmodeswithvirtualitymbΛareremoved.Thispointwas rstaddressedin[20]andtheformalismhasbeenworkedouttotheextentthatafactorizationtheoremforB→γlνwasestablished[8].¯(p) ,Themomentummodesrelevanttothefactorizationofformfactors M(p′)|q¯Γb|BwhereMisalightmesonoraphotonwithmomentumofordermb,andΓisaDiracmatrix,aresummarizedinTable1.Ingeneralwedecomposeamomentumas
p=(n+p)µnµ
2,(2)
22wherenµ±aretwolight-likevectors,n+=n =0withn+n =2.Thereferencedirections
n±arechosensuchthattheenergeticmasslessexternallineshaven+pofordermb.AsindicatedinTable1twodi erentterminologieshavebeenusedintheliteraturewhichhas
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
beenthecauseofsomeconfusion.Sinceinthispaperwewillconstructane ectivetheoryformodeswithvirtualityΛ2only,wewillusethesecondterminology.Thee ectivetheorythencontainssoftandcollinearmodesinagreementwiththestandardQCDterminology.Forpowercountingwede nethescalingparameterλtobeoforder(Λ/mb)1/2.Thisdi ersfromtheconventionin[20]whereλisoforderΛ/mb.
TheexistenceofthevariousmodesfollowsfromtheassumptionthattheexternalmomentaofscatteringamplitudesforexclusiveBdecaysatlargemomentumtransfer
2aresoftorcollinear.1One ndsthethreecharacteristicvirtualitiesm2b,mbΛandΛby
combiningexternalmomenta.Forinstance,m2bisobtainedbyaddingandsquaringaheavyquarkandacollinearmomentum,orbysquaringtheheavyquarkmomentum.Theintermediatevirtualityistypicalforinteractionsofcollineargluonsorlightquarkswithsoftgluonsorlightquarks,whileΛ2arisesintheself-interactionsofcollinearorsoftmodes.Soft-collineare ectivetheoryasde nedin[16,17]isthee ectivetheoryobtainedafterintegratingouthardmodesofvirtualitym2b.Thistheorystillcontainstwotypesofsoftmodes,called“semi-hard”(virtualityofordermbΛ)and“soft”.Thesemi-hardmodescanbeintegratedoutperturbatively,butitappearsthatsemi-hardloopintegralsalwaysvanishindimensionalregularization[17],sosemi-hardmodescanbeignoredinpractice.Thetheoryalsocontainstwotypesofcollinearmodes,called“hard-collinear”and“collinear”accordingtotheirvirtuality.AlthougheachoneofthesetwohasbeendiscussedinpreviousapplicationsofSCET,thesimultaneouspresenceoftwodistinctcollinearmodeshasnotbeenconsideredinmuchdetailuptonow.ThereasonforthisisthatpreviousapplicationsofSCETtosemi-inclusiveBdecay,suchasB→Xsγnearmaximalphotonenergy[18],andtoB→γlν(atleadingorderin1/mb)aresensitiveonlytohard-collinearmodes[7,8].OnecanthereforematchSCETdirectlytothestandardheavyquarke ectivetheory,whichcontainsonlysoftmodes.Ontheotherhand,intheexclusivedecayB→Dπ[3,21]orhardexclusivescatteringoflighthadrons[22]thee ectsofhard-collinearandsoftmodescancelalmosttriviallyatleadingpowerinthepowerexpansion.Thee ectivetheoryatleadingpowercanthenbeformulatedentirelyintermsofcollinearmodes.
Theoutlineofthispaperisasfollows:inSection2westudyascalarintegral,whichwouldberelevanttoB→γlνdecayatsub-leadingorderin1/mb,usingthemethodofexpandingbyregions[23].Wedemonstratewiththisexamplethatseparatecontributionsfromhard-collinearandcollinearloopmomentummustbeincludedtoreproducethein-tegralinfull“QCD”.Weshallalso ndthatthecollinearandsoftcontributionsarenotwell-de nedindividuallyindimensionalregularization.Theinterpretationofthesead-ditionaldivergencesprovidesanimportantcluetotheproblemofendpointdivergences.Inthecontextofe ective eldtheorytheadditionaldivergencesshowthatthematrixelementsinthee ectivetheoryofsoftandcollinear eldsdonotfactorize(naively)intoaproductofsoftandcollinearmatrixelementsasonemighthaveconcludedfromthedecouplingofsoftandcollinear eldsintheLagrangian.
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
InSection3weturnourattentiontotherepresentationoftheheavy-to-lightcurrentinthee ectivetheorywiththehard-collinearscaleremoved.Weintegrateoutthehard-collinearmodesintreegraphsbysolvingtheclassical eldequationsforthehard-collinearquarkandgluon elds.Despitethecomplexbranchingsoftherelevanttrees,thesolu-tioncanbefoundbychoosingaspecialgaugeforthecalculationandreconstructingthe¯ completeresultthroughgaugeinvariance.The rsttermwithanon-vanishing π|...|B
3/2matrixelementintheexpansionofthecurrentisλ3suppressed,whichexplainsthe1/mbsuppressionofheavy-to-lightformfactorsatlargerecoil.Thecalculationalsoshowsthat
thee ectiveoperatorishighlynon-local,implyingconvolutionsintwolight-likedirections.Theconvolutionsaredivergent,asexpected,butwealso ndthatquark-antiquark-gluonamplitudesintheBmesonandinthelightmesoncontributeatleadingpower,whichisanewfeatureofheavy-to-lighttransitions.Attheendofthissectionwebrie ydis-cusshard-collinearquantumcorrectionstodeterminethegeneralformofoperatorsandshort-distancekernelsinthee ectivetheoryofsoftandcollinearmodes.
Theexistenceofdivergentconvolutionssignalsthatheavy-to-lightformfactorsdonotfactorizestraightforwardly.InSection4wereturntothefactorizationformula(1),andshowthatitisindeedvalidtoallordersinthestrongcouplingandtoleadingpowerin1/mb.Weshallde netheuniversalformfactorξπasamatrixelementinSCETbeforeintegratingouthard-collineare ects.Wethenshowthatthetermsnotcontainedinthisde nitionfactorizeintoconvolutionsoflight-conedistributionamplitudeswithconvergentintegralsafterintegratingouthard-collinearmodes.Theproofofconvergencereliesonpowercounting,boostinvariance,andthecorrespondenceofcollinearandsoftendpointdivergencesthroughsoft-collinearfactorization.WeconcludeinSection5.
2Thescalar“photon”vertex
Thepurposeofthissectionistodemonstratebytheexampleofaspeci cFeynmaninte-gralthatthedistinctionofhard-collinearandcollinearmodeshasatechnicalmeaning.Weshallalsoseehowthefactorizationofcollinearandsoftmodesintroduces“endpointsingu-larities”inthelongitudinalintegrations,andhowthesingularitiesarerelatedtocancelinthesumofallterms.Finally,wesketchhowthediagrammaticresultwouldbeinterpretedinthecontextofe ective eldtheory.
Weconsiderthescalarintegral
I= [dk]1
i µ2eγE(2π)d=µe2 γEddk
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
¯→γlν.Γdenotestheweakb→udecayFigure1:PhotonvertexcorrectiontoB
vertex.Weconsiderthecorrespondingvertexintegralwithalllinessimpli edto
scalarpropagatorsandallvertexfactorssetto1.
TheintegralIisultravioletandinfrared nite,butdimensionalregularizationwillbeneededtoconstructtheexpansion.The+i prescriptionforthepropagatorsisunderstood.
Theexternalmomentaofthevertexsubgraphare:acollinear“photon”momentum′p=(n+p′,p′⊥,n p′)~(1,0,0)withp′2=0;asoft“lightquark”momentuml~(λ2,λ2,λ2)withl2=m2;ahard-collinear“lightquark”momentump′ l~(1,λ2,λ2)withvirtualityλ2.Thetwoinvariantsare2p′·l~λ2andm2~λ4,soImustbeafunctionofthesmalldimensionlessratiom2/(2p′·l).Astraightforwardcalculationgives
I=1
m2 π2
2p′·l 1
2p′·l+π2
whichvanishindimensionalregularization,sincetheonlypossibleinvariantp′2=0.Thisisnotsurprising,becausethereisnoexternalinvariantoforder1.Proceedingfordi erent
[k2]a[ 2p′·k]b×polynomial,(6)
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
n,theresultisthatonlythesoftmomentumregion,n=2,contributes.Thecorrespondingintegralwillbecalculatedbelow.
Sincethereareexternallineswithlargemomentumandsmallvirtuality,weshouldalsoconsiderloopmomentumcon gurations,wheren+kisthelargestcomponent.Thatis,wetaken+k~λnandk2~λ2mwithm<n,expandtheintegrand,anddeterminetheintegralsthatdonotvanish.2Theresultistwonon-vanishingcontributions,onefromn+k~1andk2~λ2,whichweidentifyashard-collinear,andtheotherfromn+k~1andk2~λ4,whichwecallcollinear,seeTable1.Regionswithk2<λ4donotappearduetotheinternalmassesm2~λ4.Wewillnowverify(atleadingorder)thatthesumofthethreeregionsconstructstheexpansionofourintegralI.
Thehard-collinearregion.Expandingthepropagatorssystematicallytheleadinghard-collinearintegralis
Ihc= [dk]
1
1
2p·l′2p′·lln2ln22p·l′
12 .(7)
Theexpansionhasrenderedtheintegralinfrareddivergent.Ifweperformthen kinte-grationbycontourmethods,thek⊥integralisdivergentfork⊥→0(physically,k⊥ λ)foranyn+k,butthen+kintegralconvergesat xedk⊥.Thedoublepoleoriginatesfromn±k→0,k⊥→0simultaneously.
Thecollinearregion.Inthisregionthe“lightquark”propagatorswithmomentap′ kand karecollinearandhavevirtualityoforderλ4.The“gluon”propagatorishard-collinearwithvirtualityλ2.One ndsthatthecollinearandsoftintegralsarenotwell-de nedseparatelyindimensionalregularization.Thisalsooccurredinpreviousapplicationsofthemethodofexpansionbyregionstocollinearintegrals[24],andisrelatedtothefactthedimensionalregulatorisattachedtothetransversemomentumcomponents.Ifadditionaldivergencesarisefromthen+korn kintegrations,theymaynotberegularized.Asin
[24]weintroduceanadditional“analytic”regularizationbysubstituting
1
[(k l)2]1+δ,(8)
whereνisaparameterwithmassdimensionone.Theleadingcollinearintegralis
Ic=
2 [dk][ ν2]δSomeintegralsvanishindependentofanyregularization,becauseallpoleslieinoneofthecomplexhalf-planes.Otherintegralsvanishonly,becauseweassumearegularizationthatdoesnotintroduceanadditionalscaleintotheintegral.
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Theintegralcanbedonewithstandardmethods,butitwillbeusefultoobtainanintermediateresult,whereonlythen kintegrationisperformed.Thevariablen+p′isrelatedtotheenergyofthe“photon”,son+p′>0.Wethenclosethecontourinthelower
2halfplaneandpickupthepoleat( k⊥+m2 i )/n+kfor0<n+k<n+p′.(Inour
2conventionk⊥isnegative.)Thisgives
Ic=
= 12p′1
δ·l δ n+p′0dn+kn+k ln δ µe2γE dd 2k⊥2k⊥ m2+ln2p′·lm2
Hereweperformthen+kintegral rst.Assumingn l>0,weclosethecontourinthe
2lowerhalfplaneandpickupthepoleat( k⊥+m2 i )/n kfor0<n k<n l.This
gives
Is= 1
n k
1
m2 [(k l)2]1+δ[k2 m2][ n+p′n k].(11)n lπd/2 1 ν2δn l= Γ( )m2
δΓ(δ+ )Γ(1 2δ 2 ) 221+δ k⊥)
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Thereisasingularityfork⊥→∞foranyn k.Thepoleatδ=0isanendpointdivergencefromn k→0foranyk⊥.Thisimpliesthatn+kbecomeslargefor xedk⊥~λ2,andhencethe“quark”withmomentumkbecomescollinear.Inthesoftregionthetransversemomentumandlongitudinalmomentumintegralsdonotfactorize,andthereisalsoadivergencewhenk⊥→∞andn k→0simultaneously,whichcorrespondstothedoublepoleinthehard-collinearintegral.
Sincewedidnotregularizethehard-collinearcontributionanalytically,thecorrectprocedureistoexpand rstinδandthenin .Infactthepoleinδcancelswiththecollinearcontributionbeforeexpandingin .However,performingbothexpansionstocomparewith(10)weobtain
Is= 1
δ lnm2
lnm2
2+1
µ2 1
µ2+5π2
2p′·l 1
ln2p′·lµ2lnm2
2ln2m2
12 .(14)
Finallyaddingtothisthehard-collinearcontribution(7),thesingularityin alsocancels,andweobtain ′2p·l1,(15)ln2Ic+Is+Ihc= 23
inagreementwiththeexpansion(5)ofthefullintegral.Weconcludethatingeneralhard-collinear,collinearandsoftmomentumregionsmustbeconsidered.Inthescalarintegral
(3)allthreeregionscontributealreadytotheleadingtermintheexpansion.Semi-hardmodeswithscaling(λ,λ,λ)arenotneededinthiscalculation,sincethecorrespondingintegralsarescaleless.
InQCDthephoton-vertexintegralcontainsanumeratorproportionalton kwhichsuppressesthecollinearregionbyafactorofλ2relativetothehard-collinearandsoftregion.Forthisreasonitissu cienttoconsideronlyhard-collinearandsoftcon gurationsinthefactorizationtheoremforB→γlνatleadingpowerin1/mb,ashasbeendonein
[6,7,8].Hard-collinearmodesareperturbativeandcanbeintegratedout,resultinginhard-scatteringkernels.Softandcollinearmodeshavevirtualityλ4~Λ2,andcannotbetreatedinperturbationtheory.The1/mbsuppressionofthecollinearcontributioninQCDimpliesthatthehadronicstructureofthephotonisasub-leadinge ectinB→γlνdecay.
2.2O -shellregularization
Thescalarintegral(10)hasrecentlybeendiscussedin[25],howeverwithm=0andtheexternalcollinearandsoftlineso -shell,l2≡ L2=n+ln l~λ4,and(p′)2≡ (P′)2=n+p′n p′~λ4.Itisinstructivetodiscussthedi erencetothecaseabove.
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Thehard-collinearintegralsareidenticalastheyshouldbe,becausethetwointegralsdi eronlyatthesmallscaleλ4.Thecollinearcontributionisnowgivenby
′Ic= 1
2p′·l δ 1
0duπd/2 1 1
Itisverylikelythatwithmoreloops,moremodesofsuccessivelysmallervirtualitymustbeintroduced,withnolowerlimitonthevirtualityasthenumberofloopsincreases.3
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Figure2:Divergencestructureoftheintegral(3)anditso -shell,masslessver-
sionwhenexpandedbyregions.Thearrowsindicatethedivergencesindi erent
regionsthatarerelatedandcanceleachother.Thedashedlinesmarkthevarious
factorizationsteps.
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
occursatweakcoupling.Ifitdoesnot,factorizationofsoftandcollinearmodescannotbeimplementedperturbativelyinQCD.Ifendpointdivergencescanbeshowntobeabsenttoallordersinperturbationtheory,sothatnoregularizationisrequired,thisindicatesthatnaivesoft-collinearfactorizationisvalid.
2.3Interpretationoftheresult
Hard-collinearmodesinSCET.Thetoyintegralclari esthatSCET,de nedasthee ec-tivetheoryafterintegratingouthardmodes,containstwocollinearmodeswithdi erentvirtuality.IfSCETisformulatedwithasinglecollinearquarkandgluon eld,thecollinear eldscannotbeassignedanunambiguousscalinglaw,andpowercountingisnolongermanifestintheverticesofthee ectivetheory,4unlessoneofthetwocollinearmodesisirrelevantforaspeci cprocess.Analternativeistointroduceseparatehard-collinearandcollinear eldsinSCET.ThecorrespondingLagrangiancanbetakenasastartingpointforthesecondmatchingstep,inwhichhard-collinearmodesareintegratedoutandSCETisreducedtoane ectiveLagrangianforsoftandcollinearmodesonly.Thisformulationwillbeusedinsomeofthetechnicalstepsinthefollowingtwosections.
Acommentisnecessaryonthetransversemomentumscalingofhard-collinearmodes.Whenasoftandcollinearmomentumcombinetoahard-collinear uctuationofvirtualityλ2,thehard-collineartransversemomentummustbeoforderλ2bymomentumconser-vation.Thisisthecaseforthehard-collinearpropagatorsinthesoftandcollinearcon-tributionstothetoyintegral(seetheupperrowofFigure3).However,inhard-collinearloopsthetransversemomentumisoforderλ,asonecaneasilyverifyfromthelocationofpolesofthehard-collinearintegrand.Assumingk⊥~λ2wouldmakeallhard-collinear
2loopintegralsvanish,sincetheintegralswouldhavetobeexpandedink⊥.Thiswould
obviouslyfailtoreproducetheexpansionoftheexactintegral.Wethereforeassignthegenericscaling(1,λ,λ2)tohard-collinearmodes,asgiveninTable1.Non-genericscalingintreesubgraphsisnotparticulartothepresentcaseofhard-collinearmodes.Whenoneintegratesouthardheavyquark uctuationsgeneratedbytheinteractionofnearon-shellheavyquarkswithhard-collinearorcollineargluons[16],theo -shellmodeshavemomentum(1,λ,1)or(1,λ2,1),unlikethegenerichardmomentum(1,1,1).
Operatorinterpretationofthetoyintegral.Weproceedtodiscussthethreecontributionstothetoyintegralintermsofoperatorsandmatrixelementsofane ectivetheoryforsoftandcollinearmodes.Thisdiscussionwillbeheuristic,sinceweabstractfromthescalarintegralanduseQCDterminology,butwithoutmakingthenotationcompletelyexplicit.WeimaginethatFigure1representsacorrectiontothematrixelement γ|J|q¯b oftheb→utransitioncurrentbetweenaq¯bstatewith xedlightquarkmomentumn landaphotonwithlargeenergyE=n+p′/2.Thecorrespondingtreediagramhasonehard-collinearlinejoiningtheweakvertextothephotonvertex.Inthee ectivetheory(of
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Figure3:Diagrammaticandoperator/matrixelementrepresentationofthehard-
collinear(leftcolumn),soft(middlecolumn)andcollinearcontributiontothedia-
gramofFigure1.Eachcolumnshows:theoriginaldiagramwiththehard-collinear
subgraphmarkedbybold-facelines(upperrow),andwiththedashedlineindicating
wherethegraphfactorizesintoashort-distanceandlong-distancesubgraph;theop-
eratorvertexinthee ectivetheorycorrespondingtothecontractedhard-collinear
subgraph(middlerow);thecontributiontotheoperatormatrixelement γ|Oi|q¯b correspondingtotheoriginaldiagram(lowerrow).
softandcollinearmodes)thisiswrittenas
C0(E,n l)FT γ|[Aγ(sn+)]c[¯q(tn )hv(0)]s|q¯b (E,n l).(17)
ThesymbolFT ... meansthataFouriertransformofthematrixelementwithrespecttothepositionargumentsofthe eldsistaken,with(E,n l)thevariablesconjugateto(sn+,tn ).Theindexonproductsof eldsindicateswhethertheyaresoftorcollinear,andthenon-localityoftheoperatorisrelatedtothenon-polynomialdependenceofthehard-collinearpropagatoronthemomentumcomponentn lofthelightexternalquark,andthemomentumcomponentn+p′oftheexternalphoton.Thematrixelementfactorizestriviallyinto
q(tn )hv(0)]s|q¯b (n l).(18)FT γ|[Aγ(sn+)]c|0 (E)FT 0|[¯¯meson,Thephotonmatrixelementcanbecalculated.Whentheq¯bstateisreplacedbyaB
thesoftmatrixelementgivestheBmesonlight-conedistributionamplitude.Hence(17)assumestheformofaconvolutionofahard-collinearcoe cientfunctionwiththeBmesonlight-conedistributionfunction,whichreproducesthefactorizationpropertyoftheB→γtransitionatleadingorderin1/mb,andatleadingorderinαs[5].
Thehard-collinearcontributiontothetoyintegralanditsoperatorinterpretationisshownintheleftcolumnofFigure3.Whenthehard-collinearsubgraphiscontractedtoa“point”,thecorrespondingoperatorhasthesame eldcontentasin(17),butwitha
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
di erentcoe cientfunctionC1(E,n l)asaresultoftheloopintegration.WeidentifyC1asa1-loopcorrectiontothehard-scatteringkernel.Theexplicitcalculationshowsthatthereisadoublepolein1/ ,leavingadouble-logarithmicdependenceonthefactorizationscaleµ.
Considernowthesoftcontribution(middlecolumnintheFigure).Thehard-collinearsubgraphhasanadditionalexternalsoftgluonline,sotheoperatorinthee ectivetheoryhasthestructure[¯qAhv]s[Aγ]c(secondlineintheFigure).ThematrixelementinthethirdlineofFigure3takestheform
FT γ|[Aγ(sn+)]c|0 (E) dωC2(E,n l,ω)FT 0|[¯q(t2n )A(t1n )hv(0)]s|q¯b (n l,ω).(19)Thesoftmatrixelementcanbeidenti edwithathree-particlelight-conedistributionamplitudeφq¯paringthisexpressionto(12),weseethatthen k¯bgoftheq
integralin(12)correspondstotheintegrationoverω,whilethetransversemomentumintegralisincludedinthede nitionofthelight-conedistributionamplitude.
Intheconventionalhard-scatteringformalismthescaledependenceofthedistributionamplitudewouldcancelagainstthescaledependenceofahard-scatteringkernel(suchasC1).Thiscannotbecompletelycorrecthere,sincetheω-integralhasanendpointdivergenceasω→0,whichcorrespondstothe1/δsingularityin(12).Theassociatedν-dependenceisnotcancelledbyahard-scatteringkernel,butbythecollinearcontributionasseenfromthetoyexample.Theexistenceofanendpointdivergenceimpliesthatexpression
(19)initsentiretyhasascale-dependencedi erentfromthetwomatrixelementsinthefactorizedexpression.Thispossibilityisnotconsideredintheconventionalhard-scatteringformalism.5
TheoperatorinterpretationofthecollinearintegralisillustratedinthethirdcolumnofFigure3.Thephotonlineisnotdirectlyconnectedtothehard-collinearsubgraphinthiscase.Rathertheoperatorthatresultsaftercontractingthehard-collinearsubgraphhas eldcontent[¯qhv]s[¯qq]c(secondlineintheFigure).Thematrixelement(thirdline)canbewrittenas
q(tn )hv(0)]s|q¯b (n l)FT 0|[¯ 1
0duC3(E,u,n l)FT γ|[¯q(s1n+)q(s2n+)]c|0 (E,u).(20)
Thisseemstorepresenttheconvolutionofahard-scatteringkernelC3withthetwo-particlelight-conedistributionamplitudeoftheq¯bstateφq¯light-conedistribution¯bandtheqq
amplitudeofthephotonφγqq¯.Thisisonlycorrectwiththeunderstandingthattheu-integralisdivergentandmustberegularizedinawaythatisconsistentwiththeregularizationoftheω-integralinthesoftcontribution.Theadditionaldivergence,whichisnotrelatedto
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
therenormalizationoftheconventionallight-conedistributionamplitudes,istheendpointdivergenceofthen+kintegralin(10).Theassociatedν-dependencecancelsagainsttheν-dependenceofthesoftcontribution.Ingeneral,thedistributionamplitudesmaythemselvesdependontheadditionalregularization,andhencedi erfromthedistributionamplitudesthatappearinthehard-scatteringformalism.
Tosummarizethisdiscussion,wedistinguishtwostepsoffactorization.Inthe rststep,weintegrateoutthelarge-virtualityhard-collinearmodes,andrepresenttheresultintermsofoperatorsofsoftandcollinear elds.Theseoperatorswillbenon-local,re ectingthefactthatthehard-scatteringkernelsappearinconvolutionsratherthanasmultiplicativefactors.Thesecondfactorizationstepreferstotheseparationofsoftandcollinearmodeswithinthee ectivetheoryofsoftandcollinearmodes.Inourexample,thephotoncouplesonlytocollinearlines,andtheq¯bstatecouplesonlytosoftlines,sowewouldexpectthee ectivetheorymatrixelementstofactorizeintoamatrixelementofcollinear eldsbetweenthephotonandthevacuum,andamatrixelementofsoft eldsbetweenthevacuumandtheq¯bstate.Ifthiswerethecase,theprocesswouldfactorizeintoS T Φ.ThefactorizationscaledependenceofthesoftfactorSandofthecollinearfactorΦwouldcancelseparatelywiththatofthehard-scatteringkernelT,butthesoftandcollinearfactorswouldbeunrelated.Theendpointdivergencespreventsuchacompletefactorization.Forourtoyexamplewe ndinsteadafactorizationformulathattakestheschematicform
γ|J|q¯b =(C0+C1) φq¯b+C2 φq¯bg ν+
The rsttermontheright-handsiderepresentsadirectphotoncontribution;inthethirdtermthepartonicstructureofthephotonisresolved.Thesquarebracketsindicatetheadditionalscale-dependenceintroducedbytheendpointdivergences,whichconnectthesecondwiththethirdterm.Ifthescaleνischosensuchthatthethirdtermcontainsnolargelogarithmrelatedtotheendpointdivergence,wecaninterpretitasaendpoint-subtractedhard-scatteringcontributiontotheq¯b→γtransition.Forourtoyintegral,
2(10,13)showthatthiscorrespondstotakingνoforder2p′·l.Thecorrespondingendpointlogarithmthenresidesinthesecondterm,whichwemaycallthe“softoverlap”contribution
(sinceasoftlineconnectstheinitialstatewiththephotonasseenfromthemiddlecolumnofFigure3).Thetwotermsarerelatedviatheirν-dependence,suchthatthesumisindependentoftheimplementationofsoft-collinearor“endpoint”factorization.AsimilarstructureisexpectedfortheB→πformfactor[12]. φγqq¯ C3 ν φq¯b.(21)
3Heavy-to-lighttransitionsinSCET(c,s)
¯ΓQisob-Thee ectivetheoryrepresentationoftheheavy-to-lighttransitioncurrentsψ
tainedintwosteps: rstthehardmodesareintegratedout,andthecurrentisdescribedinsoft-collineare ectivetheoryincludinghard-collinearmodes.Weshalldenotethisthe-orybySCET(hc,c,s)(alsocalledSCETIintheliterature[15]).Thisstep,inwhichitisnotnecessarytodistinguishhard-collinearandcollinear,hasalreadybeendiscussedin
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Figure 4: Kinematics of an exclusive heavy-to-light transition in SCET(c,s). The heavy quark and the soft pa
rtons in the B meson must be converted into a cluster of collinear partons.[16, 17]. We will be mainly concerned with the second matching step, in which the hardcollinear modes are integrated out and the transition current is nally represented in terms of operators constructed only from soft and collinear elds. We refer to the theory of soft and collinear elds as SCET(c,s) (also called SCETII ). The kinematics of a heavy-to-light transition is illustrated in Figure 4. In contrast to[17] the invariant mass of the nal state is restricted to orderλ4~Λ2 as appropriate to an exclusive decay. This implies that the nal state must now consist only of collinear lines, since the addition of a soft line would increase the virtuality toλ2 . The initial state is described by a heavy quark and soft lines with total invariant mass near m2 . The SCET(c,s) transition current has to turn a cluster b¯ of soft modes with the quantum numbers of the B meson into a cluster of collinear lines with the quantum numbers of the nal-state meson. We begin with a brief description of the SCET(c,s) elds, gauge symmetries and Lagrangian. This theory is in many ways simpler than SCET(hc,c,s), because the dynamics of the soft-collinear transition resides only in the e ective current. We then discuss in detail the representation of the heavy-to-light current for an exclusive decay. In this section we restrict ourselves to tree-level matching. The general case will be considered in Section 4 to the extent that is necessary to prove the factorization of form factors. However, we brie y sketch the structure of transition operators and their coe cient functions beyond tree level at the end of this section.
3.1
Elements of SCET(c,s)
Fields. The SCET(c,s) Lagrangian and operators are built from a collinear light quark eldξc, a collinear gluon eld Ac, and soft light quark, heavy quark and gluon elds, denoted by qs, hv, As, respectively. As in[17] we assume that collinear elds describe particles with large momentum in the direction of the light-like vector n . n+ is another light-like vector, satisfying n n+= 2, and v will be the velocity vector labelling soft heavy quark elds. We will present our results in a general frame subject to the conditions n+ v~ 1, n v~ 1, v⊥~λ2 . The scaling of quark and gluon elds can be read o from the corresponding propagators
15
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
inmomentumspace.Forthequark eldsone nds
(22)2
The“opposite”projectionsofthefullcollinearquark eldψcandthefullsoftheavyquark eldsQv(de nedastheheavyquark eldwiththerapidvariationse imbvxremoved)areλ2suppressed,andintegratedout.Gluon eldsscaleasthecorrespondingderivatives,ξc=
n+Ac~1,A⊥c~λ2,n Ac~λ4,As~λ2.(23)n/ n/+Qv~λ3,qs~λ3.
Inderivingthis,weusedthattheintegrationmeasured4x~1/λ8,whentheintegralisoverproductsofonlycollinear eldsorproductsofonlysoft elds.Thisfollowsfromthefactthatanx-componentscalesinverselytothecorrespondingmomentumcomponent.Multipoleexpansion.Sincesoftandcollinear eldshavesigni cantvariationsoverdif-ferentlengthscalesinthen andn+directions,theyhavetobemultipole-expandedinproductsofsoftandcollinear elds.ThemultipoleexpansioninSCET(c,s)isdi erentfromthemultipoleexpansionde nedin[17],whichappliestoatheorywithhard-collinearandsoft elds,andnocollinear elds.Hereweneed
n xφs(x)=φs(x )+
2
where
x ≡n+xn
2+x⊥.(25)[n φc](x+)+...,(24)
Thecorrectiontermsinthetwoexpansionsof(24)arebothλ2suppressedrelativetotheleadingterms.
Gaugesymmetry.Thee ectivetheoryshouldbeinvariantundercollinearandsoftgaugetransformations,de nedastherestrictionofgaugefunctionsU(x)tothecorrespondingspatialvariations.Theimplementationofgaugetransformationsinthee ectivetheoryisnotunique,since eldrede nitionsorapplicationsofthe eldequationscanbeusedtoalterthegauge-transformationproperties[17,19,27].
InSCET(c,s)collinearandsoft eldsdecoupleatleadingpowerintheλexpansionaswillbeseenbelow.Furthermore,theproductofacollinearandasoft eldhashard-collinearmomentummodes,thereforegeneralsoftgaugetransformationsactingoncollinear elds(andviceversa)arenotallowed.Anaturalchoiceisthentode ne[20]
ξc→Ucξc, Ac→UcAcUc+i
Us ,Us g
.(26)
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Lagrangian.TheSCET(c,s)Lagrangiandescribesinteractionsofsoftandcollinear elds.Ingeneral,therecanbescatteringprocessesofthetypes+c→s+c.Ithasbeenshownin[20]forquarkscatteringthattheseinteractionsarepower-suppressed.Belowweextendthistogluonsandderivetheexplicitformoftheleadingpower-suppressedinteractions.Becauseofthedecouplingofsoftandcollinearmodesatleadingpower,theLagrangianissimply
L(0)=Ls+Lc(27)
atleadingpower,with
Lc= 1
in+Dc
2tr(FµνsFsµν)+q¯s(iD/s m)qs+LHQET (iD/⊥c+m)n/+(28)
andm~λ2thelightquarkmass.Theheavyquarkinteractionswithsoft eldsaredescribedbythestandardheavyquarke ectivetheory(HQET)LagrangianLHQET=¯viv·Dshv+...h
ForthekinematicsituationshowninFigure4scatteringprocessess+c→s+ccannotoccur.Ontheotherhand,thecrossedprocesss+s→c+cisnotpossiblebymomentumconservationinthen directions,sincen+p>0foracollinearmomentumandn l>0forasoftmomentum.Itfollowsthatinsertionsofthesoft-collinearinteractiontermsfrom¯ matrixelements,sothatwecansimplythesub-leadingLagrangianhavezero π|...|B
workwiththeLagrangianwithoutsoft-collinearinteractionstoanyaccuracy.(See[25]forarelateddiscussion.)BeyondleadingpowerthereareadditionaltermsinthecollinearLagrangianLc,whichariseuponintegratingoutheavy-quarkloopswithexternalcollinearlines.Heavy-quarkloopsalsogenerateadditionalsoftinteractionterms,whichcorrectLs,whichalsoincludesthe1/mbsuppressedtermsfromtheHQETLagrangian.However,thesoft-collinearinteractionsallresideinthee ectivecurrent.
Statesandhadronicmatrixelements.TheBmesonstatesinthee ectivetheorymaybede nedastheeigenstatesoftheleading-ordersoftHamiltonian.ThesestatesareidenticaltothoseusedinHQET.Alternatively,ifweregardthestatesastheeigenstatesoftheexactsoftHamiltonian,thesestatescoincidewiththeBmesonstatesoffullQCD,sincethesoftLagrangiantoallordersisequivalenttothefullQCDLagrangian.Similarly,thelightmesonstateinSCET(c,s)maybede nedastheeigenstateoftheleading-ordercollinearHamiltonian.ThisHamiltonianisequivalenttoQCDwithoutheavyquarks,sothepionstateinthee ectivetheoryisthesameasinQCD(withoutheavyquarks).De ningthepionwithrespecttotheexactcollinearHamiltonianimpliesthatthepionstateisthesameasinfullQCDwithheavyquarks.Inthefollowingweadopttheconventionthatthestatesarede nedwithrespecttotheexactsoftorcollinearHamiltonians,sothatwedonotdistinguishthee ectivetheorystatesfromthoseinQCD.Itwouldbeasimplemattertomaketheλdependenceofthestatesexplicit.Animplicitassumptionhereis
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
thattheseparationofcollinearandsoftmodesisdonewithoutanexplicitcut-o (dimen-sionaloranalyticregularization).WitharegularizationthatbreaksboostinvariancethecollinearLagrangianisnotequivalenttothefullQCDLagrangian.Fromtheconventionalnormalizationofhadronicstatesitfollowsthat
|B(p) ~λ 3,|π(p′) ~λ 2,(29)
wherethelightmesonisassumedtobeenergetic.
ThatapionismadeonlyofcollinearpartonscanbeunderstoodbynotingthatacollinearpionstatecanbeobtainedfromapionatrestbyalargeLorentzboost.InapionatrestallpartonshavemomentaoforderΛ,sotheboostedsystemcontainsonlycollinearmodes.Addingasoftpartontothecollinearmodesproducesacon gurationofinvariantmassmbΛ,whichcannotcontributetothepionpole.Ontheotherhand,withthesamelineofreasoning,aBmesonconsistsonlyofsoftpartons(andaheavyquark),sinceaddingacollinearmodeproducesacon gurationfarawayfromtheBmesonpole.Anapparentconsequenceoftheabsenceofsoft-collinearinteractionsandthenatureofthestatesisthatanexpression
¯ C π|f(φc)g(φs)|B(30)
wheref(φc)(g(φs))isanon-localproductofcollinear(soft) eldsandthestardenotesconvolutions,factorizesinto
¯ . π|f(φc)|0 C 0|g(φs)|B(31)
AsshowninSection2thisshouldbeconsideredasformal,sincethecollinearandsoftconvolutionintegralscanbedivergent.
AnotherconsequenceisthattheQCDcurrentmatrixelement π(p′)|u¯Γb|B(p) simplymatchesto π(p′)|Je |B(p) ,sotheproblemreducestoobtainingthee ectivecurrent.Alreadyatthispointwemaynotethattheapparentlyleadingtermvanishes,
¯cΓhv|B¯(p) =0, π(p′)|ξ(32)
¯c)dobecausethequantumnumbersoftheproductofcollinear elds(herethesingle eldξ
notmatchthoseofapion,andthequantumnumbersofthesoft elds(hereonlyhv)donot¯meson.Thiscanbeformalizedbysayingthatthee ectiveLagrangianmatchthoseoftheB
isinvariantunderseparatephasetransformationsofthecollinear,softandheavyquark elds,sowecanassign“collinearquarknumber”toproductsofoperators,withξ elds¯havingcharge 1andallotherfundamental eldscarryingcollinearquarkcharge+1,ξ
charge0.Weshallseelaterthatthe rstnon-zeromatrixelementissuppressedbythree3/2powersofλ.Thisistheoriginofthewell-known1/mbsuppressionofheavy-to-lightformfactorsatlargerecoil[11].
Thisleadstotheimportantobservation[15]thatpower-suppressedcurrentsinthee ectivetheorybecomerelevanttotheB→πformfactoratleadingpower.ThederivationofthesecurrentsinSCET(c,s)willbeworkedoutattreelevelbelow,andinmoregenerality
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
butlessexplicitlyinSection4.NotethatintheintermediateSCET(hc,c,s),whereonlyhardmodesareintegratedout,thepower-countingforhadronicmatrixelementsisnotexplicit.Inparticularin[17]thepionstateincludedsoft-collinearinteractionsandthe¯hcΓhv(withξhcdenotingthehard-collinearquarksuppressionofthematrixelementofξ
eld)withthesepionstateswasnotdetermined(seethediscussionattheendofSection
5.3of[17]andin[20]).
Light-conegaugeandWilsonlines.Itwillsometimesbeconvenient–especiallyforthefollowingtree-levelmatchingofSCET(hc,c,s)toSCET(c,s)–tochoosethegauge
n+Ahc=n+Ac=n As=0.(33)
Theusefulnessofn+Ahc=n+Ac=0gaugefollowsfromthefactthatSCET(hc,c,s)isnon-localonlyduetothepresenceofWilsonlinesinthedirectionofn+,andduetotheappearanceof(in+ ) 1.Withn+Ahc=n+Ac=0allWilsonlinesreduceto1,andthereareno eldsoforder1.Theusefulnessofn As=0gaugeisrelatedtothefactthatinSCET(hc,c,s)softgluonsdecouplefromcollinearandhard-collineargluonsatleadingorderinλinthisgauge.
Onceaparticularresulthasbeenderivedinthisgauge,thecollinearandsoftgaugeinvarianceisrecoveredbytransformingthe eldsbacktoageneralgaugeusingthegaugetransformations(26).Asexplainedin[19],thetransformationmatricesUcandUsthataccomplishthisarethelight-likeWilsonlines
Uc(x)=Wc(x)=Pexpig
Us(x)=Ys (x)=Pexpig 0
∞
∞dsn+Ac(x+sn+),
0dtn As(x+tn ),(34)
andthecorrespondinggaugetransformationofthe eldscanbewrittenas
ξc→Wc ξc,
hv→Ys hv,gAc→Wc [iDcWc]≡Ac,qs→Ys qs,gAs→Ys [iDsYs]≡As.(35)
(Hereandinthefollowingderivativesinsquarebracketsactonlyontheexpressiontotheirrightinsidethebracket.)BecausetheWilsonlinestransformas
cYs,Ys→UsUsYs,Ys→UcUcWc,Wc→UsWc,Wc→U(36)
theexpressionsontheright-handsideof(35)aregauge-singlets.The eldsAc,Ashavebeenintroducedin[20]asbuildingblocksformanifestlygauge-invariantoperators.
InageneralgaugetheWilsonlinesemergeautomaticallyfrommatchinganin nitesetofunsuppressedtree-levelFeynmandiagramswithattachmentsofn+Actosoft elds,andn Asgluonstocollinear eldsassketchedinFigure5.Indeed,atleadingpowerthese
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Figure5:In nitesetsofFeynmangraphswithattachmentsofsoftgluonsto
collinearquarksandvice-versa.Integratingouttheintermediatehard-collinear
propagatorsleadstotheWilsonlinesYs andWc,respectively,see(37).
diagramsresultin6
¯c1 gAψ/s
1← in Ds
in+Dc ¯cY , ξs(37)1 1gn+Acqs Wcqs.
Inpracticeusingthe xedgauge(33)inintermediatestepsandrestoringthegaugesym-metryvia(35)ismoree cient,inparticularwhenkeepingtrackofWilsonlinesarisingfrommulti-gluonverticesinthenon-Abeliantheory.
3.2E ectivecurrentattreelevel
¯ΓQ,whereWenowconsidertherepresentationofheavy-to-lighttransitioncurrentsJ=ψ
ΓisaDiracmatrix,inSCET(c,s).Weareonlyconcernedwithtreediagramsinthissubsection.
Inthefollowingweintroducedi erent eldsforhard-collinearandcollinearmodes.Weworkwiththegaugen+Ac=n+Ahc=n As=0andpresentthegauge-invariantresultonlyattheend.Integratingouthardintermediateheavy-quarkpropagatorsintreediagrams,weobtainthecurrentinSCET(hc,c,s)intheform
J(x)=e
where
ψ=ξc+ηc+ξhc+ηhc+qs
1=ξc+ξhc+qs
Q=
6 imbvx ¯ΓQ(x),ψ (38)2((iD/⊥+m)(ξc+ξhc)+(gA/⊥c+gA/⊥hc)qs), 1+iD/sn vn/ Wedonotwriteoutthe+i prescriptiononthepropagators,whichreads+i for1/(in+ )and i for1/(in ).Thisfollows,becausetheinternalhard-collinearpropagatorsarealwaysspace-like,with(p′ l)2 n ln+p′<0,wheren+p′>0describesanoutgoingcollinearmomentum,andn l>0anincomingsoftmomentum.Henceinpositionspace1/(in+ in +i )is1/(in+ +i )1/(in i ).
正在阅读:
Factorization of heavy-to-light form factors in soft-collinear effective theory05-25
罗默《高级宏观经济学》(第3版)课后习题详解(第3章 新增长理论)11-25
非政府组织管理课程考试题库03-17
市中小学计算机网络教室(网络学习室)06-05
金肯职业技术学院2016年12月招聘7名工作人员公告02-07
八年级英语上册教案模板(含表格)06-08
图书管理创新性策略分析12-12
新农合报销范围02-15
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Factorization
- collinear
- effective
- factors
- theory
- heavy
- light
- form
- soft
- -学年八年级下学期第5单元第17课《壶口瀑布》语文同步练习试卷
- 电子白板的使用方法
- 长方体正方体测试题
- 第12章 我国的主要渔业法规
- 学校管理改进实施方案(善字完小)
- 基于RFID技术的仓储管理系统研究与实现
- 人教版历史八年级下册第一课“中国人民站起来了”
- 航空机票预订系统需求分析
- 内蒙古自治区生产安全事故应急预案管理实施细则
- 广州市黄埔区八年级物理上学期4.5光的色散
- 《算法设计与分析》实验报告
- 中级财务会计教案
- 浅析中国国有企业绩效管理存在的问题及对策
- 人教版四年级上册英语期末试卷及答案
- 关于2012公路试验检测人员考试时间及题型分析
- 武康平 高级微观经济学 作业第八讲
- 东城区四年级上学期语文期末统考卷B卷
- 位错及界面部分第一次习题答案
- 粤方言区普通话学习语音难点及对策分析
- 2014mba综合试题6.6