Minimal types in simple theories
更新时间:2023-05-23 21:50:01 阅读量: 实用文档 文档下载
- minimal推荐度:
- 相关推荐
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
Minimaltypesinsimpletheories
AnandPillay
UniversityofLeeds
September4,2006
Abstract
WeprovethatifM0isamodelofasimpletheory,andp(x)isacompletetypeofCantor-Bendixonrank1overM0,thenpisstation-aryandregular.AsaconsequenceweobtainanotherproofthatanycountablemodelM0ofacountablecompletesimpletheoryThasin- nitelymanycountableelementaryextensionsuptoM0-isomorphism.Thelatterextendsearlierresultsoftheauthorinthestablecase,andisaspecialcaseofarecentresultofTanovic[4].
1Introduction
Thispaper,whichextendsearlywork[1]oftheauthor,iscloselyrelatedtoandmotivatedbycurrentworkofPredragTanovicontheauthor’soldcon-jecturethatanycountablemodelM0(inacountablelanguage)hasin nitelymanycountablemodelsuptoisomorphismoverM0.In[4]Tanovicprovestheconjecturefortheorieswithoutthestrictorderproperty,andinprivatee-maildiscussionshehasdescribedaroutetothefullconjecture.
Theexpression“minimaltype”inthetitlereferstoatypeofCB-rank1overamodelM0,ratherthantoatypeofSU-rank1.Forp(x)∈S(M0)tobeofCantor-Bendixonrank1meansthatp(x)lythereissomeformulaφ(x)overM0suchthatp(x)isaxiomatizedby{φ(x)}∪{x=a:a∈ SupportedbyaMarieCurieChair
1
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
M0,M0|=φ(a)}.ThesetXde nedinM0bysuchaformulaφ(x)iswhatissometimescalledminimal:namelyitisin nite,buteveryde nable(withparametersinM0)subsetis niteorco nite.IfM0isanin nitestructuresuchthatS(M0)iscountable,thentherewillexist1-typesoverM0ofCB-rank1.In[1]itwasobservedthatifTh(M0)isstableandp(x)∈S(M0)hasCB-rank1thenpisaregulartype:forkingonrealizationsofpinabig¯isapregeometry.HenceifMnisprimeoverM0togetherwithanmodelM
independentset{a1,..,an}ofrealizationsofp,then(bytheopenmappingtheoremandregularity),n=mimplesMnandMmarenotisomorphic(overM0).TheresultsinthispapershowthatthesameconstructionworksifTh(M0)isjustassumedtobesimple.
Ontheotherhand,themaintechnicalresultofthispaper(stationarityofCB-rank1typesovermodelsinsimpletheories)suggeststhatifTisacountablesimpletheorysuchthatforsomecountablemodelM0ofT,S(M0)iscountable,thenTisclosetobeingstable.OfcourseifthemodelM0happenstobeω-saturated(soforexamplewhenTisω-categorical),countabilityofS(M0)directlyyieldsω-stabilityofT.Buthereisanunstableexample(alsosuggestedbyB.Kim):Eisanequivalencerelation,andinM0thereisexactlyoneequivalenceclassCnofeach nitecardinalityn(andnoin niteclasses).AlsoRisabinaryrelation,andthe nitestructures(Cn,R|Cn)approximatetherandomgraph,sothatifCisanin niteE-classinanelementaryextensionMofM0then(C,R|C)istherandomgraph.ThiscanbesetupsothatS(M0)iscountable(andinfactsuchthatthereisauniquenon-algebraic1-typeoverM0).
2Proofofmainresult
AssumeTtobeacompletesimpletheoryinalanguageLofarbitrarycar-dinality.Weassumefamiliaritywiththebasicmachineryofstabilityandsimplicity(see[2]and[5]).Wewillmakeheavyuse(amongotherthings)ofthefactthatpisatypeoveramodelthenanyheirorcoheirofpisanonforkingextension.¯ofT.AllothermodelsofTweWeworkinabigsaturatedmodelM
considerareassumedtobesmallelementarysubmodelsofT.
Proposition2.1LetM0beamodelofT.Letp(x)∈S(M0)beatypeof
2
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
CB-rank1.Thenpisstationary,namelyhasauniquenonforkingextensionoveranysetcontainingM0.
Proof.Wewillassumethatp(x)isnonstationaryandgetacontradiction.ClaimI.ThereisamodelMcontainingM0,anddistinctnonforkingextensionsp (x),p (x)∈S(M)ofp(x)suchthatp (x)isanheirofp.
Proof.Thisisclear,asanyheirofpisanonforkingextensionandweareassumingthatphasdistinctnonforkingextensionsoversomemodel.
ClaimII.ThereisamodelMofTandanonforkingextensionp (x)∈S(M)ofpwhichisnotacoheirofp(namelyisnot nitelysatis ableinM0).¯isProof.IfnotthenanynonforkingextensionofpoverthemonstermodelM¯ nitelysatis able nitelysatis ableinM0.ButthenumberoftypesoverM|M|inM0isboundedby220,sowehaveaboundednumberofnonforkingextensionsofp.Thisimpliesthatpisstationary.(BytheIndependencetheoremforexample:see[3].)
ByClaimIthereisa nitetupleaanddistinctnonforkingextensionsp1(x),q(x)∈S(M0a)ofp(x)suchthatp1isanheirofp.
ByClaimII,letcbea nitetuple(c0,)andr(x)anonforkingexten-sionofpoverM0cwhichisnot nitelysatis ableinM0.
Thereisnoharminextendingc,sowemayassumethatc0realizesp,namely,tp(c0/M0)=p.Also,asbyautomorphismwemayreplacecbyanyrealizationoftp(c/M0),wemayassumethatc0realizesthetypep1(overM0∪{a})mentionedabove.Notethatthentp(a/M0c0)is nitelysatis ableinM0sohasacompleteextensionoverM0cwhichwhichis nitelysatis ableinM0.Thus,byautomorphismagainwemayassumethattp(a/M0c)is nitelysatis ableinM0,namelythattp(c/M0a)isanheiroftp(c/M0).Letussummarisethesituationsofar.Wehavetuplesaandc=(c0,..,cn)¯andcompletetypesq(x)∈S(M0a)andr(x)∈S(M0c)suchthatinM
(i)tp(c0/M0)=p(x),
(ii)tp(c/M0a)isanheiroftp(c/M0),soinparticularcaswellasc0isinde-pendentfromaoverM0.
(iii)q(x)isanonforkingextensionofp(x),andq(x)=tp(c0/M0a).
3
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
(iv)r(x)∈S(M0c)isanonforkingextensionofp(x)butisnot nitelysat-is ableinM0.
BytheIndependenceTheoremoveramodel(forsimpletheories),wecan ndbrealizingbothq(x)andr(x)(suchthatmoreover{a,c,b}isM0-independent).
By(iii)letψ(x,y)beaformulaoverM0suchthat
(v)|=ψ(b,a)∧¬ψ(c0,a).
By(iv)letχ(x,z)beaformulaoverM0suchthat
(vi)|=χ(b,c)andχ(x,c)isnotrealizedinM0.
Letusnow xaformulaφ(x)overM0whichisolatespamongnonalgebraictypesoverM0(whichexistsaspisassumedtohaveCB-rank1).Soby(v)and(vi)weclearlyhave
|=¬ψ(c0,a)∧( x)(φ(x)∧χ(x,c)∧ψ(x,a))
By(ii)thereisa inM0suchthat
( )|=¬ψ(c0,a )∧( x)(φ(x)∧χ(x,c)∧ψ(x,a ))
Soletb ly
|=φ(b )∧χ(b ,c)∧ψ(b ,a )
By(vi)andourassumptiononφweseethattp(b /M0)=p(x).Soψ(x,a )∈p(x).Ontheotherhandby( )and(i),¬ψ(x,a )∈p(x).Thisisacontradictionandprovestheproposition.
Corollary2.2LetM0andp(x)∈S(M0)beasinProposition2.1.Thenp(x)isde nableandregular.Moreoverthenonforkingextensionsofp(x)arepreciselythecoheirsofp(x).
Proof.Themoreoverclauseisclearfromstationarityofp:foranysetA M0phasanonforkingextensionswhichisacoheir,souseuniqueness.
De nabilityisalsoclear:p(x)hasauniqueheiroveranyset(itsnonfork-ingextension)sobyBethde nability,pisde nable(alternativelysee[3]).MoreoverclearlythenonforkingextensionofpoveranyA M0isgivenbyapplyingthede ningschemaofptoA.
4
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
Regularityofp(x)isstandard.Butwegothroughtheproofforcom-pleteness.Wehavetoprove:
(*)IfMisamodelcontainingM0,brealizesaforkingextensionofpoverMandcrealizesa(orratherthe)nonforkingextensionofp(x)overMthencisindependentfromboverM.
Letdbethede ningschemaforp.Asbeforeletφ(x)isolatepamongnonalgebraictypesoverM0.AssumethatcforkswithMboverM0.Soforsomeψ(x,y,z)overM0,anda∈Mwehave|=ψ(c,b,a)∧¬dψ(b,a).AsbforkswithMoverM0wehavesomeχ(x,z )overM0anda ∈Msuchthat|=χ(b,a )∧¬dχ(a ).Sothefollowingholds:
y(φ(y)∧ψ(c,y,a)∧¬dψ(y,a)∧χ(y,a )∧¬dχ(a ))
Thereisnoharminassuminga=a .Astp(c/M0a)istheheiroftp(c/M0)=p,we nda0∈M0andb0suchthat
|=φ(b0)∧ψ(c,b0,a0)∧¬dψ(b0,a0)∧χ(b0,a0)∧¬dχ(a0)
Socforkswithb0overM0wherebyb0∈/M0,soasb0realizesφ,tp(b0/M0)=p(x).Butthenthefactthat|=χ(b0,a0)∧¬dχ(a0)givesacontradiction.Corollary2.3([4])IfTisacountablecompletesimpletheory,andM0acountablemodelofTthenM0hasin nitelymanycountableelementaryextensionsuptoisomorphismoverM0.
Proof.WemayassumeS(M0)tobecountablesocontainsaCB-rank1typep(x).Proposition2.1andCorollary2.2applytop.Leta1,..,anbeindependentrealizationsofp(overM0)andletMnbetheprimemodeloverM0∪{a1,..,an}.Ifb∈Mnrealizespthentp(b/M0,a1,..,an)isisolatedhencebythemoreoverclauseinCorollary2.2forkswitha1,..,anoverM0.Hence{a0,..,an}isamaximalindependent(overM0)setofrealizationsofpinMn.So(byregularity)thedimensionofpinMnisn.Thisconcludestheproof.Question1.SupposeM0isamodelofasimpletheory,andthateverytypeinS(M0)hasCB-rank.IseverycompletetypeoverM0stationary?Theresultsin[1]wereactuallyprovedunderaweakerassumptionthanstabilityofTh(M0).TheassumptionwasthatM0hasnoorder:thereisnoin nitesetoftuplesfromM0totallyorderedbysomeformula.
5
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor-Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T
Question2.UnderthesameasumptionsasinQuestion1,isitthecasethatM0hasnoorder?
References
[1]A.Pillay,Dimensiontheoryandhomogeneityforelementaryextensions
ofamodel,JournalofSymbolicLogic,47(1982),147-160.
[2]A.Pillay,Anintroductiontostabilitytheory,OxfordUniversityPress,
1983.
[3]A.Pillay,De nabilityandde nablegroupsinsimpletheories,Journal
ofSymbolicLogic,63(1998),788-796.
[4]P.Tanovic,Onconstantsandthestrictorderproperty,Archivefor
Math.Logic,45(2006),423-430.
[5]F.O.Wagner,Simpletheories,Kluwer,2000.
6
正在阅读:
Minimal types in simple theories05-23
农网工程施工作业典型安全措施04-02
8_关联分析与解耦控制05-19
道路交通静化在交通安全中的应用05-13
大学生工程造价实习报告4篇05-19
搭石教学反思【3篇】03-23
MOSFET-Only Wideband LNA with Noise Cancelling and Gain Optimization(MOS Only NF lees 2)05-16
高一数学+必修4学案(校本课程开发)10-28
教师教学研修个人工作计划精品范文08-03
基于单片机的水温控制系统毕业设计10-15
- 1Simple软件 - 产品知识库
- 2Unit Five Some American Types(Max Lerner)
- 3Large N gauge theories -- Numerical results
- 4人类传播学theories of human communication
- 5Copyright information to be inserted by the Publishers MODULATED DIFFUSION FOR A SIMPLE LAT
- 6Extended Gauge Theories in Euclidean Space with Higher Spin Fields
- 7Compare and contrast the theories and methods of Emile Durkheim and Max Weber
- 8Novel Aspects in p-Brane Theories Weyl-Invariant Light-Like Branes
- 9Novel Aspects in p-Brane Theories Weyl-Invariant Light-Like Branes
- 10Lay Theories of Spring Displacement of Common-Sense Understandings of Nature by ‘Expert ’
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- theories
- Minimal
- simple
- types
- 江岸区2020~2021学年度第一学期期末质量检测
- 浅谈中西方礼仪文化差异
- 中层管理者的十堂转型课—测试答案
- 聚合物的结构与性能
- 中考真题文言文阅读《马说》、《狼》专练
- 砖混结构住宅群施工组织设计_secret
- 业务人员的基本素质与技巧
- 安徽省合肥168中学2014届高三理综(化学部分)最后一卷试题新人教版
- 国际化妆品原料标准中文名称目录
- 水利创新设计大赛作品说明书33
- 未来最有市场发展前景的十大通信技术
- 循环经济理论在济钢的实践
- 2011年外贸国内B2B网站大全(网上贸易)
- 民族民间文化进校园面临的问题及对策思考
- 小学五年级体育教学工作计划样本
- 安全工程师《安全生产管理知识》测试试题
- 历届高考中的“解析几何初步”试题精选(A)
- 企业主要经营过程的核算
- 超特高压交流输电线路电晕对地面电场的影响
- 第8章网络基础--《大学计算机基础》(第2版) 铁道出版社(余益)