Water soluble carbon nanoparticles Hydrothermal synthesis and excellent photoluminescence properties

更新时间:2023-05-11 20:11:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

ContentslistsavailableatScienceDirect

ColloidsandSurfacesB:Biointerfaces

journalhomepage:/locate/colsurf

b

Watersolublecarbonnanoparticles:Hydrothermalsynthesisandexcellentphotoluminescenceproperties

XiaodieHea,1,HaitaoLia,1,YangLiua,HuiHuanga,ZhenhuiKanga, ,Shuit-TongLeea,b

InstituteofFunctionalNano&SoftMaterialsandJiangsuKeyLaboratoryforCarbon-BasedFunctionalMaterials&Devices,SoochowUniversity,Suzhou,Jiangsu215123,Chinab

CenterofSuper-DiamondandAdvancedFilms(COSDAF)andDepartmentofPhysicsandMaterialsScience,CityUniversityofHongKong,HongKong,China

a

article

info

abstract

Articlehistory:

Received17March2011

Receivedinrevisedform17May2011Accepted20May2011

Available online 27 May 2011

Keywords:

CarbonnanoparticlesPhotoluminescence

Up-conversionphotoluminescence

Visible–nearinfraredphotoluminescence

Water-solublecarbonnanoparticles(CNPs)werefabricatedbyafacile,onestephydrothermalsyn-theticrouteusingacid/alkaliasadditives.TheseCNPsemitbrightphotoluminescence(PL)coveringtheentirevisible-nearinfrared(NIR)spectralrange.PLmeasurementscon rmedthattheCNPshaveup-conversionofPLproperties,andthattheNIRPLoftheCNPscanalsobeobservedbyNIRexcitation.ControlexperimentsindicatedthatdifferentadditivescanstronglyaffectthePLpropertiesoftheCNPs.WithacombinationoffreedispersioninwaterandattractivePLproperties,theseCNPsholdpromiseforapplicationsinnanotechnology.

© 2011 Elsevier B.V. All rights reserved.

1.Introduction

Animmenseinteresthasbeenshownrecentlyonthephoto-luminescentnanostructuresduetotheirpromisinganddiverseapplicationsrangingfromoptoelectronicstobiology,especiallyintherapidlygrowing eldonbionanotechnology[1].More-over,thedemandforphotoluminescentnanostructuresemittinginvisible-to-nearinfrared(NIR)spectralrangeisrapidlyincreas-ing[1,2].ComparedtoconventionalmeasurementsmadeintheUV–visibleregion,spectro uorimetrywithinthetherapeuticwin-dowof700–1200nmhasmanyadvantages,suchaslowerlevelsofbackgroundinterferenceanddeeperlightpenetrationoflivingtissues[2].Consequently,NIRphotoluminescence(PL)obtainedunderNIRexcitationholdsgreatpotentialfortheinvivousesatasigni cantdepthinthebiologicalmediaandthedevelopmentofnoninvasivediagnostictechniques[1–4].

WhilesomesemiconductorscanexhibitNIRPL,theyaretypi-callyexcitedbyUV,visibleorNIRlight,whichraisesconcernsonhealth,environmentandhighcost(mostassociatedwithClassAelement:Cd,Pb,InandHg;andClassBelement:SeandAs),thuslimitingtheirinvitroandinvivoapplications[3].Tomaintaina

Correspondingauthor.Tel.:+8651265880957;fax:+8651265882846.E-mailaddresses:yangl@(Y.Liu),zhkang@(Z.Kang).1

Theseauthorscontributedequallytothiswork.

benignenvironment,low-toxicitysiliconandcarbonnanostruc-turesarepreferredinmanyapplications.WhileSiquantumdotshavebeenappliedinimmuno uorescentcellimagingtoactascellularprobes,theycannotyieldNIRPL[4].Recently,graphenequantumdots[4]andoxygen-containingcarbonnanoparticles(CNPs)withPLpropertieshavebeenpreparedbylaserablationandelectrochemicaloxidationofgraphite[5,6],electrochemicalsoakingofcarbonnanotubes[7],thermaloxidationofsuitablemolecularprecursors[8],vapordepositionofsoot[9],proton-beamirradiationofnanodiamonds[10],microwavesynthesisandwetchemicalmethod[11].TheCNPsreportedsofaremitef -cientlyonlyinthevisiblerange,andnoneofthemhasbeenreportedtogenerateNIRPL.Although,NIRPLunderNIRexcitationhasbeenobservedinsingle-walledcarbonnanotubes(SWCNTs)[12],howevertheysufferfromthedrawbacksofuncontrollablespeci edchiralityandexpensivepreparationand/orseparationprocedures.

Carbohydratesarethemostabundantclassoforganiccom-poundsfoundinlivingorganisms.Theformulasofmanycarbohydratescanbewrittenascarbonhydrates,Cm(H2O)n,andtherehavebeenmanytrialsintheliteraturetoreplicatecarbonformationfromcarbohydrates[13].TheCNPswerepreparedbyasimplehydrothermalmethodbyusingacarbonsource[13d].Herein,wereportafacileandeffectivesynthesisofCNPsthroughthehydrothermaltreatmentofthreecommoncarbohydrates(glu-cose,sucroseandstarch).Theobtainedwater-solubleCNPscan

0927-7765/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfb.2011.05.036

X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

327

Scheme1.FabricationofCNPscapableofvisibleandNIRemissionbyacid/alkali-assistedhydrothermaloxidation(carbohydraterepresentglucose,sucroseandstarch).

Fig.1.Typical(a)TEMand(b)SEMimagesofCNPssamplespreparedfromcarbohydrates.

Fig.2.TypicalPLimages(allscalebarsare20 m)ofCNP’ssamplespreparedfromstarchwithexcitationwavelengthsat(a)365nm,(b)455nm,(c)545nmandcollectionwavelengthsat(a)>470nm,(b)>515nm,(c)600±40nm,respectively.

emitbrightandcolourfulPLcoveringtheentirevisible–NIRspectralrange.Signi cantly,theNIRPLcanbeexcitedbyNIRlight,andup-conversionPLpropertyisalsoobservedintheCNPssamples.

2.Materialsandmethods

2.1.Materials

Glucose,sucrose,starch,HCl,NaOH,hexamine,ethanol(analyticalpurity,SinopharmChemicalReagentsLimitedCompany).Theywereusedasreceived.Alltheaqueoussolutionswerepreparedusingde-ionizedwater.

2.2.Methods

CNPsweresynthesizeddirectlyfromacid/alkali-assistedhydrothermaloxidationofcarbohydrates(glucose/sucrose/starch)inwater.Carbohydrates(glu-cose/sucrose/starch)wereusedascarbonsourceandacid/alkaliasanadditive.Inatypicalprocedure,1gglucoseand0.1gNaOH(oranyothermoderateadditive)wereaddedin15mLwaterunderstirring.Thesolutionwasthentransferredintoa20mLTe on-linedstainless-steelautoclaveandwasheatedataconstanttemperatureof160 Cfor4h.Theresultingsolutionwascooledatroomtemperatureandtheup-layersolutioncontainingproductwasobtainedaftercentrifugation.Topurify,thissolutionwasheatedat100 Ctoallowtheresidualsodiumhydroxidetodissolveout(Incase,HClbeingusedastheadditive,theresidualHClisevaporatedat100

C).

Fig.3.TypicalPLspectraofCNPsobtainedfromglucose(curvea),sucrose(curveb)andstarch(curvec)withexcitationat350nm.

328X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

Thiswasfollowedby ltrationofthesuspensionandthesolidwasremoved,leavingthesolutioncontainingCNPs.ThesolutionwasdriedundervacuumandtheCNPssampleobtainedwas nallykeptindeionizedwaterintheformofatransparentsolution.Here,theCNPspreparedfromglucose,sucroseandstarchwerenamedasglu-,suc-,andsta-CNPs,respectively.

ThesizeandmorphologyoftheCNPssampleswereexaminedwithaPhilipsXL30FEGscanningelectronmicroscope(SEM)andaFEI/PhilipsTechal12BioTWINtransmissionelectronmicroscope(TEM).Thestructureandchemicalcomposi-tionwerefurtherinvestigatedbyX-raydiffraction(XRD),RamanandElementaryanalyzer.Thephotoluminescence(PL)spectrawereobtainedatroomtempera-turebyusingaPerkin-ElmerLuminescencespectrometerLS50B.The uorescenceimagesofCNPswereinvestigatedunder uorescentmicroscope(LEICADM4000M).Theexcitationwavelengthswere365,455,545nmandthecorrespondingcollec-tionwavelengthsare>470nm,>515nmand600±40nm,respectively.TheUV–visabsorptionspectrawereacquiredbyaLambda750spectrophotometer.FTIRspectrawereperformedusingaNicolet360spectrometer.

Werepeatedthesynthesisandthemeasurementabovefor vetimes,andallthemeasurementdatacanbereplicatedverywell.

3.Resultsanddiscussion

Inourexperiment,afacileandone-stephydrothermalsyntheticroute(typicallywithHClorNaOHasadditives)wasemployedforthefabricationof uorescentCNPs.AsillustratedinScheme1,theCNPssampleswerepreparedfromthreedifferentcarbonsources(glucose/sucrose/starch)astheyallexhibitstrongPLinvisiblespec-tralrange,whereas,NIRPLcanonlybeobservedinthesamplessynthesizedfromsucroseandstarch.Notably,NIRemissioncanbeobtainedbyNIRexcitation.

Investigationindicatesthatallofthesamplespreparedfromdifferentcarbohydratesshowsimilarmorphology.Fig.1depictsthetransmissionelectronmicroscopy(TEM)andscanningelectronmicroscopy(SEM)imagesofCNPspreparedfromglucose,indicat-ingthattheCNPsaresphericalwithdiametersof70–100nm.The

Fig.4.VisiblePLspectraof(aandb)glu-CNPs,(candd)suc-CNPs,and(eandf)sta-CNPspreparedwithusing(a,cande)HCland(b,dandf)NaOHasadditives.

X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

329

HRTEMimageoftheCNPsisshowninFig.S1,fromwhichitcanbeseenthatthereisnolatticestructureobserved,indicatingitsamorphousnature.TheXRDpatternoftheCNPsispresented(inFig.S2).Thebroadpeaknear20 witharelativelylowintensityisattributedtoamorphouscarbon[13e]whichisconsistentwiththeresultofHRTEM.

ThePLimageofCNP’swasinvestigatedunder uorescentmicro-scope.Typicalspecimenforopticalmicroscopywaspreparedbyplacingadropoftheaqueoussolutiononacoverglassandevapo-ratingthewater.Fig.2showsthe uorescenceimagesofthesamplepreparedfromstarch,whichshowthattheCNPsarestronglyemissiveinthevisiblerangeunderUVandvisibleexcitation.Lumi-nescenceofdifferentcolours(blue,yellowandred)andbrightnessisobtainedby365nm,455nmand545nmexcitation,respectively.ThesimilarPLphenomenoncanalsobeobservedinthesamplespreparedfromglucoseandsucrose(seeSupportingInformation,Figs.S3andS4).

Tofurtherexploretheiropticalproperties,thePLspectraofas-preparedCNPswereassessed.AllPLspectraofCNPssynthesized

fromglucose,sucroseandstarchexhibitthevisibleemissionscov-eringblue-to-redwavelengthrangeinthesamesampleunderUVandvisibleexcitation.Fig.3showsthetypicalPLspectraofCNPsobtainedfromglucose(curvea),sucrose(curveb),andstarch(curvec)withexcitationat350nm.AclosedobservationshowsthatthePLemissioncanbeextendedintoNIRwavelengthrangeintheCNPssamplesobtainedfrombothsucrose(curveb)andstarch(curvec).Thesharppeaksnear700nmarethesecondorderdiffractionoftheexcitationlight.Moreover,furtherPLstudyshowsthattheseNIRPLemissionscanalsobeobtainedunderNIRexcitation(seethefollowingdiscussion).ItshouldbenotedthatNIRPLemissionsexcitedbyNIRexcitationareparticularlysigni cantandusefulforbionanotechnologybecauseofthetransparencyofbodytissuesintheNIR“waterwindow”.

InordertofurtherinvestigatetheopticalpropertiesoftheCNPs,thedetailedPLstudywascarriedoutbyusinglightatdifferentwavelengths(300,350,400,450,500nm)asexcitation.Fig.4showsthePLspectraofglu-CNPs(aandb),suc-CNPs(candd)andsta-CNPs(eandf)byusingHCl(a,cande)andNaOH(b,dandf)asadditive

Fig.5.Up-conversionPLspectraof(aandb)glu-CNPs,(candd)suc-CNPsand(eandf)sta-CNPspreparedbyusingHCl(a,cande)andNaOH(b,dandf)asadditives.

330X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

Fig.6.PLspectraofCNPswithexcitationandemissioninNIRband.(aandb)suc-CNPsand(candd)sta-CNPspreparedwithusingHCl(aandc)andNaOH(bandd)asadditives.

reagents.Wecanseethatunderdifferentexcitation,alloftheCNPsexhibit uorescenceemissioninvisiblespectralrange.AsshowninFig.4a,candeandFig.4b,dandf,theadditives(HClorNaOH)canchangethedistributionoftheemissioncoloursoftheCNPs.Thatis,HClleadstotheincreasingdistributionofCNPsemittingatlongerwavelengthsorwarmercolours,whereas,NaOHleadstotheincreaseindistributionofCNPsemittingatshorterwavelengthsorcoldercolours.Itisreasonabletoassumethatacid/basecanintro-ducethedifferentdefectsonthecarbonparticlesurfaceactingasexcitationenergytrapsandleadingtothedifferentPLproperties.Also,wethinkthatthedifferentPLintensitywithdifferentexci-tationwavelengthsshouldbeattributedtothedifferentquantumyields(SeeSupportingInformation,TableS1).

Theup-conversionPLmaterialscanconvertalongerwave-lengthradiation(e.g.,NIRlight)toshorterwavelength uorescence(e.g.,visiblelight),whichpossessprominentpotentialsinbiologicalandclinicalapplications.Mostoftheup-conversion uorescencematerialsreportedwereinorganiccrystalsdopedwithrare-earthelements[14]orencapsulatingorganicdyesorquantumdotsinthesilicashell[15].Untilnow,therearefewmaterialswhichcandisplaybothvisibleemissionandup-conversionPL.Here,theCNPspreparedcanbeexcitedbyNIRwavelengthlightandemitbrightPLinvisiblespectralband,whichsuggestthattheseCNPshavetheup-conversionPLproperty.Fig.5showstheup-conversion uorescencespectraofglu-CNPs(aandb),suc-CNPs(candd),andsta-CNPs(eandf).Forglu-CNPsandsuc-CNPsobtainedbyusingHClasadditive,theup-conversionPLspectrashowtwopeaks(at480,580nm)whentheyareexcitedby800and850nm,whileonepeak(520nm)isseenbyexcitationat900nm(a–c).However,whenglu-CNPsandsuc-CNPspreparedbyusingNaOHasadditiveisused,thereisonlyonepeakintheup-conversionPLspectra

(b–d)withallexcitationwavelengthsinNIRspectralband.TheupconversionPLspectraofSta-CNPs(obtainedbyusingHClandNaOHasadditives)alsoshowsonlyonepeakat530nmwithNIRexcitation(Fig.5eandf).

FurtherdetailedstudyshowsthattheNIRemissionofsuc-CNPsandsta-CNPscanbeobtainedbyusingNIRlight(700and750nm)asexcitation.Fig.6showstheNIRemissionspectraofsuc-CNPs(aandb)andsta-CNPs(candd).Moredetailedandcarefullycon-ductedPLtestexperimentscon rmthattheglu-CNPscannotgiveNIRemissionwitheithervisibleorNIRexcitation.ItshouldbenotedthattheNIRemissionexcitedbyNIRexcitationofthesuc-CNPsandsta-CNPsshowgreatpotentialapplicationinbionanotechnol-ogyandbioimaging.AlthoughthemechanismforthePLdifferencesinCNPspreparedfromdifferentcarbohydratesisnotfullyunder-stood,itisbelievedthatthestructuredifferencesinglucose,sucroseandstarchisthemainreason.Glucoseisasimplesugarandmainlyexistsasthesix-memberedringcontainingahemiacetalgroupinasolution.Sucroseisadisaccharidederivedfromthecondensationofglucoseandfructose,andtheyarelinkedviaanetherbondcalledaglycosidiclinkage.Starchisacarbohydrateconsistingofalargenumberofglucoseunitsjoinedtogetherbyglycosidicbonds.Thus,underthehydrothermalcondition,theoxidationandcarboniza-tionofglucose,sucroseandstarcharedifferentfromeachotherduetotheirdifferentstructures(withorwithoutglycosidiclink-age),whichaffectthePLpropertiesoftheCNPsobtained.Thatis,CNPspreparedfromtheprecursorswithglycosidiclinkage(sucroseandstarch)haveNIRemissionwithNIRexcitation.While,CNPspreparedfromtheprecursorswithoutglycosidiclinkage(glucose)cannotgivetheNIRemission.Ontheotherhand,aspreviouslyreported,thePLofcarbonor“carbogetic”dotshasbeenattributedtopassivateddefectsonthecarbon–oxygeninterfaceactingas

X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

331

Fig.7.Photographsofsuc-CNPsundersunlightandUVlamp(365nm)withdifferentadditives(hexamine:aandd;NaOH:bande;HCl:candf,respectively).

excitationenergytraps.Inourexperiment,theglycosidiclink-agecanprovideapre-placedactionfortheformationofCNPs,whichmayleadtodifferentdefectsonthecarbon–oxygeninter-facecomparedtotheprecursorswithoutglycosidiclinkage.Thus,itisreasonablethatthedifferentprecursorsleadtodifferentPLpropertiesofCNPs.

ThechemicalcompositionofCNPshadbeenmeasuredbyele-mentalanalysis.Elementalanalysis:C59.2%,H4.2%,O(calculated)36.6%.TheCNPscontainedmainlyelementalcarbonandoxygen.TheRamanspectrum(Fig.S5)showsaDbandatabout1340cm 1andGbandatabout1580cm 1,ascribedtodisorderedamorphouscarbonandcrystallinegraphite,respectively.

Fig.S6depictsthetypicalUV–visible(UV–vis)absorptionspec-traoftheCNPs.Asshown,theCNPssamplespreparedfromdifferentcarbonsourceswithbothHClandNaOHasadditivesgivethesim-ilarabsorption.Thepeakat250–300nmisthetypicalabsorptionofanaromaticpisystem,whichissimilartothatofpolycyclicaro-matichydrocarbons[16].TheextendedconjugationinthestructureofCNPsleadstotheredshiftofthe – *transition[17].

Thetypicalinfrared(IR)spectraofCNPsareshowninFig.S7.Thepeaksaround3000,1600and1500cm 1correspondtotheCCstretchofthecarbonskeletonofcarbonnanoparticles,whichareconsistentwiththeUVspectra.Thepeaksatabout1700cm 1indicatetheexistenceofcarbonyl(Cgroups,whilethepeaksatabout1720,1200,and1080cm 1areduetocarboxylicgroups.Thepeakat3346cm 1correspondstothe–OHstretchmode[18].ThefunctionalcarboxylicandhydroxylgroupsofCNPsleadtothegoodwaterdispersibility,whichcanplayanimportantroleinfurtherapplicationforbionanotechnology[4e–g,5–11]

.

Fig.8.PLspectraofsuc-CNPsobtainedwithdifferentadditives:blue,green,andredemissionforadditivesofhexamine,NaOH,andHCl,respectively.

Asdiscussedabove,paredtoNaOH,HClleadstotheincreaseindistributionofwarmercolours.Infurtherstudies,wecarriedoutaseriesofcon-trolexperimentswithdifferentadditives,suchasHCl,NaOHandhexamine.Notably,asshowninFig.7,theemissionofsuc-CNPscanbetunedbydifferentadditives:blue,greenandredemissioncanbeobtainedwhenhexamine,NaOHandHClareusedasadditives,respectively.ThecorrespondingPLspectraofabovethreesuc-CNPssamplesareshowninFig.8.ThesimilarPLtunedbyaboveadditivescanalsobeobservedinglu-CNPsandsta-CNPssamples.

Inthepresentreactionsystem,theCNPswerepreparedfromcarbohydratebyahydrothermaltreatmentwithacid/alkaliasaddi-tives.WethinkthatthegrowthofCNPsmaysufferfromtheprocessesofcarbohydratepolymerization,carbonizationandtheformationofCNPs,whichissimilartothatreportedbySunetal.[8a]andshouldconformtotheLaMermodel[19].Themecha-nismofthePLpropertiesofCNPsisstillanopenquestion.Ithasbeenpreviouslysuggestedthatthemodi erpassivatesthesur-faceofthecarbon-basednanoparticleshelpingtogenerateenergytrapsthatemitlightwhenstimulated[8a].Besidesthismechanism,theformationofseveraldifferentpolycyclicaromaticcompoundswithintheCNPsmayalsoexplainthePLproperties[8b,9a].Inaddi-tion,theconceptandthebasicideaoftwo-photonexcitation rstdescribedbyGöppert-Mayer[20]maybesuggestiveforexplainingtheup-conversionPLbehavioroftheCNPs.Also,itcanbeexpectedthatabetteradditive(e.g.,HNO3,H2SO4,KOH,andvarioussurfac-tants,etc.)and/ormoresuitablereactionconditions(e.g.,ultrasonicpower,reactiontemperatureandhydrothermaltreatment)mayfurtherimprovethepresentreactionprocessandthePLpropertyoftheCNPs.

4.Conclusions

Insummary,thepresentworkdevelopedageneralandfacilehydrothermaloxidationstrategyforthesynthesisofCNPs,whichexhibitadequatelystable(>6months)andstrongPLinvisiblebandrange,biningtheirfreedispersioninwater(withoutanysurfacemodi cations)andattractiveup-conversionPLproperties,these uorescentCNPsareexpectedtoholdpromiseintheapplicationssuchasnewtype uorescencemarker,bio-sensors,drugdelivery,andbio-imagingoftissuesatmillimeterdepthsandtrackingofbiologicaleventsinvivo.

Acknowledgements

ThisworkissupportedbytheNationalBasicResearchProgramofChina(973Program)(No.2010CB934500),NationalNaturalScienceFoundationofChina(NSFC)(No.21073127,21071104,20801010,20803008),aFoundationfortheAuthorofNationalExcellentDoctoralDissertationofPRChina(FANEDD)(No.200929),aProjectFundedbythePriorityAcademicProgramDevelopmentof

332X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332

JiangsuHigherEducationInstitutions(PAPD)andRGC-CRFproject(No.9041313).

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.1016/j.colsurfb.2011.05.036.

References

[1](a)M.P.BruchezJr.,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos,Science281

(1998)2013–2016;

(b)I.L.Medintz,H.T.Uyede,E.R.Goldman,H.Mattoussi,Nat.Mater.4(2005)435–446;

(c)X.Gao,Y.Y.Cui,R.M.Levenson,L.W.K.Chung,S.M.Nie,Nat.Biotechnol.22(2004)969–976.

[2](a)M.J.Baar,G.Patonay,Anal.Chem.71(1999)667–671;

(b)B.L.Legender,L.Moberg,D.C.Williams,S.A.Soper,J.Chromatogr.A779(1997)185–194;

(c)X.Y.Zhao,S.A.Shippy,Anal.Chem.76(2004)1871–1876;

(d)C.X.Sun,J.H.Yang,L.Li,X.Wu,Y.Liu,S.F.Liu,J.Chromatogr.B803(2004)173–190.

[3](a)W.C.W.Chan,S.M.Nie,Science281(1998)2016–2018;

(b)W.H.Guo,J.J.Li,Y.A.Wang,X.G.Peng,J.Am.Chem.Soc.125(2003)3901–3909;

(c)S.Jaffar,K.T.Nam,A.Khademhosseini,J.Xing,nger,A.M.Belcher,NanoLett.4(2004)1421–1425;

(d)A.C.S.Samia,X.B.Chen,C.Burda,J.Am.Chem.Soc.125(2003)15736–15737;(e)F.Q.Chen,D.Gerion,NanoLett.4(2004)1827–1832;

(f)D.J.Bharali,D.W.Lucey,H.Jayakumar,H.E.Pudavar,P.N.Prasad,J.Am.Chem.Soc.127(2005)11364–11371.

[4](a)Z.H.Kang,C.H.A.Tsang,Z.D.Zhang,M.L.Zhang,N.B.Wong,J.A.Zapien,Y.Y.

Shan,S.T.Lee,J.Am.Chem.Soc.129(2007)5326–5327;

(b)Z.H.Kang,C.H.A.Tsang,N.B.Wong,Z.D.Zhang,S.T.Lee,J.Am.Chem.Soc.129(2007)12090–12091;

(c)Z.H.Kang,E.B.Wang,L.Gao,S.Y.Lian,M.Jiang,C.W.Hu,L.Xu,J.Am.Chem.Soc.125(2003)13652–13653;

(d)Z.H.Kang,E.B.Wang,B.D.Mao,Z.M.Su,L.Gao,S.Y.Lian,L.Xu,J.Am.Chem.Soc.127(2005)6534–6535;

(e)Z.H.Kang,Y.Liu,C.H.A.Tsang,D.D.D.Ma,X.Fan,N.B.Wong,S.T.Lee,Adv.Mater.21(2009)661–664;

(f)Y.He,Y.Y.Su,X.B.Yang,Z.H.Kang,T.T.Xu,R.Q.Zhang,C.H.Fan,S.T.Lee,J.Am.Chem.Soc.131(2009)4434–4438;

(g)Y.He,Z.H.Kang,Q.S.Li,C.H.A.Tsang,C.H.Fan,S.T.Lee,Angew.Chem.Int.Ed.48(2009)128–132;

(h)J.H.Shen,Y.H.Zhu,C.Chen,X.L.Yang,C.Z.Li,mun.47(2011)2580–2582;

(i)D.Y.Pan,J.C.Zhang,Z.Li,M.H.Wu,Adv.Mater.22(2010)734–738.

[5](a)Y.P.Sun,B.Zhou,Y.Lin,W.Wang,K.A.S.Fernando,P.Pathak,M.J.Meziani,

B.A.Harruff,X.Wang,H.Wang,P.G.Luo,H.Yang,M.E.Kose,B.Chen,L.M.Veca,S.Y.Xie,J.Am.Chem.Soc.128(2006)7756–7757;

(b)L.Cao,X.Wang,M.J.Meziani,F.Lu,H.Wang,P.G.Luo,Y.Lin,B.A.Harruff,L.M.Veca,D.Murray,S.Y.Xie,Y.P.Sun,J.Am.Chem.Soc.129(2007)11318–11319;(c)S.L.Hu,K.Y.Niu,J.Sun,J.Yang,N.Q.Zhao,X.W.Du,J.Mater.Chem.19(2009)484–488;

(d)X.Wang,L.Cao,F.S.Lu,M.J.Meziani,H.Li,G.Qi,B.Zhou,B.A.Harruff,F.Kermarrec,Y.P.Sun,mun.(2009)3774–3777.

[6](a)Q.L.Zhao,Z.L.Zhang,B.H.Huang,J.Peng,M.Zhang,D.W.Pang,-mun.(2008)5116–5118;

(b)L.Y.Zheng,Y.W.Chi,Y.Q.Dong,J.P.Lin,B.B.Wang,J.Am.Chem.Soc.131(2009)4564–4565.

[7](a)X.Xu,R.Ray,Y.Gu,H.J.Ploehn,L.Gearheart,K.Raker,W.Scrivens,J.Am.

Chem.Soc.126(2004)12736–12737;

(b)M.Bottini,C.Balasubramanian,M.I.Dawson,A.Bergamaschi,S.Bellucci,T.Mustelin,J.Phys.Chem.B110(2006)831–836;

(c)J.Zhou,C.Booker,R.Li,X.Zhou,T.K.Sham,X.Sun,Z.Ding,J.Am.Chem.Soc.129(2007)744–745.

[8](a)X.M.Sun,Y.D.Li,Angew.Chem.Int.Ed.43(2004)597–601;

(b)A.B.Bourlinos,A.Stassinopoulos,D.Anglos,R.Zboril,V.Georgakilas,E.P.Giannelis,Chem.Mater.20(2008)4539–4541;

(c)A.B.Bourlinos,A.Stassinopoulos,D.Anglos,R.Zboril,M.Karakassides,E.P.Giannelis,Small4(2008)455–458;

(d)J.C.Zhang,W.S.Shen,D.Y.Pan,Z.W.Zhang,Y.G.Fang,M.H.Wu,NewJ.Chem.34(2010)591–593;

(e)D.Y.Pan,J.C.Zhang,Z.Li,C.Wu,X.M.Yan,M.H.Wu,mun.46(2010),3681-3183.

[9](a)H.P.Liu,T.Ye,C.D.Mao,Angew.Chem.119(2007)6593;

H.P.Liu,T.Ye,C.D.Mao,Angew.Chem.Int.Ed.46(2007)6473–6475;

(b)L.Tian,D.Ghosh,W.Chen,S.Pradhan,X.Chang,S.W.Chen,Chem.Mater.21(2009)2803–2809;

(c)S.C.Ray,A.Saha,N.R.Jana,R.Sarkar,J.Phys.Chem.B113(2009)18546–18551.

[10](a)S.J.Yu,M.W.Kang,H.C.Chang,K.M.Chen,Y.C.Yu,J.Am.Chem.Soc.127

(2005)17604–17605;

(b)C.C.Fu,H.Y.Lee,K.Chen,T.S.Lim,H.Y.Wu,P.K.Lin,P.K.Wei,P.H.Tsao,H.C.Chang,W.Fann,Proc.Natl.Acad.Sci.U.S.A.104(2007)727–732.

[11](a)H.Zhu,X.L.Wang,Y.L.Li,Z.J.Wang,F.Yang,X.R.Yang,mun.

(2009)5118–5120;

(b)R.L.Liu,D.Q.Wu,S.H.Liu,K.Koynov,W.Knoll,Q.Li,Angew.Chem.Int.Ed.48(2009)4598–4601;

(c)H.T.Li,X.D.He,Y.Liu,H.Huang,S.Y.Lian,S.-T.Lee,Z.H.Kang,Carbon49(2011)605–609;

(d)H.T.Li,X.D.He,Y.Liu,H.Yu,Z.H.Kang,S.-T.Lee,Mater.Res.Bull.46(2011)147–151.

[12]X.L.Li,X.M.Tu,S.Zaric,K.Welsher,W.S.Seo,W.Zhao,H.J.Dai,J.Am.Chem.

Soc.129(2007)15770–15771.

[13](a)H.Peng,J.Travas-Sejdic,Chem.Mater.21(2009)5563–5565;

(b)M.M.Titirici,A.Thomas,S.-H.Yu,J.-O.Mueller,M.Antonietti,Chem.Mater.19(2007)4205–4212;

(c)H.-S.Qian,S.H.Yu,L.Luo,J.Gong,L.Fei,X.Liu,Chem.Mater.18(2006)2102–2108;

(d)B.Zhang,C.Y.Liu,Y.Liu,Eur.J.Inorg.Chem.(2010)4411–4414;

(e)L.B.Luo,S.H.Yu,H.S.Qian,J.Y.Gong,mun.(2006)793–795.[14]K.W.Kramer,D.Biner,G.Frei,H.U.Gudel,M.P.Hehlen,S.R.Luthi,Chem.Mater.

16(2004)1244–1251.

[15](a)Zh.Q.Li,etal.,Adv.Mater.20(2008)1–5;

(b)S.A.Hilderbrand,F.W.Shao,Ch.Salthouse,U.Mahmood,R.Weissleder,mun.(2009)4188–4190.

[16]S.Y.Xie,R.B.Huang,L.S.Zheng,J.Chromatogr.A864(1999)173–177.[17]Y.Liu,Y.Chun,L.K.Yang,Mater.Chem.Phys.98(2006)304.

[18](a)Z.H.Kang,E.B.Wang,S.Y.Lian,L.Gao,M.Jiang,C.W.Hu,L.Xu,Nanotech-nology15(2004)490–493;

(b)Z.H.Kang,E.B.Wang,B.D.Mao,Z.M.Su,L.Chen,L.Xu,Nanotechnology16(2005)1192–1195.

[19]Mer,Ind.Eng.Chem.44(1952)1270–1277.[20]M.Göppert-Mayer,Ann.Phys.9(1931)273–294.

本文来源:https://www.bwwdw.com/article/diae.html

Top