Water soluble carbon nanoparticles Hydrothermal synthesis and excellent photoluminescence properties
更新时间:2023-05-11 20:11:01 阅读量: 实用文档 文档下载
- water推荐度:
- 相关推荐
ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
ContentslistsavailableatScienceDirect
ColloidsandSurfacesB:Biointerfaces
journalhomepage:/locate/colsurf
b
Watersolublecarbonnanoparticles:Hydrothermalsynthesisandexcellentphotoluminescenceproperties
XiaodieHea,1,HaitaoLia,1,YangLiua,HuiHuanga,ZhenhuiKanga, ,Shuit-TongLeea,b
InstituteofFunctionalNano&SoftMaterialsandJiangsuKeyLaboratoryforCarbon-BasedFunctionalMaterials&Devices,SoochowUniversity,Suzhou,Jiangsu215123,Chinab
CenterofSuper-DiamondandAdvancedFilms(COSDAF)andDepartmentofPhysicsandMaterialsScience,CityUniversityofHongKong,HongKong,China
a
article
info
abstract
Articlehistory:
Received17March2011
Receivedinrevisedform17May2011Accepted20May2011
Available online 27 May 2011
Keywords:
CarbonnanoparticlesPhotoluminescence
Up-conversionphotoluminescence
Visible–nearinfraredphotoluminescence
Water-solublecarbonnanoparticles(CNPs)werefabricatedbyafacile,onestephydrothermalsyn-theticrouteusingacid/alkaliasadditives.TheseCNPsemitbrightphotoluminescence(PL)coveringtheentirevisible-nearinfrared(NIR)spectralrange.PLmeasurementscon rmedthattheCNPshaveup-conversionofPLproperties,andthattheNIRPLoftheCNPscanalsobeobservedbyNIRexcitation.ControlexperimentsindicatedthatdifferentadditivescanstronglyaffectthePLpropertiesoftheCNPs.WithacombinationoffreedispersioninwaterandattractivePLproperties,theseCNPsholdpromiseforapplicationsinnanotechnology.
© 2011 Elsevier B.V. All rights reserved.
1.Introduction
Animmenseinteresthasbeenshownrecentlyonthephoto-luminescentnanostructuresduetotheirpromisinganddiverseapplicationsrangingfromoptoelectronicstobiology,especiallyintherapidlygrowing eldonbionanotechnology[1].More-over,thedemandforphotoluminescentnanostructuresemittinginvisible-to-nearinfrared(NIR)spectralrangeisrapidlyincreas-ing[1,2].ComparedtoconventionalmeasurementsmadeintheUV–visibleregion,spectro uorimetrywithinthetherapeuticwin-dowof700–1200nmhasmanyadvantages,suchaslowerlevelsofbackgroundinterferenceanddeeperlightpenetrationoflivingtissues[2].Consequently,NIRphotoluminescence(PL)obtainedunderNIRexcitationholdsgreatpotentialfortheinvivousesatasigni cantdepthinthebiologicalmediaandthedevelopmentofnoninvasivediagnostictechniques[1–4].
WhilesomesemiconductorscanexhibitNIRPL,theyaretypi-callyexcitedbyUV,visibleorNIRlight,whichraisesconcernsonhealth,environmentandhighcost(mostassociatedwithClassAelement:Cd,Pb,InandHg;andClassBelement:SeandAs),thuslimitingtheirinvitroandinvivoapplications[3].Tomaintaina
Correspondingauthor.Tel.:+8651265880957;fax:+8651265882846.E-mailaddresses:yangl@(Y.Liu),zhkang@(Z.Kang).1
Theseauthorscontributedequallytothiswork.
benignenvironment,low-toxicitysiliconandcarbonnanostruc-turesarepreferredinmanyapplications.WhileSiquantumdotshavebeenappliedinimmuno uorescentcellimagingtoactascellularprobes,theycannotyieldNIRPL[4].Recently,graphenequantumdots[4]andoxygen-containingcarbonnanoparticles(CNPs)withPLpropertieshavebeenpreparedbylaserablationandelectrochemicaloxidationofgraphite[5,6],electrochemicalsoakingofcarbonnanotubes[7],thermaloxidationofsuitablemolecularprecursors[8],vapordepositionofsoot[9],proton-beamirradiationofnanodiamonds[10],microwavesynthesisandwetchemicalmethod[11].TheCNPsreportedsofaremitef -cientlyonlyinthevisiblerange,andnoneofthemhasbeenreportedtogenerateNIRPL.Although,NIRPLunderNIRexcitationhasbeenobservedinsingle-walledcarbonnanotubes(SWCNTs)[12],howevertheysufferfromthedrawbacksofuncontrollablespeci edchiralityandexpensivepreparationand/orseparationprocedures.
Carbohydratesarethemostabundantclassoforganiccom-poundsfoundinlivingorganisms.Theformulasofmanycarbohydratescanbewrittenascarbonhydrates,Cm(H2O)n,andtherehavebeenmanytrialsintheliteraturetoreplicatecarbonformationfromcarbohydrates[13].TheCNPswerepreparedbyasimplehydrothermalmethodbyusingacarbonsource[13d].Herein,wereportafacileandeffectivesynthesisofCNPsthroughthehydrothermaltreatmentofthreecommoncarbohydrates(glu-cose,sucroseandstarch).Theobtainedwater-solubleCNPscan
0927-7765/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfb.2011.05.036
X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
327
Scheme1.FabricationofCNPscapableofvisibleandNIRemissionbyacid/alkali-assistedhydrothermaloxidation(carbohydraterepresentglucose,sucroseandstarch).
Fig.1.Typical(a)TEMand(b)SEMimagesofCNPssamplespreparedfromcarbohydrates.
Fig.2.TypicalPLimages(allscalebarsare20 m)ofCNP’ssamplespreparedfromstarchwithexcitationwavelengthsat(a)365nm,(b)455nm,(c)545nmandcollectionwavelengthsat(a)>470nm,(b)>515nm,(c)600±40nm,respectively.
emitbrightandcolourfulPLcoveringtheentirevisible–NIRspectralrange.Signi cantly,theNIRPLcanbeexcitedbyNIRlight,andup-conversionPLpropertyisalsoobservedintheCNPssamples.
2.Materialsandmethods
2.1.Materials
Glucose,sucrose,starch,HCl,NaOH,hexamine,ethanol(analyticalpurity,SinopharmChemicalReagentsLimitedCompany).Theywereusedasreceived.Alltheaqueoussolutionswerepreparedusingde-ionizedwater.
2.2.Methods
CNPsweresynthesizeddirectlyfromacid/alkali-assistedhydrothermaloxidationofcarbohydrates(glucose/sucrose/starch)inwater.Carbohydrates(glu-cose/sucrose/starch)wereusedascarbonsourceandacid/alkaliasanadditive.Inatypicalprocedure,1gglucoseand0.1gNaOH(oranyothermoderateadditive)wereaddedin15mLwaterunderstirring.Thesolutionwasthentransferredintoa20mLTe on-linedstainless-steelautoclaveandwasheatedataconstanttemperatureof160 Cfor4h.Theresultingsolutionwascooledatroomtemperatureandtheup-layersolutioncontainingproductwasobtainedaftercentrifugation.Topurify,thissolutionwasheatedat100 Ctoallowtheresidualsodiumhydroxidetodissolveout(Incase,HClbeingusedastheadditive,theresidualHClisevaporatedat100
C).
Fig.3.TypicalPLspectraofCNPsobtainedfromglucose(curvea),sucrose(curveb)andstarch(curvec)withexcitationat350nm.
328X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
Thiswasfollowedby ltrationofthesuspensionandthesolidwasremoved,leavingthesolutioncontainingCNPs.ThesolutionwasdriedundervacuumandtheCNPssampleobtainedwas nallykeptindeionizedwaterintheformofatransparentsolution.Here,theCNPspreparedfromglucose,sucroseandstarchwerenamedasglu-,suc-,andsta-CNPs,respectively.
ThesizeandmorphologyoftheCNPssampleswereexaminedwithaPhilipsXL30FEGscanningelectronmicroscope(SEM)andaFEI/PhilipsTechal12BioTWINtransmissionelectronmicroscope(TEM).Thestructureandchemicalcomposi-tionwerefurtherinvestigatedbyX-raydiffraction(XRD),RamanandElementaryanalyzer.Thephotoluminescence(PL)spectrawereobtainedatroomtempera-turebyusingaPerkin-ElmerLuminescencespectrometerLS50B.The uorescenceimagesofCNPswereinvestigatedunder uorescentmicroscope(LEICADM4000M).Theexcitationwavelengthswere365,455,545nmandthecorrespondingcollec-tionwavelengthsare>470nm,>515nmand600±40nm,respectively.TheUV–visabsorptionspectrawereacquiredbyaLambda750spectrophotometer.FTIRspectrawereperformedusingaNicolet360spectrometer.
Werepeatedthesynthesisandthemeasurementabovefor vetimes,andallthemeasurementdatacanbereplicatedverywell.
3.Resultsanddiscussion
Inourexperiment,afacileandone-stephydrothermalsyntheticroute(typicallywithHClorNaOHasadditives)wasemployedforthefabricationof uorescentCNPs.AsillustratedinScheme1,theCNPssampleswerepreparedfromthreedifferentcarbonsources(glucose/sucrose/starch)astheyallexhibitstrongPLinvisiblespec-tralrange,whereas,NIRPLcanonlybeobservedinthesamplessynthesizedfromsucroseandstarch.Notably,NIRemissioncanbeobtainedbyNIRexcitation.
Investigationindicatesthatallofthesamplespreparedfromdifferentcarbohydratesshowsimilarmorphology.Fig.1depictsthetransmissionelectronmicroscopy(TEM)andscanningelectronmicroscopy(SEM)imagesofCNPspreparedfromglucose,indicat-ingthattheCNPsaresphericalwithdiametersof70–100nm.The
Fig.4.VisiblePLspectraof(aandb)glu-CNPs,(candd)suc-CNPs,and(eandf)sta-CNPspreparedwithusing(a,cande)HCland(b,dandf)NaOHasadditives.
X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
329
HRTEMimageoftheCNPsisshowninFig.S1,fromwhichitcanbeseenthatthereisnolatticestructureobserved,indicatingitsamorphousnature.TheXRDpatternoftheCNPsispresented(inFig.S2).Thebroadpeaknear20 witharelativelylowintensityisattributedtoamorphouscarbon[13e]whichisconsistentwiththeresultofHRTEM.
ThePLimageofCNP’swasinvestigatedunder uorescentmicro-scope.Typicalspecimenforopticalmicroscopywaspreparedbyplacingadropoftheaqueoussolutiononacoverglassandevapo-ratingthewater.Fig.2showsthe uorescenceimagesofthesamplepreparedfromstarch,whichshowthattheCNPsarestronglyemissiveinthevisiblerangeunderUVandvisibleexcitation.Lumi-nescenceofdifferentcolours(blue,yellowandred)andbrightnessisobtainedby365nm,455nmand545nmexcitation,respectively.ThesimilarPLphenomenoncanalsobeobservedinthesamplespreparedfromglucoseandsucrose(seeSupportingInformation,Figs.S3andS4).
Tofurtherexploretheiropticalproperties,thePLspectraofas-preparedCNPswereassessed.AllPLspectraofCNPssynthesized
fromglucose,sucroseandstarchexhibitthevisibleemissionscov-eringblue-to-redwavelengthrangeinthesamesampleunderUVandvisibleexcitation.Fig.3showsthetypicalPLspectraofCNPsobtainedfromglucose(curvea),sucrose(curveb),andstarch(curvec)withexcitationat350nm.AclosedobservationshowsthatthePLemissioncanbeextendedintoNIRwavelengthrangeintheCNPssamplesobtainedfrombothsucrose(curveb)andstarch(curvec).Thesharppeaksnear700nmarethesecondorderdiffractionoftheexcitationlight.Moreover,furtherPLstudyshowsthattheseNIRPLemissionscanalsobeobtainedunderNIRexcitation(seethefollowingdiscussion).ItshouldbenotedthatNIRPLemissionsexcitedbyNIRexcitationareparticularlysigni cantandusefulforbionanotechnologybecauseofthetransparencyofbodytissuesintheNIR“waterwindow”.
InordertofurtherinvestigatetheopticalpropertiesoftheCNPs,thedetailedPLstudywascarriedoutbyusinglightatdifferentwavelengths(300,350,400,450,500nm)asexcitation.Fig.4showsthePLspectraofglu-CNPs(aandb),suc-CNPs(candd)andsta-CNPs(eandf)byusingHCl(a,cande)andNaOH(b,dandf)asadditive
Fig.5.Up-conversionPLspectraof(aandb)glu-CNPs,(candd)suc-CNPsand(eandf)sta-CNPspreparedbyusingHCl(a,cande)andNaOH(b,dandf)asadditives.
330X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
Fig.6.PLspectraofCNPswithexcitationandemissioninNIRband.(aandb)suc-CNPsand(candd)sta-CNPspreparedwithusingHCl(aandc)andNaOH(bandd)asadditives.
reagents.Wecanseethatunderdifferentexcitation,alloftheCNPsexhibit uorescenceemissioninvisiblespectralrange.AsshowninFig.4a,candeandFig.4b,dandf,theadditives(HClorNaOH)canchangethedistributionoftheemissioncoloursoftheCNPs.Thatis,HClleadstotheincreasingdistributionofCNPsemittingatlongerwavelengthsorwarmercolours,whereas,NaOHleadstotheincreaseindistributionofCNPsemittingatshorterwavelengthsorcoldercolours.Itisreasonabletoassumethatacid/basecanintro-ducethedifferentdefectsonthecarbonparticlesurfaceactingasexcitationenergytrapsandleadingtothedifferentPLproperties.Also,wethinkthatthedifferentPLintensitywithdifferentexci-tationwavelengthsshouldbeattributedtothedifferentquantumyields(SeeSupportingInformation,TableS1).
Theup-conversionPLmaterialscanconvertalongerwave-lengthradiation(e.g.,NIRlight)toshorterwavelength uorescence(e.g.,visiblelight),whichpossessprominentpotentialsinbiologicalandclinicalapplications.Mostoftheup-conversion uorescencematerialsreportedwereinorganiccrystalsdopedwithrare-earthelements[14]orencapsulatingorganicdyesorquantumdotsinthesilicashell[15].Untilnow,therearefewmaterialswhichcandisplaybothvisibleemissionandup-conversionPL.Here,theCNPspreparedcanbeexcitedbyNIRwavelengthlightandemitbrightPLinvisiblespectralband,whichsuggestthattheseCNPshavetheup-conversionPLproperty.Fig.5showstheup-conversion uorescencespectraofglu-CNPs(aandb),suc-CNPs(candd),andsta-CNPs(eandf).Forglu-CNPsandsuc-CNPsobtainedbyusingHClasadditive,theup-conversionPLspectrashowtwopeaks(at480,580nm)whentheyareexcitedby800and850nm,whileonepeak(520nm)isseenbyexcitationat900nm(a–c).However,whenglu-CNPsandsuc-CNPspreparedbyusingNaOHasadditiveisused,thereisonlyonepeakintheup-conversionPLspectra
(b–d)withallexcitationwavelengthsinNIRspectralband.TheupconversionPLspectraofSta-CNPs(obtainedbyusingHClandNaOHasadditives)alsoshowsonlyonepeakat530nmwithNIRexcitation(Fig.5eandf).
FurtherdetailedstudyshowsthattheNIRemissionofsuc-CNPsandsta-CNPscanbeobtainedbyusingNIRlight(700and750nm)asexcitation.Fig.6showstheNIRemissionspectraofsuc-CNPs(aandb)andsta-CNPs(candd).Moredetailedandcarefullycon-ductedPLtestexperimentscon rmthattheglu-CNPscannotgiveNIRemissionwitheithervisibleorNIRexcitation.ItshouldbenotedthattheNIRemissionexcitedbyNIRexcitationofthesuc-CNPsandsta-CNPsshowgreatpotentialapplicationinbionanotechnol-ogyandbioimaging.AlthoughthemechanismforthePLdifferencesinCNPspreparedfromdifferentcarbohydratesisnotfullyunder-stood,itisbelievedthatthestructuredifferencesinglucose,sucroseandstarchisthemainreason.Glucoseisasimplesugarandmainlyexistsasthesix-memberedringcontainingahemiacetalgroupinasolution.Sucroseisadisaccharidederivedfromthecondensationofglucoseandfructose,andtheyarelinkedviaanetherbondcalledaglycosidiclinkage.Starchisacarbohydrateconsistingofalargenumberofglucoseunitsjoinedtogetherbyglycosidicbonds.Thus,underthehydrothermalcondition,theoxidationandcarboniza-tionofglucose,sucroseandstarcharedifferentfromeachotherduetotheirdifferentstructures(withorwithoutglycosidiclink-age),whichaffectthePLpropertiesoftheCNPsobtained.Thatis,CNPspreparedfromtheprecursorswithglycosidiclinkage(sucroseandstarch)haveNIRemissionwithNIRexcitation.While,CNPspreparedfromtheprecursorswithoutglycosidiclinkage(glucose)cannotgivetheNIRemission.Ontheotherhand,aspreviouslyreported,thePLofcarbonor“carbogetic”dotshasbeenattributedtopassivateddefectsonthecarbon–oxygeninterfaceactingas
X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
331
Fig.7.Photographsofsuc-CNPsundersunlightandUVlamp(365nm)withdifferentadditives(hexamine:aandd;NaOH:bande;HCl:candf,respectively).
excitationenergytraps.Inourexperiment,theglycosidiclink-agecanprovideapre-placedactionfortheformationofCNPs,whichmayleadtodifferentdefectsonthecarbon–oxygeninter-facecomparedtotheprecursorswithoutglycosidiclinkage.Thus,itisreasonablethatthedifferentprecursorsleadtodifferentPLpropertiesofCNPs.
ThechemicalcompositionofCNPshadbeenmeasuredbyele-mentalanalysis.Elementalanalysis:C59.2%,H4.2%,O(calculated)36.6%.TheCNPscontainedmainlyelementalcarbonandoxygen.TheRamanspectrum(Fig.S5)showsaDbandatabout1340cm 1andGbandatabout1580cm 1,ascribedtodisorderedamorphouscarbonandcrystallinegraphite,respectively.
Fig.S6depictsthetypicalUV–visible(UV–vis)absorptionspec-traoftheCNPs.Asshown,theCNPssamplespreparedfromdifferentcarbonsourceswithbothHClandNaOHasadditivesgivethesim-ilarabsorption.Thepeakat250–300nmisthetypicalabsorptionofanaromaticpisystem,whichissimilartothatofpolycyclicaro-matichydrocarbons[16].TheextendedconjugationinthestructureofCNPsleadstotheredshiftofthe – *transition[17].
Thetypicalinfrared(IR)spectraofCNPsareshowninFig.S7.Thepeaksaround3000,1600and1500cm 1correspondtotheCCstretchofthecarbonskeletonofcarbonnanoparticles,whichareconsistentwiththeUVspectra.Thepeaksatabout1700cm 1indicatetheexistenceofcarbonyl(Cgroups,whilethepeaksatabout1720,1200,and1080cm 1areduetocarboxylicgroups.Thepeakat3346cm 1correspondstothe–OHstretchmode[18].ThefunctionalcarboxylicandhydroxylgroupsofCNPsleadtothegoodwaterdispersibility,whichcanplayanimportantroleinfurtherapplicationforbionanotechnology[4e–g,5–11]
.
Fig.8.PLspectraofsuc-CNPsobtainedwithdifferentadditives:blue,green,andredemissionforadditivesofhexamine,NaOH,andHCl,respectively.
Asdiscussedabove,paredtoNaOH,HClleadstotheincreaseindistributionofwarmercolours.Infurtherstudies,wecarriedoutaseriesofcon-trolexperimentswithdifferentadditives,suchasHCl,NaOHandhexamine.Notably,asshowninFig.7,theemissionofsuc-CNPscanbetunedbydifferentadditives:blue,greenandredemissioncanbeobtainedwhenhexamine,NaOHandHClareusedasadditives,respectively.ThecorrespondingPLspectraofabovethreesuc-CNPssamplesareshowninFig.8.ThesimilarPLtunedbyaboveadditivescanalsobeobservedinglu-CNPsandsta-CNPssamples.
Inthepresentreactionsystem,theCNPswerepreparedfromcarbohydratebyahydrothermaltreatmentwithacid/alkaliasaddi-tives.WethinkthatthegrowthofCNPsmaysufferfromtheprocessesofcarbohydratepolymerization,carbonizationandtheformationofCNPs,whichissimilartothatreportedbySunetal.[8a]andshouldconformtotheLaMermodel[19].Themecha-nismofthePLpropertiesofCNPsisstillanopenquestion.Ithasbeenpreviouslysuggestedthatthemodi erpassivatesthesur-faceofthecarbon-basednanoparticleshelpingtogenerateenergytrapsthatemitlightwhenstimulated[8a].Besidesthismechanism,theformationofseveraldifferentpolycyclicaromaticcompoundswithintheCNPsmayalsoexplainthePLproperties[8b,9a].Inaddi-tion,theconceptandthebasicideaoftwo-photonexcitation rstdescribedbyGöppert-Mayer[20]maybesuggestiveforexplainingtheup-conversionPLbehavioroftheCNPs.Also,itcanbeexpectedthatabetteradditive(e.g.,HNO3,H2SO4,KOH,andvarioussurfac-tants,etc.)and/ormoresuitablereactionconditions(e.g.,ultrasonicpower,reactiontemperatureandhydrothermaltreatment)mayfurtherimprovethepresentreactionprocessandthePLpropertyoftheCNPs.
4.Conclusions
Insummary,thepresentworkdevelopedageneralandfacilehydrothermaloxidationstrategyforthesynthesisofCNPs,whichexhibitadequatelystable(>6months)andstrongPLinvisiblebandrange,biningtheirfreedispersioninwater(withoutanysurfacemodi cations)andattractiveup-conversionPLproperties,these uorescentCNPsareexpectedtoholdpromiseintheapplicationssuchasnewtype uorescencemarker,bio-sensors,drugdelivery,andbio-imagingoftissuesatmillimeterdepthsandtrackingofbiologicaleventsinvivo.
Acknowledgements
ThisworkissupportedbytheNationalBasicResearchProgramofChina(973Program)(No.2010CB934500),NationalNaturalScienceFoundationofChina(NSFC)(No.21073127,21071104,20801010,20803008),aFoundationfortheAuthorofNationalExcellentDoctoralDissertationofPRChina(FANEDD)(No.200929),aProjectFundedbythePriorityAcademicProgramDevelopmentof
332X.Heetal./ColloidsandSurfacesB:Biointerfaces87 (2011) 326–332
JiangsuHigherEducationInstitutions(PAPD)andRGC-CRFproject(No.9041313).
AppendixA.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.1016/j.colsurfb.2011.05.036.
References
[1](a)M.P.BruchezJr.,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos,Science281
(1998)2013–2016;
(b)I.L.Medintz,H.T.Uyede,E.R.Goldman,H.Mattoussi,Nat.Mater.4(2005)435–446;
(c)X.Gao,Y.Y.Cui,R.M.Levenson,L.W.K.Chung,S.M.Nie,Nat.Biotechnol.22(2004)969–976.
[2](a)M.J.Baar,G.Patonay,Anal.Chem.71(1999)667–671;
(b)B.L.Legender,L.Moberg,D.C.Williams,S.A.Soper,J.Chromatogr.A779(1997)185–194;
(c)X.Y.Zhao,S.A.Shippy,Anal.Chem.76(2004)1871–1876;
(d)C.X.Sun,J.H.Yang,L.Li,X.Wu,Y.Liu,S.F.Liu,J.Chromatogr.B803(2004)173–190.
[3](a)W.C.W.Chan,S.M.Nie,Science281(1998)2016–2018;
(b)W.H.Guo,J.J.Li,Y.A.Wang,X.G.Peng,J.Am.Chem.Soc.125(2003)3901–3909;
(c)S.Jaffar,K.T.Nam,A.Khademhosseini,J.Xing,nger,A.M.Belcher,NanoLett.4(2004)1421–1425;
(d)A.C.S.Samia,X.B.Chen,C.Burda,J.Am.Chem.Soc.125(2003)15736–15737;(e)F.Q.Chen,D.Gerion,NanoLett.4(2004)1827–1832;
(f)D.J.Bharali,D.W.Lucey,H.Jayakumar,H.E.Pudavar,P.N.Prasad,J.Am.Chem.Soc.127(2005)11364–11371.
[4](a)Z.H.Kang,C.H.A.Tsang,Z.D.Zhang,M.L.Zhang,N.B.Wong,J.A.Zapien,Y.Y.
Shan,S.T.Lee,J.Am.Chem.Soc.129(2007)5326–5327;
(b)Z.H.Kang,C.H.A.Tsang,N.B.Wong,Z.D.Zhang,S.T.Lee,J.Am.Chem.Soc.129(2007)12090–12091;
(c)Z.H.Kang,E.B.Wang,L.Gao,S.Y.Lian,M.Jiang,C.W.Hu,L.Xu,J.Am.Chem.Soc.125(2003)13652–13653;
(d)Z.H.Kang,E.B.Wang,B.D.Mao,Z.M.Su,L.Gao,S.Y.Lian,L.Xu,J.Am.Chem.Soc.127(2005)6534–6535;
(e)Z.H.Kang,Y.Liu,C.H.A.Tsang,D.D.D.Ma,X.Fan,N.B.Wong,S.T.Lee,Adv.Mater.21(2009)661–664;
(f)Y.He,Y.Y.Su,X.B.Yang,Z.H.Kang,T.T.Xu,R.Q.Zhang,C.H.Fan,S.T.Lee,J.Am.Chem.Soc.131(2009)4434–4438;
(g)Y.He,Z.H.Kang,Q.S.Li,C.H.A.Tsang,C.H.Fan,S.T.Lee,Angew.Chem.Int.Ed.48(2009)128–132;
(h)J.H.Shen,Y.H.Zhu,C.Chen,X.L.Yang,C.Z.Li,mun.47(2011)2580–2582;
(i)D.Y.Pan,J.C.Zhang,Z.Li,M.H.Wu,Adv.Mater.22(2010)734–738.
[5](a)Y.P.Sun,B.Zhou,Y.Lin,W.Wang,K.A.S.Fernando,P.Pathak,M.J.Meziani,
B.A.Harruff,X.Wang,H.Wang,P.G.Luo,H.Yang,M.E.Kose,B.Chen,L.M.Veca,S.Y.Xie,J.Am.Chem.Soc.128(2006)7756–7757;
(b)L.Cao,X.Wang,M.J.Meziani,F.Lu,H.Wang,P.G.Luo,Y.Lin,B.A.Harruff,L.M.Veca,D.Murray,S.Y.Xie,Y.P.Sun,J.Am.Chem.Soc.129(2007)11318–11319;(c)S.L.Hu,K.Y.Niu,J.Sun,J.Yang,N.Q.Zhao,X.W.Du,J.Mater.Chem.19(2009)484–488;
(d)X.Wang,L.Cao,F.S.Lu,M.J.Meziani,H.Li,G.Qi,B.Zhou,B.A.Harruff,F.Kermarrec,Y.P.Sun,mun.(2009)3774–3777.
[6](a)Q.L.Zhao,Z.L.Zhang,B.H.Huang,J.Peng,M.Zhang,D.W.Pang,-mun.(2008)5116–5118;
(b)L.Y.Zheng,Y.W.Chi,Y.Q.Dong,J.P.Lin,B.B.Wang,J.Am.Chem.Soc.131(2009)4564–4565.
[7](a)X.Xu,R.Ray,Y.Gu,H.J.Ploehn,L.Gearheart,K.Raker,W.Scrivens,J.Am.
Chem.Soc.126(2004)12736–12737;
(b)M.Bottini,C.Balasubramanian,M.I.Dawson,A.Bergamaschi,S.Bellucci,T.Mustelin,J.Phys.Chem.B110(2006)831–836;
(c)J.Zhou,C.Booker,R.Li,X.Zhou,T.K.Sham,X.Sun,Z.Ding,J.Am.Chem.Soc.129(2007)744–745.
[8](a)X.M.Sun,Y.D.Li,Angew.Chem.Int.Ed.43(2004)597–601;
(b)A.B.Bourlinos,A.Stassinopoulos,D.Anglos,R.Zboril,V.Georgakilas,E.P.Giannelis,Chem.Mater.20(2008)4539–4541;
(c)A.B.Bourlinos,A.Stassinopoulos,D.Anglos,R.Zboril,M.Karakassides,E.P.Giannelis,Small4(2008)455–458;
(d)J.C.Zhang,W.S.Shen,D.Y.Pan,Z.W.Zhang,Y.G.Fang,M.H.Wu,NewJ.Chem.34(2010)591–593;
(e)D.Y.Pan,J.C.Zhang,Z.Li,C.Wu,X.M.Yan,M.H.Wu,mun.46(2010),3681-3183.
[9](a)H.P.Liu,T.Ye,C.D.Mao,Angew.Chem.119(2007)6593;
H.P.Liu,T.Ye,C.D.Mao,Angew.Chem.Int.Ed.46(2007)6473–6475;
(b)L.Tian,D.Ghosh,W.Chen,S.Pradhan,X.Chang,S.W.Chen,Chem.Mater.21(2009)2803–2809;
(c)S.C.Ray,A.Saha,N.R.Jana,R.Sarkar,J.Phys.Chem.B113(2009)18546–18551.
[10](a)S.J.Yu,M.W.Kang,H.C.Chang,K.M.Chen,Y.C.Yu,J.Am.Chem.Soc.127
(2005)17604–17605;
(b)C.C.Fu,H.Y.Lee,K.Chen,T.S.Lim,H.Y.Wu,P.K.Lin,P.K.Wei,P.H.Tsao,H.C.Chang,W.Fann,Proc.Natl.Acad.Sci.U.S.A.104(2007)727–732.
[11](a)H.Zhu,X.L.Wang,Y.L.Li,Z.J.Wang,F.Yang,X.R.Yang,mun.
(2009)5118–5120;
(b)R.L.Liu,D.Q.Wu,S.H.Liu,K.Koynov,W.Knoll,Q.Li,Angew.Chem.Int.Ed.48(2009)4598–4601;
(c)H.T.Li,X.D.He,Y.Liu,H.Huang,S.Y.Lian,S.-T.Lee,Z.H.Kang,Carbon49(2011)605–609;
(d)H.T.Li,X.D.He,Y.Liu,H.Yu,Z.H.Kang,S.-T.Lee,Mater.Res.Bull.46(2011)147–151.
[12]X.L.Li,X.M.Tu,S.Zaric,K.Welsher,W.S.Seo,W.Zhao,H.J.Dai,J.Am.Chem.
Soc.129(2007)15770–15771.
[13](a)H.Peng,J.Travas-Sejdic,Chem.Mater.21(2009)5563–5565;
(b)M.M.Titirici,A.Thomas,S.-H.Yu,J.-O.Mueller,M.Antonietti,Chem.Mater.19(2007)4205–4212;
(c)H.-S.Qian,S.H.Yu,L.Luo,J.Gong,L.Fei,X.Liu,Chem.Mater.18(2006)2102–2108;
(d)B.Zhang,C.Y.Liu,Y.Liu,Eur.J.Inorg.Chem.(2010)4411–4414;
(e)L.B.Luo,S.H.Yu,H.S.Qian,J.Y.Gong,mun.(2006)793–795.[14]K.W.Kramer,D.Biner,G.Frei,H.U.Gudel,M.P.Hehlen,S.R.Luthi,Chem.Mater.
16(2004)1244–1251.
[15](a)Zh.Q.Li,etal.,Adv.Mater.20(2008)1–5;
(b)S.A.Hilderbrand,F.W.Shao,Ch.Salthouse,U.Mahmood,R.Weissleder,mun.(2009)4188–4190.
[16]S.Y.Xie,R.B.Huang,L.S.Zheng,J.Chromatogr.A864(1999)173–177.[17]Y.Liu,Y.Chun,L.K.Yang,Mater.Chem.Phys.98(2006)304.
[18](a)Z.H.Kang,E.B.Wang,S.Y.Lian,L.Gao,M.Jiang,C.W.Hu,L.Xu,Nanotech-nology15(2004)490–493;
(b)Z.H.Kang,E.B.Wang,B.D.Mao,Z.M.Su,L.Chen,L.Xu,Nanotechnology16(2005)1192–1195.
[19]Mer,Ind.Eng.Chem.44(1952)1270–1277.[20]M.Göppert-Mayer,Ann.Phys.9(1931)273–294.
- 1EXCELLENT - ESSAY - WRITING
- 2Low-carbon life
- 3Low-carbon life
- 4Synthesis, Functionalization, and Biomedical Application
- 5Carbon Balance and Management
- 6Carbon Balance and Management
- 7TitaniumDioxideNanomaterialsSynthesis,Properties,Modificatio
- 8Synthesis and characterization of Zinc (II)-loaded ZeoliteGraphene
- 9Influence of liquid water on coalbed
- 10A teaching plan for Unit 3 Water
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- photoluminescenc
- nanoparticles
- Hydrothermal
- properties
- synthesis
- excellent
- soluble
- carbon
- Water
- 最新部编人教版五年级数学上册期末检测题及答案
- 酒店前厅接待常用的27句英语口语及会话
- 《嘉定区优秀人才配售房售后管理实施办法》嘉人社〔2017〕103号
- 近百年来汉字之改革
- 伺服冲压技术在数控转塔冲床中的创新与应用
- 图解FTP服务器搭建(Windows Server 2008)
- 大学数学实验5参考答案
- 人教版二年级语文上册《识字8》教案doc
- 无法打开STEP7项目硬件组态或只读出错
- Oscillatory and Power-law Mass Inflation in Non-Abelian Black Holes
- 人音版六年级下册音乐教案及反思
- 了解文学名著的故事情节和人物形象
- 存货管理专项审计的五个关键环节
- 医药行业客户关系管理解决方案
- 第1章 建筑内部给水系统
- 第一章 焊接技术概论
- H3C iVS3000 视频监控系统开局指导书
- Simulating the Electroweak Phase Transition in the SU(2) Higgs Model
- 三种液体自动混合的PLC控制
- 培养良好的学习心态 提高英语课堂教学效率