中考压轴题(十二)-相似三角形存在性问题
更新时间:2024-04-09 20:52:01 阅读量: 综合文库 文档下载
35.如图,在平面直角坐标中,二次函数图象的顶点坐标为C(4,-3),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;
(2)点P在y轴上,且使得△PAC的周长最小,求:
①点P的坐标; ②△PAC的周长和面积;
(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
解:(1)设二次函数的解析式为y=a(x -4)2-3(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a-3 ∴x1+x2=8,x1x2=16-
3. a33)=36,∴a=. a9∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-
∴二次函数的解析式为y=
3(x -4)2-3. ······················································· 2分 9(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得
3(x -4)2-3=0,解得x1=1,x2=7. 9∴A(1,0),B(7,0).∴OA=1,∴OA′=1.
设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=3. ∵△A′OP∽△ADC,∴
OP3OPA?O1,即. ==,∴OP=
5AD5DC3∴P(0,-
3). ···································································································· 4分 5②∵A′C=A?D2?DC2=52?(3)2=27 AC=AD2?DC2=32?(3)2=23
∴△PAC的周长=PA+PC+AC=A′C+AC=27+23. ······································ 5分 S△PAC=S△A′AC - S△A′AP=
3431′1AA(DC-OP)=×2×(3-)=.
5522 ····················································································· 7分
(3)存在. ············································································································ 8分 ∵tan∠BAC=
3DC=,∴∠BAC=30°.
3AD同理,∠ABC=30°,∴∠ACB=120°,AC=BC.
①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×
31=33,HA=AQ1·cos60°=6×=3. 22HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,33). 把x=-2代入y=
33(x -4)2-3,得y=(-2-4)2-3=33. 99∴点Q1在抛物线上. ······························································································· 9分 ②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,33). 同样,点Q2也在抛物线上. ·················································································· 10分 ③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.
························································································· 11分
综上所述,在x轴上方的抛物线上存在点Q1(-2,33)和Q2(10,33),使得以Q、
A、B三点为顶点的三角形与△ABC相似. ····························································· 12分
2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标; (3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若
y 不存在,请说明理由.
?9a?3b?c?0?解:(1)由题意得?c?3
?16a?4b?c?4a?2b?c?C P N x A 解得a=-
323,b=-,c=3. 33M O B ···················································· 3分
(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).
又∵C(0,3),∴OA=3,OB=1,OC=3,∴AB=4,BC=2. ∴tan∠ACO=
OA=3,∴∠ACO=60°,∴∠CAO=30°. OC32233223x -x+3,令y=0,得-x -x+3=0. 3333y C P N x 同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°.
A H M O B ∴△ABC是直角三角形.
又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°. ∴Rt△PNC∽Rt△ABC,∴
PNAB. =
NCBCt4=. 22?t由题意知PN=BN=t,NC=BC-BN=2-t,∴
4∴t=. ···················································· 4分
341∴OM=BM-OB=-1=.
333234如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.
233
412MH=PM·cos60°=×=.
32312∴OH=OM+MH=+=1.
33∴点P的坐标为(-1,(3)存在.
23······················································· 6分 ). ·
3由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也
是直角三角形.
∵二次函数y=-
3223x -x+3的图象的对称轴为x=-1. 33∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴.
又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.
①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,且QN>PN,∠MNQ=30°.
483PN3∴∠PNQ=30°,∴QN=. ==o9cos3032
8323QN∴. =9=
43BN3∵
QNACAC. =tan60°=3,∴≠
BCBNBC∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ············ 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM. ∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.
∴△BNQ∽△ABC. ·············································· 8分
∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.
∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP.
∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-
23············································································· 9分 ). 323),使得以B,N,Q为顶点的3综合①②得,在抛物线的对称轴上存在点Q(-1,-
三角形与△ABC相似.··························································································· 10分 3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;
(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.
①求线段PM长度的最大值;
②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.
解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2. ······································· 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1 ∵点A在点B右侧,∴A(1,0),B(-3,0)
设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得
?k+b = 0?k = -2 解得? ??-2k+b = 6?b = 2 ∴直线AC的函数关系式为y=-2x+2. ···········································3分 (2)①设P点的横坐标为m(-2≤ m ≤1),
则P(m,-2m+2),M(m,-2m 2-4m+6). ···································4分 ∴PM=-2m 2-4m+6-(-2m+2)
=-2m 2-2m+4
19=-2(m+)2+
2219∴当m=-时,线段PM长度的最大值为. ································6分
22②存在
M1(0,6). ············································································································· 7分
155M2(-,). ······································································································ 9分
48点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△ANP
∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)
(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)
ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP
又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴
CHMH =
ODOA∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2
?2m2?4mm?2∴ =
121整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-
411155当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=
4448155∴M2(-,)
48
4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.
解:(1)由题意知Rt△△AOC∽Rt△COB,∴
OAOC. =
OCOB∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).
∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ···················· 2分 ∴A(-1,0),B(4,0),C(0,2).
∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························· 3分
1将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.
21∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4). ···· 4分
213即y=-x 2+x+2.
2214842(2)①E1(3,),E2(,),E3(4?························ 7分 5,5). ·
25555
关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):
设直线BC的解析式为y=kx+b.
1??4k?b?0?k??则? 解得?2
b?2???b?21∴直线BC的解析式为y=-x+2.
21∵点E在直线BC上,∴E(x,-x+2).
21若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.
2∴OH=OD+DH=2+1=3.
∴点E的横坐标为3,代入直线BC的解析式,得y=-
1∴E1(3,).
21若DE=DB,则(x-2)2+(-x+2)2=22.
211×3+2=. 22整理得5x 2-24x+16=0,解得x1=4(舍去),x2=
14848∴y=-×+2=,∴E2(,).
255551若BE=BD,则(x-4)2+(-x+2)2=22.
24. 5整理得5x 2-24x+16=0,解得x1=4?舍去),x2=4?45. 545(此时点P在第四象限,514242∴y=-×(4?5)+2=5,∴E3(4?5,5).
25555
②△CDP有最大面积. ···································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.
设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,
n?2??q?2?p?得? 解得?m
mp?q?n??q?2?∴直线PC的解析式为y=
n?22n?4x+2,∴M(2,+2). mm
S△CDP=S△CDM+S△PDM=
1xP·yM 212n?4+2) =m(
2m=m+n-2
13=m+(-m2+m+2)-2
2215=-m2+m
221525=-(m-)2+
228525∴当m=时,△CDP有最大面积,最大面积为. ···················· 9分
28153521此时n=-×()2+×+2=
22228521∴此时点P的坐标为(,). ·················································· 10分
285.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,?抛物线的对
称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
解:(1)对称轴为直线x=-
4············································· 2分 =-2,即x=-2; ·
2令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.
∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ·········································· 4分 (2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································· 7分 (3)存在. ············································································································ 8分 当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3). AO=3,EO=2,AE=1,CO=3. ∵DE∥CO, ∴△AED∽△AOC.∴
AEDE1DE,即=. =
AOCO33∴DE=1. ··············································································································· 9分
∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.
S梯形DEOC=
1(1+3)×2=4. 2设直线CM交x轴于点F,如图.
若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2
114即CO·FO=2.∴×3FO=2,∴FO=. 2234∴点F的坐标为(-,0). ·················································· 10分
3∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.
44把F(-,0)代入,得-k+3=0. ·································································· 11分
339∴k=.
4∴直线CM的解析式为y=
9x+3. ······································································· 12分 46. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于请说明理由. 3,若存在,请求出符合条件的点P的坐标;若不存在,4
6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=23,o
∴B(23,2) ∵A(0,4),设AB的解析式为y?kx?4,所以23k?4?2,解得k??3, 3以直线AB的解析式为y??3x?4 3(2)由旋转知,AP=AD, ∠PAD=60o,
∴ΔAPD是等边三角形,PD=PA=AO2?OP2?19 如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30° ∴GD=
1BD=23353,DH=GH+GD=+23=, 222∴GB=3373BD=,OH=OE+HE=OE+BG=2??
2222∴D(537,) 223x)若ΔOPD的面积为:2(3)设OP=x,则由(2)可得D(23?x,2?133 x(2?x)?224?23?21?23?21所以P(,0)
33解得:x?7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两
点,A点在B点左侧,点B的坐标为(1,0),OC=3OB. (1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值; (3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一
边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
解:(1)∵对称轴x=-
3a3··································································· 1分 =-. ·22a又∵OC=3OB=3,a>0
∴C(0,-3). ··················································································· 2分 方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:
3a=a+3a+c=0?4 ? 解得
?c=-3
c=-3
???
∴抛物线的解析式为y=x 2+
439x-3. ································································· 4分 4
方法二:令ax 2+3ax+c=0,则xA+xB=-3 ∵B(1,0),∴xA+1=-3,∴xA=-4 ∴A(-4,0)
∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入 得-3=a(0+4)(0-1),∴a=
4343∴抛物线的解析式为y=(x+4)(x-1) 即y=x 2+
439x-3. ········································································4分 4(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M ∵S四边形ABCD =S△ABC +S△ACD
=
11=(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22=
15+2DM. ···················································································5分 2
设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入
??-4k+b=0得? 解得??b=-3
k=-
34
?b=-3
34∴直线AC的解析式为y=-x-3. ················································6分 设D(x,x 2+
434339x-3),则M(x,-x-3) 443439x-3)=-(x+2)2+3. ·········································· 7分 44∴DM=-x-3-(x 2+
当x=-2时,DM有最大值3
此时四边形ABCD面积有最大值,最大值为:
1527+2×3=. ······························ 8分 22方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1 设D(x,x 2+
43399x-3),则DQ=-x,OQ=-x 2-x+3 444从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值 则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ
111=OB·OC+(AO+DQ)·OQ-DQ·CQ 222111=×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222
33···················································· 5分 =+2OQ+DQ. ·
223393=-2(x 2+x-3)-x 2424315=-x 2-6x+
22327················································· 7分 =-(x+2)2+. ·
22当x=-2时,四边形ABCD面积有最大值
27 2 ························································································ 8分
(3)如图3
①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形
ACP1E1为平行四边形. ···························································································· 9分 ∵C(0,-3),令x 2+
439x-3=-3 4解得x1=0,x2=3,∴CP1=3
∴P1(-3,-3). ··································································································· 11分 ②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形. ····································································································· 12分 ∵C(0,-3),∴设P(x,3) 由x 2+
43- 3 +41- 3 -419x-3=3,解得x=或x=
224∴P2(
- 3 +412,3),P3(
- 3 -412,3). ······························································· 14分
综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别
为:
P1(-3,-3),P2(
- 3 +412,3),P3(
- 3 -412,3)
正在阅读:
中考压轴题(十二)-相似三角形存在性问题04-09
上海大学材料科学与工程导师介绍12-16
狼和小羊续写300字07-13
军事理论复习要点03-11
心理护理试卷(A)11-09
年味淡了作文800字06-18
龙港行车工作细则09-0703-15
波澜壮阔虎跳峡作文500字07-15
碳酸二甲酯安全技术说明03-18
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 压轴
- 三角形
- 中考
- 相似
- 存在
- 问题
- 十二
- 苏州市立达中学
- 2013南京外国语学校一模 江苏省南京市、盐城市2013届高三第一次
- 《建筑施工组织》考试试题
- 因数和倍数单元测试题
- 管理会计学1
- 上海园西小学参观之感受
- 圆心角与圆周角的关系(1)
- 高三物理重点题目汇 - 图文
- 关工委关心下一代活动记录 - 图文
- 湖北省制冷空调设备行业企业名录2018版192家
- HX207型七管半导体收音机课程设计要点
- 初中体育教案全套全集--七年级-八年级-九年级
- 以儿歌优化小班一日生活常规
- MEMS技术发展现状及发展趋势
- 说课《瘸蝉》
- 2014年红河州公务员考试行测测试题
- NLP的生理状态--陈育林
- 2013年巩固国家卫生城市计划
- 数字信号处理习题解答1
- 控制卡设置教程1(卡乐控制卡) - 图文