中考压轴题(十二)-相似三角形存在性问题

更新时间:2024-04-09 20:52:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

35.如图,在平面直角坐标中,二次函数图象的顶点坐标为C(4,-3),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;

(2)点P在y轴上,且使得△PAC的周长最小,求:

①点P的坐标; ②△PAC的周长和面积;

(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设二次函数的解析式为y=a(x -4)2-3(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a-3 ∴x1+x2=8,x1x2=16-

3. a33)=36,∴a=. a9∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-

∴二次函数的解析式为y=

3(x -4)2-3. ······················································· 2分 9(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得

3(x -4)2-3=0,解得x1=1,x2=7. 9∴A(1,0),B(7,0).∴OA=1,∴OA′=1.

设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=3. ∵△A′OP∽△ADC,∴

OP3OPA?O1,即. ==,∴OP=

5AD5DC3∴P(0,-

3). ···································································································· 4分 5②∵A′C=A?D2?DC2=52?(3)2=27 AC=AD2?DC2=32?(3)2=23

∴△PAC的周长=PA+PC+AC=A′C+AC=27+23. ······································ 5分 S△PAC=S△A′AC - S△A′AP=

3431′1AA(DC-OP)=×2×(3-)=.

5522 ····················································································· 7分

(3)存在. ············································································································ 8分 ∵tan∠BAC=

3DC=,∴∠BAC=30°.

3AD同理,∠ABC=30°,∴∠ACB=120°,AC=BC.

①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×

31=33,HA=AQ1·cos60°=6×=3. 22HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,33). 把x=-2代入y=

33(x -4)2-3,得y=(-2-4)2-3=33. 99∴点Q1在抛物线上. ······························································································· 9分 ②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,33). 同样,点Q2也在抛物线上. ·················································································· 10分 ③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.

························································································· 11分

综上所述,在x轴上方的抛物线上存在点Q1(-2,33)和Q2(10,33),使得以Q、

A、B三点为顶点的三角形与△ABC相似. ····························································· 12分

2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC.

(1)求实数a,b,c的值;

(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标; (3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若

y 不存在,请说明理由.

?9a?3b?c?0?解:(1)由题意得?c?3

?16a?4b?c?4a?2b?c?C P N x A 解得a=-

323,b=-,c=3. 33M O B ···················································· 3分

(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).

又∵C(0,3),∴OA=3,OB=1,OC=3,∴AB=4,BC=2. ∴tan∠ACO=

OA=3,∴∠ACO=60°,∴∠CAO=30°. OC32233223x -x+3,令y=0,得-x -x+3=0. 3333y C P N x 同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°.

A H M O B ∴△ABC是直角三角形.

又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°. ∴Rt△PNC∽Rt△ABC,∴

PNAB. =

NCBCt4=. 22?t由题意知PN=BN=t,NC=BC-BN=2-t,∴

4∴t=. ···················································· 4分

341∴OM=BM-OB=-1=.

333234如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.

233

412MH=PM·cos60°=×=.

32312∴OH=OM+MH=+=1.

33∴点P的坐标为(-1,(3)存在.

23······················································· 6分 ). ·

3由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也

是直角三角形.

∵二次函数y=-

3223x -x+3的图象的对称轴为x=-1. 33∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴.

又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.

①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,且QN>PN,∠MNQ=30°.

483PN3∴∠PNQ=30°,∴QN=. ==o9cos3032

8323QN∴. =9=

43BN3∵

QNACAC. =tan60°=3,∴≠

BCBNBC∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ············ 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM. ∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.

∴△BNQ∽△ABC. ·············································· 8分

∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.

∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP.

∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-

23············································································· 9分 ). 323),使得以B,N,Q为顶点的3综合①②得,在抛物线的对称轴上存在点Q(-1,-

三角形与△ABC相似.··························································································· 10分 3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2. ······································· 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1 ∵点A在点B右侧,∴A(1,0),B(-3,0)

设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得

?k+b = 0?k = -2 解得? ??-2k+b = 6?b = 2 ∴直线AC的函数关系式为y=-2x+2. ···········································3分 (2)①设P点的横坐标为m(-2≤ m ≤1),

则P(m,-2m+2),M(m,-2m 2-4m+6). ···································4分 ∴PM=-2m 2-4m+6-(-2m+2)

=-2m 2-2m+4

19=-2(m+)2+

2219∴当m=-时,线段PM长度的最大值为. ································6分

22②存在

M1(0,6). ············································································································· 7分

155M2(-,). ······································································································ 9分

48点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△ANP

∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)

(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)

ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP

又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴

CHMH =

ODOA∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2

?2m2?4mm?2∴ =

121整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-

411155当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=

4448155∴M2(-,)

48

4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.

(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.

①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....

②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

解:(1)由题意知Rt△△AOC∽Rt△COB,∴

OAOC. =

OCOB∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).

∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ···················· 2分 ∴A(-1,0),B(4,0),C(0,2).

∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························· 3分

1将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.

21∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4). ···· 4分

213即y=-x 2+x+2.

2214842(2)①E1(3,),E2(,),E3(4?························ 7分 5,5). ·

25555

关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):

设直线BC的解析式为y=kx+b.

1??4k?b?0?k??则? 解得?2

b?2???b?21∴直线BC的解析式为y=-x+2.

21∵点E在直线BC上,∴E(x,-x+2).

21若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.

2∴OH=OD+DH=2+1=3.

∴点E的横坐标为3,代入直线BC的解析式,得y=-

1∴E1(3,).

21若DE=DB,则(x-2)2+(-x+2)2=22.

211×3+2=. 22整理得5x 2-24x+16=0,解得x1=4(舍去),x2=

14848∴y=-×+2=,∴E2(,).

255551若BE=BD,则(x-4)2+(-x+2)2=22.

24. 5整理得5x 2-24x+16=0,解得x1=4?舍去),x2=4?45. 545(此时点P在第四象限,514242∴y=-×(4?5)+2=5,∴E3(4?5,5).

25555

②△CDP有最大面积. ···································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.

设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,

n?2??q?2?p?得? 解得?m

mp?q?n??q?2?∴直线PC的解析式为y=

n?22n?4x+2,∴M(2,+2). mm

S△CDP=S△CDM+S△PDM=

1xP·yM 212n?4+2) =m(

2m=m+n-2

13=m+(-m2+m+2)-2

2215=-m2+m

221525=-(m-)2+

228525∴当m=时,△CDP有最大面积,最大面积为. ···················· 9分

28153521此时n=-×()2+×+2=

22228521∴此时点P的坐标为(,). ·················································· 10分

285.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,?抛物线的对

称轴交x轴于点E,点B的坐标为(-1,0).

(1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;

(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

解:(1)对称轴为直线x=-

4············································· 2分 =-2,即x=-2; ·

2令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.

∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ·········································· 4分 (2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································· 7分 (3)存在. ············································································································ 8分 当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3). AO=3,EO=2,AE=1,CO=3. ∵DE∥CO, ∴△AED∽△AOC.∴

AEDE1DE,即=. =

AOCO33∴DE=1. ··············································································································· 9分

∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.

S梯形DEOC=

1(1+3)×2=4. 2设直线CM交x轴于点F,如图.

若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2

114即CO·FO=2.∴×3FO=2,∴FO=. 2234∴点F的坐标为(-,0). ·················································· 10分

3∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.

44把F(-,0)代入,得-k+3=0. ·································································· 11分

339∴k=.

4∴直线CM的解析式为y=

9x+3. ······································································· 12分 46. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于请说明理由. 3,若存在,请求出符合条件的点P的坐标;若不存在,4

6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=23,o

∴B(23,2) ∵A(0,4),设AB的解析式为y?kx?4,所以23k?4?2,解得k??3, 3以直线AB的解析式为y??3x?4 3(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,PD=PA=AO2?OP2?19 如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30° ∴GD=

1BD=23353,DH=GH+GD=+23=, 222∴GB=3373BD=,OH=OE+HE=OE+BG=2??

2222∴D(537,) 223x)若ΔOPD的面积为:2(3)设OP=x,则由(2)可得D(23?x,2?133 x(2?x)?224?23?21?23?21所以P(,0)

33解得:x?7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两

点,A点在B点左侧,点B的坐标为(1,0),OC=3OB. (1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值; (3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一

边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

解:(1)∵对称轴x=-

3a3··································································· 1分 =-. ·22a又∵OC=3OB=3,a>0

∴C(0,-3). ··················································································· 2分 方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:

3a=a+3a+c=0?4 ? 解得

?c=-3

c=-3

???

∴抛物线的解析式为y=x 2+

439x-3. ································································· 4分 4

方法二:令ax 2+3ax+c=0,则xA+xB=-3 ∵B(1,0),∴xA+1=-3,∴xA=-4 ∴A(-4,0)

∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入 得-3=a(0+4)(0-1),∴a=

4343∴抛物线的解析式为y=(x+4)(x-1) 即y=x 2+

439x-3. ········································································4分 4(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M ∵S四边形ABCD =S△ABC +S△ACD

11=(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22=

15+2DM. ···················································································5分 2

设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入

??-4k+b=0得? 解得??b=-3

k=-

34

?b=-3

34∴直线AC的解析式为y=-x-3. ················································6分 设D(x,x 2+

434339x-3),则M(x,-x-3) 443439x-3)=-(x+2)2+3. ·········································· 7分 44∴DM=-x-3-(x 2+

当x=-2时,DM有最大值3

此时四边形ABCD面积有最大值,最大值为:

1527+2×3=. ······························ 8分 22方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1 设D(x,x 2+

43399x-3),则DQ=-x,OQ=-x 2-x+3 444从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值 则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ

111=OB·OC+(AO+DQ)·OQ-DQ·CQ 222111=×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222

33···················································· 5分 =+2OQ+DQ. ·

223393=-2(x 2+x-3)-x 2424315=-x 2-6x+

22327················································· 7分 =-(x+2)2+. ·

22当x=-2时,四边形ABCD面积有最大值

27 2 ························································································ 8分

(3)如图3

①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形

ACP1E1为平行四边形. ···························································································· 9分 ∵C(0,-3),令x 2+

439x-3=-3 4解得x1=0,x2=3,∴CP1=3

∴P1(-3,-3). ··································································································· 11分 ②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形. ····································································································· 12分 ∵C(0,-3),∴设P(x,3) 由x 2+

43- 3 +41- 3 -419x-3=3,解得x=或x=

224∴P2(

- 3 +412,3),P3(

- 3 -412,3). ······························································· 14分

综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别

为:

P1(-3,-3),P2(

- 3 +412,3),P3(

- 3 -412,3)

本文来源:https://www.bwwdw.com/article/dh6r.html

Top