1、1、2集合的表示法

更新时间:2023-04-06 08:55:02 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1 / 1 1、1、2集合的表示法

第一部分 走进预习

【预习】教材第5-7页

回答下列问题:

1、什么是列举法?举例说明如何用列举法表示集合?

2、什么是描述法?举例说明如何用描述法表示集合?

第二部分 走进课堂

【复习检测】 一、集合、元素的概念;集合如何按元素个数分类?

二、集合、元素的记法

三、元素与集合的关系

四、集合的性质。

问题:1、在初中我们曾用

表示*N , 但是象抛物线2x y =上的点的集合、 实数集等又怎样表示呢?

2、在初中人们常说不等式013<+-x 的解集为31>

x ,但在高中这样的说法就是不恰当的,究竟应该这样表示这些集合呢?

【探索新知】集合的表示法

列举法

1、从字面上看“列举法”的含义。

2、从教材中获取列举法的定义。

例1、用列举法表示下列集合

(1)方程0232=+-x x 解的集合。

(2)24与18的公约数的集合。

1 / 1 (3)大于5且小于30的质数的集合。

(4)二元一次方程102=+y x 的正整数解的集合。

又如:下列集合也可以用列举法表示

(1)自然数集

(2)正整数的倒数集合

(3)小于50的且被3除余1的正整数的集合。

问题1、下列集合可以用列举法表示吗?

(1)直角三角形的集合。

(2)不等式23

21->-+x x 的解集。 (3)某农场的拖拉机的集合。

描述法

1、从字面上看“描述法”的含义。

2、从教材中获取描述法的定义。

3、用描述法表示集合的具体操作方法。

例2、用描述法表示下列集合

(1)直角三角形的集合。

(2)不等式

2321->-+x x 的解集。

1 / 1 (3)不等式

213

24x x x >+-+的解集。

(4)方程0232

=+-x x 解的集合。

方程012=+x 解的集合。

问题2、设方程012=+x 解的集合为φ,φ中有元素吗?

你能再举一些这方面的例子吗?

(5)二元一次方程12=-y x 的解的集合。

(6)二元一次方程组???=-=+4

22y x y x 的解集。

(7)抛物线12+=x y 上点的集合。

二次函数12+=x y 的函数值

y 的集合。

二次函数12+=x y 的自变量x 的取值范围。

1 / 1 (8)被3除余1的整数的集合。

指出:有些集合还可以用Venn 图表示。

例如、下列集合可以用Venn 图表示

① {}9,7,4,1 ② {} 9,7,4,1

反思总结:

【课堂检测】

1、下列集合中哪些具有相同的元素?

{}1|2-==x y x A {}1|),(2-==x y y x B {}1|2-==x y y C {}12-==x y D {}1|-≥=x x E {}R t t y y F ∈-==,1|2, {}R y y x x G ∈-==,1|2;

2.关于方程组???=-=+3

1y x y x 的解集,下面表达正确的是________.

①{(x ,y )|???x =2y =-1

} ; ②{(2,-1)} ; ③{(x ,y )| (2,-1)}; ④{2,-1}

【拓展提升】:试用列举法表示下列集合

(1)A={x N ∈ |

126N x ∈-} (2)已知B={126N x

∈-|x N ∈}

第三部分走向课外

【课后作业】

1.用列举法表示下列集合

(1)A={x|x=2n n∈Z};B={x|x=2n-4 n∈Z};

C={x|x=4n n∈N Z};D={x|x=4n+2 n∈N Z};

(2) A={x|x=2n-1 n∈Z};B={x|x=2n+1 n∈Z};

C={x|x=4n±1 n∈Z};D={x|x=2n+1 n∈N};2.用列举法表示下列集合

(1)由||||

(,)

a b

a b R

a b

+∈所确定的实数集合.

(2) {(x,y)|3x+2y=16,x∈N,y∈N }.

3.设A={x∈R|a x2+2x+1=0,a∈R}

①若A=?,求a的值;

②若A中只有一个元素,求a的值;

③若A中至多有一个元素,求a的取值集合. 【质疑与收获】

1 / 1

本文来源:https://www.bwwdw.com/article/dc2l.html

Top