北航动力学习题5
更新时间:2024-01-17 22:27:01 阅读量: 教育文库 文档下载
5-2滑轮组上悬挂有质量为10kg的重物M1和质量为8kg的重物M2,如图所示。忽略滑轮的质量,试求重物M2的加速度a2及绳的拉力。 解:
取整个系统为研究对象,不考虑摩擦,该系统具有理想约束。作用在系统上的主动力为重物的重力M1g,M2g。假设重物M2的加速度a2的方向竖直向下,则重物M1的加速度a1竖直向上,两个重物惯性力FI1,FI2为:
FI1?M1a1
FI2?M2a2 (1)
该系统有一个自由度,假设重物M2有一向下的虚位移?x2,则重物M1的虚位移?x1竖直向上。由动力学普遍方程有:
?W??M1g?x1?M2g?x2?FI1?x1?FI2?x2?0 (2)
根据运动学关系可知:
?x1?12?x2
a1?12a2 (3)
FI2
将(1)式和(3)式代入(2)式,可得对于任意?x2?0有:
a2?4M4M22?2M1?M1g?2.8(m/s)2δx1
FI1
M2g
M1g
δx2
方向竖直向下。取重物M2为研究对象,受力如图所示,由牛顿第二定律有:
M2g?T?M2a2
T
解得绳子的拉力T?56.1(N)。
本题也可以用动能定理,动静法,拉格朗日方程求解。
M2g
a2
5-4如图所示,质量为m的质点悬在一线上,线的另一端绕在一半径为R的固定圆柱体上,构成一摆。设在平衡位置时,线的下垂部分长度为l,且不计线的质量,试求摆的运动微分 方程。
解:
该系统为保守系统,有一个自由度,取?为广义坐标。
系统的动能为:
12T?m[(l?R?)??]2
取??0为零势位,则系统的势能为:
V?mg[Rsin??(l?R?)cos?]
?L?L)??0?L?T?Vdt????拉格朗日函数,代入拉格朗日方程有:
整理得摆的运动微分方程为:
???R??2?gsin??0(l?R?)?
5-6质量为m的质点在重力作用下沿旋轮线导轨运动,如图所示。已知旋轮线的方程为
(s?4bsin?,式中s是以O为原点的弧坐标,?是旋轮线的切线与水平轴的夹角。试求质
d点的运动规律。 解:
该系统为保守系统有一个自由度,取弧坐标S为广义坐标。系统的动能为:
1?2T?mS2
取S?0为零势位,系统的势能为:
V?mgh 由题可知
h?dhdS?sin??S4b,因此有:
h ?0ss4bds?S2
则拉格朗日函数:
8b
?2?mgS2mS28b d?L?L???gS?0, 代入拉格朗日方程: ()??0,整理得摆的运动微分方程为:S?dt?S?S4bL?T?V?1解得质点的运动规律为:S?Asin(12gbt??0),其中
A,?0为积分常数。
5-13质量为m的质点沿半径为r的圆环运动,圆环以匀角速度?绕铅垂直径AB转动,如图所示。试建立质点的运动微分方程,并求维持圆环匀角速度转动所必需的转矩M。
解:
1.求质点的运动微分方程
圆环(质量不计)以匀角速度?绕铅垂轴AB转动,该系统有一个自由度,取角度?为
广义坐标。系统的动能为:
T?1
122m(r??)?m(?rsin?)22
取??0为零势位,系统的势能为:
V?mgr(1?cos?)
则拉格朗日函数:
L?T?V?122222mr(????sin?)?mgr(1?cos?)
d(
?L?L)??0???代入拉格朗日方程:dt?? ,整理得质点的运动微分方程为:
???(g??2cos?)sin??0?r
2.求维持圆环作匀速转动的力偶M
如果求力偶M,必须考虑圆环绕铅垂轴AB的一般转动。因此解除“圆环绕铅垂轴AB匀速?转动”这一约束,将力偶M
视为主动力。此时系统有两个自由度,取角度?和圆环绕轴AB的转角?为广义坐标,系统?代替?,则拉格朗日函数为: 的势能不变,动能表达式中以?
122?2sin2?)?mgr(1?cos?)L?T?V?mr(????2
力偶M为非有势力,它对应于广义坐标?和?的广义力计算如下:
取???0,???0,在这组虚位移下力偶M所作的虚功为[?W]???0,因此力偶M对应于广义坐标?的广义力
Q?M?0;
[?W]???M???取???0,???0,在这组虚位移下力偶M所作的虚功为,因此力偶MQ?????对应于广义坐标的广义力
d?L?LM()??Q??0??代入拉格朗日方程dt???,整理可得: ???gsin??0?r
d?L?LM()??Q??M???代入拉格朗日方程dt??,整理可得:
22???mr2sin2??????M mrsin??
M[?W]???M;
???,????0,代入上式可得: 圆环绕铅垂轴AB匀速?转动,即:?
2M?mr???sin2?
5-14如图所示,质量为m的物体可绕水平轴O1O2转动,轴O1O2又绕铅垂轴OC以匀角速度?转动。物体的质心G在垂直于O1O2的直线上,O3G?l。设O1O2和O3G是物体过O3点的惯量主轴,转动惯量为J1和J2,物体对另一过O3点的惯量主轴的转动惯量为J3,试求物体的动能表达式并建立物体的运动微分方程。 解:
垂直于O1O2的平面
??
z’ O3
?
x’ ? θ G
z’
?绕轴O1O2的定轴转动,牵连运动是以角O1O2OC为动系,则物体的相对运动是以角速度θ
O3G为y?轴,以O1O2为x?轴,如图建立一个固连在物体上的坐标系,则该刚体的角速度?a可表示成:
以该物体为研究对象,有一个自由度,取O3G和OC的夹角?为广义坐标。若以框架y’ y’
?和ω的矢量之和。为了方便起见,速度?绕OC轴的定轴转动,物体的绝对角速度?a是θ
?i???cos?j???sin?z??a?θ
???由于坐标系O3xyz的三个坐标轴为过O3点的三个惯量主轴,则系统的动能为:
T?12222[J1???J2(?cos?)?J3(?sin?)]
取??0为零势位,系统的势能为:
V?mgl(1?cos?)
则拉格朗日函数:
L?T?V?12
222[J1???J2(?cos?)?J3(?sin?)]?mgl(1?cos?)
代入拉格朗日方程:
?L?L)??0dt????? (d,
整理后,可得物体的运动微分方程为:
????(J?J)sin?cos???mglsin?J1?23
25-17重P1的楔块可沿水平面滑动,重P2的楔块沿楔块A的斜边滑动,在楔块B上作用一水
平力F,如图所示。忽略摩擦,角?已知,试求楔块A的加速度及楔块B的相对加速度。 解:
取楔块A,B构成的系统为研究对象,该系统有二个自由度,取楔块A水平滑动的位移x,以及楔块B相对于A的沿斜面滑动的位移s为广义坐标。若以楔块A为动系,楔块A的速度vA,楔块B的速度vB,以及B相对于A的相对速度满足如下的矢量关系(方向如图所示):
系统的动能为:
T???vB?vA?vBr
12mAvA??2?xP22g212mBvB2vBr P12g12g??s?cos?)2?(s?sin?)2][(x
2vA
??(P1?P2)x1g?s??P2cos?x12g?P2s2
取过x轴的水平为零势面,系统的势能为:
则拉格朗日函数:
V?P2ssin?
L?T?V?12g??(P1?P2)x21g?s??P2cos?x12g??P2ssin?P2s2
将水平力F视为非有势力,它对应于广义坐标x和s的广义力计算如下:
取?x?0,?s?0,在这组虚位移下力F所作的虚功为[?W]?x?F?x,因此力F对应于广
义坐标x的广义力
Qx?F;
F
取?x?0,?s?0,在这组虚位移下力F所作的虚功为[?W]?s?Fcos??s,因此力F对应
于广义坐标s的广义力
Qs?Fcos?F; )??L?x?Qx?FFd?代入拉格朗日方程dt?x(?L,整理可得:
??1212?sin(???)]2?[s?cos(???)???m1{[s?2?(m1?m2)s0l2]}?21242?2?m1l?12?m2s2
12?s?cos(???)?m1l?162?2m1l?
设s?0,??90时势能为零,系统的势能为:
V?m1gl2cos??(m1?m2)gssin??12k?2
拉格朗日函数L?T?V中不显含时间t,存在广义能量积分,即:
T?V?12??(m1?m2)sl2212?s?cos(???)?m1l?12162?2m1l?
?m1gcos??(m1?m2)gssin??k?2?常数
5-29半径为r、质量为m的圆柱,沿半径为R、质量为m0的空心圆柱内表面滚动而不滑动,
mr2如图所示。空心圆柱可绕自身的水平轴O转动。圆柱对各自轴线的转动惯量为2m0R。试求系统的首次积分。
2和
解:
以圆柱和圆筒构成的系统为研究对象,该系统有二个自由度,取?,?为广义坐标。
系统的动能为:
111122222T?m0R???mvO1?(mr)?2222
其中:
?vO1?(R?r)?,
圆柱相对于圆筒作纯滚动,由圆柱轴心O1以及圆柱上与圆筒相接触的点的速度关系,可得:
代入动能有:
131222?2?m(R?r)R????T?(2m0?m)R???m(R?r)?442
设??0为零势位,系统的势能为:
??1r??R??][(R?r)?
V?mg(R?r)(1?cos?),
拉格朗日函数:
L?T?V?131222?2?m(R?r)R?????mg(R?r)(1?cos?)(2m0?m)R???m(R?r)?442
拉格朗日函数中不显含广义坐标?和时间t,存在循环积分和广义能量积分,即:
?L?T12??R??]?p0??m0R???mR[(R?r)?2?????? T?V?11122??R??]2?m(R?r)2??2?mg(R?r)(1?cos?)?E0m0R???m[(R?r)?242
正在阅读:
北航动力学习题501-17
2022年清华大学综合化学之有机化学复试实战预测五套卷04-13
Unit1Grammar(无答案)-江苏省苏州市工业园区星澜学校七年级英04-05
中华美德颂作文1000字03-12
模范职工之家申报事迹材料优选参考范文08-16
实验中学春季开学工作情况汇报03-12
船舶动力装置原理与设计复习思考题及答案2016 - 图文12-21
中国英语教育培训市场发展趋势分析05-17
云南省建设工程文件归档范围及组卷顺序 204-01
市市场监督管理局全面依法治市工作总结报告08-04
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 北航
- 动力学
- 习题
- 桥梁模型制作与荷载试验指导书最
- 长沙理工大学2011年4月自考06280道路建筑材料(最重点)
- 微观经济学习题及答案(高鸿业,人大版)
- 小企业管理案例分析题答题要点
- 2018-2024年中国船用冷冻设备市场专项调查分析及投资前景预测报告
- 国际金融练习题
- 国网考试继电保护复习题
- 高校党员志愿服务有效性调查研究 - 以浙江师范大学为例 - 图文
- 《中外50家企业理念、企业文化完整手册》
- 基本公共卫生服务经费管理与使用规范
- 垃圾填埋场施工组织设计 - 图文
- 北师大版小学六年级数学上册导学案全册 - 图文
- 《石钟山记》复习及拓展
- 阅读练习
- 转向架检修故障及改进方法 - 图文
- 儿童多动症主要有以下五大特征
- 南京三模优秀作文
- 华北水利水电大学学术委员会会议纪要 - 图文
- 浅谈中学体育教育对学生终身体育意识的培养
- 房地产经纪综合能力--考试题答案