数学五年级上册简便计算练习(答案)

更新时间:2023-10-12 19:52:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1

小学数学五年级上册简便计算练习(答案卷)

一、归类练习:

3.29+0.73+2.27 3.29-0.73-2.27 7.5+2.5-7.5+2.5

=3.29+(0.73+2.27) =3.29-(0.73+2.27) =(7.5-7.5)+(2.5+2.5)

=3.29+3 =3.29-3 =0+5 =6.29 =0.29 =5

(加法结合律) (减法的性质) (同级运算交换)

7.325-3.29-3.325 7.325-(5.325+1.7) 7.325-(5.325-1.7)

=7.325-3.325-3.29 =7.325-5.325-1.7 =7.325-5.325+1.7

=4-3.29 =2-1.7 =2+1.7 =0.71 =0.3 =3.7

(减法交换) (减法的性质) (前面减号,脱括号变符号)

3.29+0.73-2.29+2.27 3.29×0.25×4 0.125×8.8

=(3.29-2.29)+(0.73+2.27) =3.29×(0.25×4) =0.125×8×1.1

=1+3 =3.29×1 =1×1.1 =4 =3.29 =1.1

(同级运算交换) (乘法结合律) (先拆数,乘法结合律)

0.25×0.28 0.125×3.2×2.5 35×10.2

=0.25×4×0.07 =(0.125×8)×(0.4×2.5) =35×(10+0.2)

=1×0.07 =1×

1 =35×10+35×0.2

=0.07 =1 =350+7

(先拆数,乘法结合律) (拆数,乘法结合律) =357 (拆数,乘法分配律)

0.25×4÷0.25×4 3.5×

9.9 3.5×99+3.5

=(0.25÷0.25)×(4×4) =3.5×(10-0.1) =3.5×(99+1)

=1×16 =3.5×10-3.5×0.1 =3.5×100 =16 =35-0.35 =350

(同级运算交换) =34.65 (乘法分配律)

2

(拆数,乘法分配律)

3.5×101-3.5 3.5×9.9+3.5×0.1 ★ 3.5×2.7+35×0.73

=3.5×(101-1) =3.5×(9.9+0.1) =3.5×2.7+3.5×7.3

=3.5×100 =3.5×10 =3.5×(2.7+7.3) =350 =35 =3.5×10 (乘法分配律) (乘法分配律) =35

(先利用积不变的规律转化,

3.5×2.7-3.5×0.7 0.5÷0.6

=3.5×(2.7-0.7) =3.5×2 =40=7 =47 =5

(乘法分配律)

4.9÷1.4 4 =4.9÷(7×0.2) =4.9÷7÷0.2 =7=0.7÷0.2 =7 =3.5 (拆数,除法的性质)

7.35÷(7.35×0.25) =7.35÷7.35÷0.25 =7.35=1÷0.25 =1=4 =0.25

(除法的性质)

二、混合练习:

3.07-0.38-1.62 2.45-1.55

=3.07-(0.38+1.62) =3.07-2 =4=1.07 =14 =4

(减法的性质)

3.25+1.79-0.59+1.75 403

然后再用乘法分配律)

★ (32+5.6)÷0.8 ★ 3.5÷0.6- =32÷0.8+5.6÷0.8 =(3.5-0.5)÷0.6 +7 =3÷0.6 (后2题类似分配律,但只适用于(a+b)÷c

和(a-b)÷c,而a÷(b+c)和a÷(b-c)不能用。)

7÷0.25÷★ 7÷0.125

=7÷(0.25×4) =7×8 ÷1 =56

(乘除法转化规律,转化时 符号相反,转化前后的2数 (除法的性质) 相乘得1。) ★ 7.35÷(7.35÷0.25) ÷7.35×0.25 ×0.25 (前面是除号,脱括号符号相反)

1.29+3.7+2.71+6.3 8- =(1.29+2.71)+(3.7+6.3) =8-(2.45+1.55)+10 =8-4 (加法交换律和加法结合律) (减法的性质) 23.4-0.8-13.4-7.2 0.32× 3

=(3.25+1.75)+(1.79-0.59) =(23.4-13.4)-0.8-7.2 =0.32×(400+3) =5+1.2 =10-(0.8+7.2) =0.32×400+0.32×3 =6.2 =10-8 =128+0.96 (同级运算交换) =2 =128.96

(减法交换和减法的性质) (拆数,乘法分配律)

3.2+0.36+4.8+1.64 1.23+3.4-0.23+6.6 0.25×36

=(3.2+4.8)+(0.36+1.64) =(1.23-0.23)+(3.4+6.6) =0.25×4×9 =8+2 =1+10 =1×9 =10 =11 =9

(加法交换律和加法结合律)

12.7-(3.7+0.84) 0.73×4

=12.7-3.7-0.84 4×0.73

=9-0.84 =32=8.14 =30.24 =0.73 (减法的性质) 7.6×0.8+0.2×7.6 199 =7.6×(0.8+0.2) ×8.5

=7.6×1 =7.6 =170-0.85 =8.5

(乘法分配律) =169.15

1.28×8.6+0.72×8.6 9.6×0.35

=(1.28+0.72)×8.6 =12.5=2×8.6 =10=17.2 =9.6 (乘法分配律)

0.8×(4.3×1.25) ×101-28.6

=0.8×1.25×4.3 ×(101-1)

=1×1.25 100 =28.6=1.25 =312 =2860

(乘法交换律和乘法结合律)

(同级运算交换) (拆数,乘法结合律)

36.54-1.76-4.54 0.25× =36.54-4.54 -1.76 =0.25×-1.76 =1×0.73 (减法交换) (乘法交换律和乘法结合律) 0.85× 0.25×8.5×4

=0.85×(200-1) =0.25×4 =0.85×200-0.85×1 =1×8.5 (乘法交换律和乘法分配律)

(拆数,乘法分配律) 12.5×0.96×0.8 10.4-×0.8×0.96 =10.4-3.36 ×0.96 =7.04 (无简算)

3.12+3.12×99 28.6 =3.12×(1+99) =28.6 =3.12××100

(乘法分配律) (乘法分配律)

(乘法交换律和乘法结合律) 4

(4.23+6.17)×0.8 0.86×15.7-0.86×14.7 2.4×102 =10.4×0.8 =0.86×(15.7-14.7) = 2.4×(100+2)

=8.32 =0.86×1 =2.4×100+2.4×2 (无简算) =0.86 =240+4.8 (乘法分配律) =244.8

(拆数,乘法分配律)

14-7.32-2.68 2.64+8.67+7.36+11.33 2.31×1.2×0.5

=14-(7.32+2.68) =(2.64+7.36)+(8.67+11.33) =2.31×(1.2×0.5) =14-10 =10+20 =2.31×0.6 =4 =30 =1.386

(减法的性质) (加法交换律和加法结合律) (乘法结合律)

(2.5-0.25)×0.4 9.16×1.5-0.5×9.16 3.6-3.6×0.5

=2.5×0.4-0.25×0.4 =9.16×(1.5-0.5) =3.6×(1-0.5) =1-0.1 =9.16×1 =3.6×0.5 (可转化成3.6÷2)

=0.9 =9.16 =1.8

(乘法分配律) (乘法分配律) (乘法分配律)

4.5÷1.8 930÷0.6÷5 63.4÷2.5÷0.4 ★ 4.25÷2.5×9.9+0.17

=4.5÷(9×0.2) =930÷(0.6×5) =63.4÷(2.5×0.4) =1.7×9.9+1.7×0.1 =4.5÷9÷0.2 =930÷3 =63.4÷1 =1.7×(9.9+0.1)

=0.5÷0.2 =310 =63.4 =1.7×10 =2.5 (除法的性质) (除法的性质) =17

(拆数,除法的性质) (前半部分死算,后半部分利

用积不变的规律转化,最后用乘法分配律。)

3.9÷(1.3×5) ★(7.7+1.54)÷0.7 2.5×2.4 2.7÷45

=3.9÷1.3÷5 =7.7÷0.7+1.54÷0.7 =2.5×4×0.6 =2.7÷(9×5)

=3÷5 =11+2.2 =10×0.6 =2.7÷9÷5

=0.6 =13.2 =6 =0.3÷5 (除法的性质) (相当于分配律) (拆数,乘法结合律)=0.06

(拆数,除法的性质)

0.35×1.25×2×0.8 32.4×0.9+0.1×32.4 15÷0.25 15÷(0.15×0.4)

=(0.35×2)×(1.25×0.8) =32.4×(0.9+0.1) =15÷(5×0.05) =15÷0.15÷0.4

5

=0.7×1 =32.4×1 =15÷5÷0.05 =100÷0.4 =0.7 =32.4 =3÷0.05 =250 (乘法交换律和乘法结合律) (乘法分配律) (拆数,除法的性质) =60

(除法的性质)

本文来源:https://www.bwwdw.com/article/d3qf.html

Top