Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
更新时间:2023-06-06 23:02:01 阅读量: 实用文档 文档下载
- two-thirds推荐度:
- 相关推荐
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
PublishedonWeb12/13/2007
Two-andThree-DimensionalSmecticOrderingof
Single-HandedHelicalPolymers
HisanariOnouchi, KentoOkoshi,*, TakashiKajitani, Shin-ichiroSakurai,
KanjiNagai, , JiroKumaki, KiyotakaOnitsuka,§andEijiYashima*, ,
YashimaSuper-structuredHelixProject,ExploratoryResearchforAdVancedTechnology(ERATO),JapanScienceandTechnologyAgency(JST),101CreationCoreNagoya,2266-22Anagahora,Shimoshidami,Moriyama-ku,Nagoya463-0003,Japan,DepartmentofMolecularDesignandEngineering,GraduateSchoolofEngineering,NagoyaUniVersity,Chikusa-ku,Nagoya464-8603,Japan,andTheInstituteofScientificandIndustrialResearch,Osaka
UniVersity,8-1Mihogaoka,Ibaraki,Osaka567-0047,Japan
ReceivedJune25,2007;E-mail:kokoshi@yp-jst.jp;yashima@apchem.nagoya-u.ac.jp
Abstract:Rodlikepolymerswithpreciselydefinedarchitecturesareidealbuildingblocksforself-assembledstructuresleadingtonovelnanometer-scaledevices.WefoundthatthelivingpolymerizationofasingleisocyanideenantiomerbearinganL-alaninependantwithalongn-decylchainsimultaneouslyproduceddiastereomericright-andleft-handedheliceswithdifferentmolecularweightsandnarrowmolecularweightdistributions.Eachsingle-handed,rodlikehelicalpolymerwithacontrolledlengthandhandednessisolatedbyafacilesolventfractionationmethodwithacetoneself-assembledtoformwell-definedtwo-andthree-dimensionalsmecticorderingonthenanometerscaleonasubstrateandinaliquidcrystallinestateasevidencedbydirectatomicforcemicroscopicobservationsandX-raydiffractionmeasurements,respectively.
Introduction
Biologicalmacromolecules,suchasDNAandsomeviruses,possessawell-definedrodlikestructurewithaone-handedhelicalsense,whichprovidesaccesstoidealbuildingblocksforself-assemblednanomaterialsanddevices.Nucleicacidshavebeensuccessfullyusedintheself-assemblyofsupramo-leculararraysthroughtheirhighlyspecificbindingproperties.1Somevirusesarealsoknowntoformsmecticliquidcrystalline(LC)phases,inwhichrodlikevirusesarepackedintolayersperpendiculartothedirectionoftheirorientation,duetotheiruniformmolecularlengths.2Althoughabacterialsyntheticmethodhasbeenreportedtoproducemonodispersepolypeptideswithastate-of-the-artcontrolofthemolecularlengthsandstructures,3itremainsagreatchallengetocontrolthoseoftheartificialhelicalpolymerstosuchanextentinaconventionalsyntheticway,4notonlytomimicthestructuresofbiologicalhelicesbutalsotodevelopnovelfunctions.5
Fullysyntheticopticallyactivehelicalpolymershavebeenpreparedeitherbythepolymerizationofopticallyactive
monomers,suchasisocyanates,5gsilanes,5eacetylenes,5corbythehelix-senseselectivepolymerizationofachiralmethacrylates,5fisocyanides,5d,6andcarbodiimides7bearingbulkysubstituentsbychiralcatalystsorinitiators.Theformerpolymerizationproducesdynamichelicalpolymerscomposedofinterconvertingright-andleft-handedhelicalsegmentsseparatedbyrarelyoccurringhelicalreversals,5c,e,gandthelatterstatichelicalpolymerswhosehelicalconformationsarelockedduringthepolymerizationunderkineticcontrol.5f,6
Inearlierstudies,wereportedtheconventionalpolymerizationofanenantiomericallypurephenylisocyanidebearinganL-alaninependantwithalongn-decylchainthroughanamidelinkage(L-1)withNiCl2asacatalyst,whichproducedarodlikestatichelicalpolyisocyanidewithabroadmolecularweight
(4)(a)Kim,K.T.;Park,C.;Kim,C.;Winnik,M.A.;Manners,I.Chem.
Commun.2006,1372-1374.(b)Okoshi,K.;Sano,N.;Suzaki,G.;Tokita,M.;Magoshi,J.;Watanabe,J.Jpn.J.Appl.Phys.2002,41,L720-L722.(c)Okoshi,K.;Kamee,H.;Suzaki,G.;Tokita,M.;Fujiki,M.;Watanabe,J.Macromolecules2002,35,4556-4559.
(5)(a)Yashima,E.;Maeda,ldamers:Structure,Properties,and
Applications;Hecht,S.,Huc,I.,Eds.;Wiley:Weinheim,2007;pp331-366.(b)Hoeben,F.J.M.;Jonkheijm,P.;Meijer,E.W.;Schenning,P.H.J.Chem.ReV.2005,105,1491-1546.(c)Yashima,E.;Maeda,K.;Nishimura,T.Chem.sEur.J.2004,10,42-51.(d)Elemans,J.A.A.W.;Rowan,A.E.;Nolte,R.J.M.J.Mater.Chem.2003,13,2661-2670.(e)Fujiki,M.Macromol.RapidCommun.2001,22,539-563.(f)Nakano,T.;Okamoto,Y.Chem.ReV.2001,101,4013-4038.(g)Green,M.M.;Park,J.-W.;Sato,T.;Teramoto,A.;Lifson,S.;Selinger,R.L.B.;Selinger,J.V.Angew.Chem.,Int.Ed.1999,38,3138-3154.
(6)(a)Amabilino,D.B.;Serrano,J.-L.;Sierra,T.;Veciana,J.J.Polym.Sci.,
PartA:Polym.Chem.2006,44,3161-3174.(b)Suginome,M.;Ito,Y.AdV.Polym.Sci.2004,17,77-136.(c)Cornelissen,J.J.L.M.;Rowan,A.E.;Nolte,R.J.M.;Sommerdijk,N.A.J.M.Chem.ReV.2001,101,4039-4070.
(7)(a)Tang,H.-Z.;Boyle,P.D.;Novak,B.M.J.Am.Chem.Soc.2005,127,
2136-2142.(b)Tian,G.;Lu,Y.;Novak,B.M.J.Am.Chem.Soc.2004,126,4082-
4083.
J.AM.CHEM.SOC.2008,130,229-236
9
(1)(a)Seeman,N.C.Int.J.Nanotechnol.2005,2,348-370.(b)Winfree,E.;
Liu,F.;Wenzler,L.A.;Seeman,N.C.Nature1998,394,539-544.(2)(a)Lee,S.-W.;Wood,B.M.;Belcher,ngmuir2003,19,1592-1598.(b)Lee,S.-W.;Mao,C.;Flynn,C.E.;Belcher,A.M.Science2002,296,892-895.(c)Dogic,Z.;Faden,S.Phys.ReV.Lett.1997,78,2417-2420.(d)Wen,X.;Meyer,R.B.;Casper,D.L.D.Phys.ReV.Lett.1989,63,2760-2763.
(3)(a)Yu,S.M.;Conticello,V.P.;Zhang,G.;Kayser,C.;Fournier,M.J.;
Mason,T.L.;Tirrell,D.A.Nature1997,389,167-170.(b)Zhang,G.;Fournier,M.J.;Mason,T.L.;Tirrell,D.A.Macromolecules1992,25,3601-3603.
10.1021/ja074627uCCC:$40.75©2008AmericanChemicalSociety
ERATO,JST.
GraduateSchoolofEngineering,NagoyaUniversity.
§TheInstituteofScientificandIndustrialResearch,OsakaUniversity.
229
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
Figure1.Two-andthree-dimensionalsmecticorderingofhelicalpolymers.(A)Schematicillustrationofthehelix-senseselectivelivingpolymerizationofL-1withµ-ethynediylPt-Pdcomplex(2),yieldingamixtureofdiastereomeric,right-andleft-handedhelicalpoly-L-1’swithdifferentmolecularweightsandanarrowMWD,whichcanbefurtherseparatedintoeachsingle-handedhelicalpoly-L-1.Two-dimensional(B)and3D(C)smecticorderingoftheone-handedhelicalpoly-L-1’sonsubstrateandinLCstate.
distribution(MWD),thusformingalyotropiccholestericLCphaseinconcentratedsolutions,whosehelicalsensewasroughlydictatedbythepolymerizationsolventandtemperature.8Nolteandco-workerspreparedaseriesofpeptide-boundhelicalpolyisocyanidesstabilizedbyintramolecularhydrogenbondsfromopticallypureisocyanopeptidesusingnickeloracidcatalysts,whichresultedintheformationofasimilarcholestericLCphaseduetoitspolydispersenature.5d,6c,9HereinweshowthatthelivingpolymerizationofL-1withtheµ-ethynediylPt-Pdcatalyst(2)simultaneouslycreatesbothalmostcompletelyright-andleft-handedhelicalpolyisocyanides(poly-L-1)withadifferentmolecularweightandsufficientlynarrowMWD(Figure1A).Eachhelicalpoly-L-1canbeseparatedinafacilewayandexhibitswell-definedtwo(2D)-andthree-dimensional(3D)smecticorderingonasubstrateandinanLCstate,asdirectlyobservedbyatomicforcemicroscopy(AFM)andrevealedbyX-raydiffraction(XRD),respectively(BandCofFigure1).
ResultsandDiscussion
ThepolymerizationofD-orL-1with2([1]/[2])50,100,or200(mol/mol))astheinitiator,whichisknowntopromotethelivingpolymerizationofarylisocyanide,10wasconducted
(8)Kajitani,T.;Okoshi,K.;Sakurai,S.-i.;Kumaki,J.;Yashima,E.J.Am.
Chem.Soc.2006,128,708-709.
(9)(a)Metselaar,G.A.;Adams,P.J.H.M.;Nolte,R.J.M.;Cornelissen,J.
J.L.M.;Rowan,A.E.Chem.Eur.J.2007,13,950-960.(b)Metselaar,G.A.;Wezenberg,S.J.;Cornelissen,J.J.L.M.;Nolte,R.J.M.;Rowan,A.E.J.Polym.Sci.,PartA:Polym.Chem.2007,45,981-988.(c)Metselaar,G.A.;Cornelissen,J.J.L.M.;Rowan,A.E.;Nolte,R.J.M.Angew.Chem.,Int.Ed.2005,44,1990-1993.(d)Cornelissen,J.J.L.M.;Graswinckel,W.S.;Rowan,A.E.;Sommerdijk,N.A.J.M.;Nolte,R.J.M.J.Polym.Sci.,PartA:Polym.Chem.2003,41,1725-1736.(e)Cornelissen,J.J.L.M.;Sommerdijk,N.A.J.M.;Nolte,R.J.M.Macromol.Chem.Phys.2002,203,1625-1630.(f)Cornelissen,J.J.L.M.;Donners,J.J.J.M.;deGelder,R.;Graswinckel,W.S.;Metselaar,G.A.;Rowan,A.E.;Sommerdijk,N.A.J.M.;Nolte,R.J.M.Science2001,293,676-680.
(10)(a)Takei,F.;Hayashi,H.;Onitsuka,K.;Kobayashi,N.;Takahashi,S.
Angew.Chem.,Int.Ed.2001,40,4092-4094.(b)Onitsuka,K.;Joh,T.;Takahashi,S.Chem.Eur.J.2000,6,983-993.(c)Onitsuka,K.;Joh,T.;Takahashi,S.Angew.Chem.,Int.Ed.Engl.1992,31,851-852.230J.AM.CHEM.SOC.
9
intetrahydrofuran(THF)at55°Candquantitativelyproducedrodlikehelicalpolyisocyanides([D-orL-1]/[2])100forpoly-D-1orpoly-L-1,[L-1]/[2])50forpoly-L-150,and[L-1]/[2])200forpoly-L-1200).Sizeexclusionchromatography(SEC)ofpoly-L-1detectedbyUV(254nm)andcirculardichroism(CD)(364nm)revealedabimodaldistributionwithasharpmainpeaktogetherwithasmallpeakinthelowermolecularweight(Mw)regionwhoseCDsignswereopposite,negative,andpositive,respectively(Figure2A),suggestingamixtureofright-andleft-handedheliceswithdifferentMw’s.Wefoundthateachhelicalpoly-L-1couldbeeasilyseparatedbyfractionationwithacetoneintoacetone-insolubleand-solublefractionswhichshowedunimodalchromatogramswithnegativeandpositiveCDsignsat364nmforthehigh-Mwpoly-L-1(-)andlow-Mwpoly-L-1(+),respectively(BandCofFigure2).TheCDspectraofpoly-L-1(-)andpoly-L-1(+)inthen-π*transitionoftheiminochromophoreregionsofthepolymerbackbones(280-480nm)aswellasinthependantaromaticregions(240-280nm)10,11arealmostmirrorimagesofeachotherwithagreaterintensitythantheintensityofthosebeforethefractionation(Figure2D).Theseresultsindicatethattheas-preparedpoly-L-1isindeedamixtureofright-andleft-handedhelices.12Wenotethattheyarenotenantiomers,butdiastereomerswitha
(11)(a)Hase,Y.;Mitsutsuji,Y.;Ishikawa,M.;Maeda,K.;Okoshi,K.;Yashima,
nJ.2007,2,755-763.(b)Ishikawa,M.;Maeda,K.;Mitsutsuji,Y.;Yashima,E.J.Am.Chem.Soc.2004,126,732-733.(12)ThedifferenceintheMw’sofpoly-L-1(-)andpoly-L-1(+)canbeexplained
onthebasisofthedifferenceinpropagationratesofthetwogrowingspecies,givinghigh-andlow-Mwpolymers,respectively.Plotsofthenumber-averagemolecularweight(Mn)ofleft-handedhelicalpoly-L-1(-)andright-handedhelicalpoly-L-1(+)versusfeedmolarratioofthemonomerL-1totheinitiator(2)([L-1]/[2])gaveanalmostlinearcorrelation(FigureS10),whichisindicativeofamechanisminwhichdiastereomericoligomersofL-1withbothhelicalsensesareformedduringtheinitialstageofpolymerizationandoneofthetwoappearstopropagaterapidlyovertheother,producingright-andleft-handedhelicalpoly-L-1’swithdifferentMw’s.ThereasonwhydiastereomericoligomerswithbothhelicalsensesareformedduringtheinitialstageofpolymerizationofL-1isnotclearatpresent,butitmaybecorrelatedwiththepreviousobservationsthattheconventionalpolymerizationofL-1withNiCl2asacatalystproducedpoly-L-1’s,whosehelicalsenseswereconsiderablyinfluencedbythepolymer-izationsolventandtemperature.
8
VOL.130,NO.1,2008
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
Figure2.Right-andleft-handedhelicalpoly-L-1.(A-C)SECchromatogramsoftheas-preparedpoly-L-1(A)andtheisolatedacetone-insolublepoly-L-1(-)(B)andacetone-solublepoly-L-1(+)(C)usingUV(redlines)andCD(bluelines)detectorsinTHFcontaining0.1wt%tetra-n-butylammoniumbromide.(D)CDandabsorptionspectraofpoly-L-1(a),poly-L-1(-)(b),andpoly-L-1(+)(c)(0.2mg/mL)inchloroformat25°C.Thenumber-averagemolecularweight(Mn)anditsdistribution(Mw/Mn)ofeachpolymerasdeterminedbySECcoupledwithamulti-anglelight-scattering(MALS)detector(SEC-MALS)measurementsarealsoshowninA-C.
differentsolubilityinacetone,andthereby,theycanbeseparated.Thisconclusionissupportedbythefactthatevenamixtureofpoly-L-1(-)andpoly-L-1(+)withcomparableMw’scouldbealsoseparatedintoeachhelixusingacetone.Inthesameway,theas-preparedpoly-D-1canbefractionatedusingacetoneintoright-andleft-handedhelicalpoly-D-1’swithdifferentMw’sandanarrowMWD(FigureS1).
Polyisocyanidesbearingabulkysubstituenthavebeenconsideredtohavea4unitsperturn(4/1)helicalconformationeveninsolution,althoughtheirexacthelicalstructureshavenotyetbeenelucidated6c,9probablybecauseofdifficultyinobtainingauniaxiallyorientedpolymerfilmsuitableforXRDmeasurements.Thepoly-L-1(-)andpoly-L-1(+)arerigid-rodhelicalpolymersandexhibitalyotropicsmecticLCphase(seebelow),whichenablesustodeterminetheirstructuresbyXRDandAFM.Figure3Ashowsawide-angleX-raydiffraction(WAXD)patternofanorientedpoly-L-1(-)filmpreparedfromaconcentratedLCbenzenesolutioninanelectricfield;foraWAXDpatternofpoly-L-1(+),seeFigureS2.Theelectricfield-inducedalignmentofpoly-L-1moleculesevidencedalargedipolemomentofpoly-L-1alongitshelicalaxis,thatisalltheintramolecularlyhydrogen-bondedN-HandCdOgroupsareorientedinonedirectionsoastoaccumulatethelargedipolemomentasobservedinthetypicalR-helicalpolypeptides.13TheWAXDpatternsofthefilmsofpoly-L-1(-)andpoly-L-1(+)showdiffuse,butapparentmeridionalandequatorialreflections,suggestingthattheypossessasimilarhelicalstructure;a15unitsper4turns(15/4)helixwithahexagonallattice(TableS1)whichsatisfiesthedensityrequirements.14Optimizedmolecularstructuresforthe15/4helicesoftheleft-handedhelicalpoly-L-1(-)model(158-mer)andright-handedhelicalpoly-L-1(+)model(58-mer),basedontheabsolutemolecularweights(Mn)5.65×104and2.06×104,respectively)
(13)Wada,A.AdV.Biophys.1976,9,1-63.
calculatedbytheSECmeasurementscoupledwithamulti-anglelightscattering(MALS)detector,areillustratedinBandCofFigure3,respectively.Thedetailedstructures(11-mer)takenfromFigure3BarealsoshowninDandEofFigure3(seealsoSupportingInformation).Thepolymermodelsappeartohavefoursetsofhydrogen-bondedhelicalarrayslinkingnand(n+4)pendantswiththequarterhelicalpitchandchainlengthof1.31and13.7nm,and1.31and5.1nm,forpoly-L-1(-)andpoly-L-1(+),respectively.IRspectrasuggestedtheformationofsuchintramolecularhydrogenbondsbetweenthependantamideresiduesofpoly-L-1(-)andpoly-L-1(+)(FigureS3).TheequivalentinterpendanthydrogenbondswereobservedinthecrystallinestructureofL-1,inwhichtheamidelinkagewasobliquetothephenylring(ca.30°)(FigureS4).HelicalpolyisocyanidesstabilizedbyintramolecularhydrogenbondshavebeenreportedbyNolteandco-workers.6c,9
PartsFandGofFigure3showhigh-resolutionAFMimagesofpoly-L-1(-)andpoly-L-1(+),respectively,castfromabenzenesolution(0.015mg/mL)onhighlyorientedpyrolyticgraphite(HOPG)followedbybenzenevaporexposureatca.20°Cfor12h.8,15,16Thepoly-L-1self-assemblesintowell-defined2Dhelixbundleswithacontrolledmolecularlength,17mostofwhichareclearlyresolvedintoindividualleft-(Figure3F)andright-handed(Figure3G)helicespackedparalleltoeachother.TheAFMimagesaswellasthoseoflargerareasconfirmedthehelicalpitch,helicalsense,helix-senseexcess,
(14)Theobserveddensitiesofthepoly-L-1(-)andpoly-L-1(+)filmswere
1.0739and1.0624g/cm3,respectively,measuredbythestandardflotationmethodinanaqueousNaClsolutioncontainingasmallamountofasurfactantatambienttemperature(20-25°C).The15/4helicesofpoly-L-1(-)andpoly-L-1(+)inthehexagonallatticesrequirethedensitiesof1.102and1.089g/cm3,respectively,whichareingoodagreementwiththeobservedvalues.Whenthenumberofrepeatingunitsperfiberperiodisassumedtobeotherthan15,thecalculateddensitieswereconsiderablydifferentfromtheobserveddensities.Formoredetails,seeSupporting
Information.
J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008231
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
ARTICLESFigure3.Structuresofhelicalpoly-L-1’s.(A)WAXDpatternofanorientedpoly-L-1(-)filmpreparedfromaconcentratedLCbenzenesolution(ca.15wt%).Thereflectionswereindexedwithahexagonallattice;a)26.78Åandc)13.05Å,suggestinga15unitsper4turns(15/4)helicalstructure.(BandC)Optimized15/4helicalstructuresofpoly-L-1(-)(B,158-mer)andpoly-L-1(+)(C,58-mer)onthebasisofWAXDstructuralanalysesfollowedbymolecularmechanicscalculations(seeSupportingInformation).Eachstructureisrepresentedbyspace-fillingmodels,andfoursetsofhydrogen-bondedhelicalarrays(nandn+4)ofthependantsareshownindifferentcolorsforclarity.(DandE)Thedetailedstructureofpoly-L-1(-)(11-mer)takenfrom(B)isalsoshownbyastickmodelinD(sideview)andE(topview).Inthesemodels(B-E),thependantdecylestergroupsofpoly-L-1’sarereplacedbythemethylgroupsforclarity.(FandG)AFMphaseimagesofpoly-L-1(-)(F)andpoly-L-1(+)(G)onHOPG(scale)10×20nm).Schematicrepresentationsoftheleft-handedhelicalpoly-L-1(-)andright-handedhelicalpoly-L-1(+)structureswithperiodicobliquestripes(pinkandbluelines,respectively)whichdenoteaone-handedhelicalarrayofthependants,arealsoshown(right).Onthebasisofanevaluationofca.100molecules,thenumber-averagemolecularlength(Ln)andthelengthdistribution(Lw/Ln)were
estimated.
andmoleculararrangementofpoly-L-1’s.Theperiodicobliquestripesobservedineachhelicalchain,thatoriginatedfromaone-handedhelicalarrayofthependants,weretiltedcounter-clockwiseorclockwiseat-55°and+62°,forpoly-L-1(-)andpoly-L-1(+),respectively,withrespecttothemain-chainaxis.
(15)Thisforhelicalmethodpolyacetylenesisveryusefulandforconstructingpolyisocyanideshighlyonordered2Dhelix-bundles
(16)structuresSakurai,S.-i.;wereOkoshi,visualizedK.;byHOPG,andtheirhelicalKumaki,AFM.8,16
(17)Ed.On2006J.;Yashima,E.Angew.Chem.,Int.
separatedthebasis,45,1245-1248.
theestimatedlengthfromofdistributiononeananother,evaluation(Lthenumber-averageofabout100individualmolecularpolymerlength(Lchains
n)andw/Ln)respectively.tobe13(5.2nmandofpoly-1.15Land-1(-5.8)and(poly-2.2nmL-1(and+)were1.14,withthoseestimatedTheestimatedbythechainSEC-MALSlengthsby(BAFMandalmostCofFigure
perfectly3).coincide232J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008
Onouchietal.
Figure4.Two-dimensionaland3Dsmecticorderingofpoly-L-1.(AandB)AFMphaseimagesof2Dself-assembledpoly-L-1(-)onHOPG.(C)Polarizedopticalmicrograph(POM)ofpoly-L-1(-)inca.15wt%chloroformsolutiontakenatambienttemperature(20-25°C).(D)Alyotropicsmectic-cholestericphasetransitionofpoly-L-1(-)inchloroformplacedbetweenaglassplateandacoverglass,drivenbygradualsolventevaporationfromtheedge(lowerpart).(E)SR-SAXSpatternofapoly-D-1(+)castfilmpreparedfromaconcentratedsmecticLCsolutionalignedinthemagneticfield,takenperpendiculartothedirectionofthemagneticfield.(F)Bright-fieldTEMimageofthebandingwitharepeatdistanceofca.14nminapoly-D-1(+)castfilm(ca.30nmthickness)ultramicrotomedandstainedinRuO4vapor.(G)AFMphaseimageof2Dself-assembledpoly-L-1(+)onHOPG.(H)POMofpoly-L-1(+)inca.15wt%chloroformsolutiontakenatambienttemperature(20-25°C).
Thisremarkable2Dmirror-imagerelationshipsuggeststhatthepoly-L-1(-)andpoly-L-1(+)moleculesmostlikelyconsistofleft-andright-handedhelicalstructureswithahelicalpitchof1.28(0.11and1.28(0.15,respectively,asestimatedfromtheaveragedistancebetweeneachstripe(FandGofFigure3).ThehelicalpitchesestimatedbyAFMarealmostidenticaltothequarterhelicalpitchesofthependantarrangementsasdeterminedbytheWAXD(1.31nm).Inaddition,onthebasisofanevaluationofabout1000helicalblocks,thehelix-sense
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
SmecticOrderingofHelicalPolymers
Scheme
1
excessesofpoly-L-1(-)andpoly-L-1(+)wereestimatedtobe98.7and96.5%,respectively.18
FurtherAFMobservationsofthebundlestructuresofthepoly-L-1(-)onHOPGrevealeda2Dsmecticlikeself-assemblyofthepolymerchainswithacontrolledspacing(AandBofFigure4).Thelayerstructureisnearlyperpendiculartothedirectionofthepolymerchains.Theaveragelayerspacingofthe2Dsmecticlikeself-assembledpolymerchainsincreasedwiththeincreasingMworrodlengthofthepolymers:5.8,13,and28nmforpoly-L-1(+),poly-L-1(-),andpoly-L-1200(-),respectively(FigureS6).19Wenotethatthe2Dsmecticlikeself-assembliesofthepolymerchainssimultaneouslyguidethe1DarraysofthePtandPdmetalsbondedatthepolymerends,whichmayalsobeusedforfabricatingnanostructuredmaterials.Rodlikehelicalpoly-L-1’swithanarrowMWDappeartobeindispensableforthe2Dsmecticorderingonasubstrate.ConsiderablyclearlayeredimagesofsmecticLCsmallmol-eculesonsubstrateshavealsobeenobservedbyscanningtunnelingmicroscopy,butcontrollablelayerspacingsarelimitedtowithinafewnanometers.20
Polarizedopticalmicroscopyofaconcentratedsolutionofpoly-L-1(-)inchloroform(ca.15wt%)demonstratedthatthepolymerformsatypicalsmecticphase(smecticA)asevidencedbyitsindisputablyclearfan-shapedtexture(Figure4C).Acholesteric-smecticphasetransitioncouldbealsoobservedinaconcentrationgradient(Figure4D).Tothebestofourknowledge,thisisthefirstmicroscopicobservationofalyotropiccholesteric-smecticphasetransitionupondilutionofahelicalpolymerbasedonthemain-chainstiffness.Thedecisiveevidenceofthesmecticlayerstructurewasobtainedfromsynchrotronradiationsmall-angleX-raydiffraction(SR-SAXS)oforientedpoly-1filmspreparedfromaconcentratedsmecticLCchloroformsolutioninamagneticfield(11.75Tfor1day)byslowevaporation.21SR-SAXSofamagneticallyoriented
(18)In1thesameway,theLn,Lw/Ln,helicalsense,andhelicalpitchofpoly-L-200((19)images-)We(Figureandpoly-D-1(+)canbeestimatedfromthehigh-resolutionAFMpoly-preliminarilyS5).
molecular(amixturemeasuredofhigh-molecularhigh-resolutionAFMweightimagesoftheas-prepared
L-1Weweightpoly-poly-L-1(-)andlow-L-1(+))castfromasashownanticipatedinFigureaspontaneousS11,2Dsmecticlikediastereomericabenzenedomainformation.solutiononHowever,HOPG.seemsright-orleft-handedhelicalpoly-layereddomainscomposedofeitherL-1couldnotbeclearlyobserved.2Dsmecticlikelikelythatlayerthemolecularformation.lengthApparently,mayplayadominantroleinsuchIta(20)necessary(a)A.Hara,Ch.;NatureM.;toexplore1990Iwakabe,a,344,228Y.;possibleafurtherthoroughstudyis-Toguchi,spontaneousdomainformation.
230.(b)K.;Smith,Sasabe,D.H.;P.Garito,A.F.;Yamada,
S.;Garc DeBinnig,Schryver,G.ScienceF.C.Chem.1989,245Soc.,43Re-V.45.2003For,32reviews:E.;Ho¨rber,H.;Gerber,,139-150.(c)DeFeyter,Giancarlo,´a,L.;L.Amabilino,C.;Flynn,D.G.B.W.Chem.Acc.Chem.Soc.ReRes.V.20022000,,3133,(d)Pe´rez-,342491--356.501.
(e)ARTICLES
poly-D-1(+)filmshowedasharpreflectionwithaspacingof14.3nminameridionaldirectionperpendiculartotheouterbroadreflectionof2.32nmbeingattributabletothelateralpackingofthepolymer(Figure4E).Thespacingof14.3nmisalmostidenticaltothatdeterminedbyAFM.22TheobservedspacingbySR-SAXSbecomeslongerwhenthemolecularlengthorrodlengthofthepoly-1’sislongerandthelayerspacingsdeterminedbySR-SAXSandAFMareingoodagreementtoeachother(FiguresS8andS9).AtheoreticalstudypredictedthatthesmecticorderingisnotfavoredforrodlikepolymerswithabroadMWD,sincetherodsofdifferentlengthsdonotpackintolayersaseffectivelyastherodofthesamelength.23Infact,poly-1’swithMWDsover1.15nolongershowedanysignofsmecticphases.Transmissionelectronmicroscopy(TEM)ofanultramicrotomedcastfilmofasmecticLCofpoly-D-1(+)showedabandedtexture(Figure4F)witharepeatdistanceofca.14nmcorrespondingtoitssmecticlayerrepeatasobservedbySR-SAXSmeasurements,22eventhoughthebandingrepeatdistancedependsonthelocalcontactanglebetweenthesampleandthediamondknife.24AFMobservationsofpoly-L-1(+)onHOPGalsorevealeda2Dsmecticlikeassemblyofthepolymerchainswithanaveragelayerspacingof5.8(2.2nm(Figure4G),andthepolarizedopticalmicrographofpoly-L-1(+)showedasimilarfan-shapedtextureina15wt%chloroformsolution(Figure4H),offeringconvincingproofforasmecticordering.
Conclusions
Insummary,wehavedemonstratedthatthepresenthelix-senseselectivelivingpolymerizationwiththeµ-ethynediylPt-Pdcatalystunprecedentedlyproducesbothright-andleft-handedhelical,rigid-rodpolyisocyanidesatoncewithpreciselydefinedarchitecturesincludingthemolecularlength,itsdistribution,andhandednessaswell,whichcanbefurtherseparatedintoeachhelixinafacileway.Moreimportantly,thesehelicalpolyiso-cyanidesareproventobeidealbuildingblocksfor2Dand3Dsmecticarrangementsonasubstrate,insolutionandthesolid
(21)Poly-PdD-1(+)wastreatedwithCuClinpiperidinetoeliminatereflectionsresiduesthecouldpriornottobetheobservedSR-SAXSmeasurements,sincethesmectictheterminal
layernotterminalPdresiduespreparedforunderthemagnetic-orientedidenticalconditions;polymersthereasonbearingismetalsclear,atbuttheprobablypolymerduetothehighatomicscatteringfactorofthePd(22)andends(formoredetails,seeExperimentalSectionTwo-dimensionalSupportingInformation).
controlledHOPGspacingsmecticlikewerealsoobservedassembliesinAFMoftheimagespolymerofpoly-chainswitha
D-1(+(23)that(24)Bates,determined(FigureS7).He,M.A.;Frenkel,bySR-SAXSTheaveragelayerspacing14nmisconsistentwith)onD.J.J.andChem.TEM.
Phys.1998,109,61931998S.-J.;,31,Lee,9387C.;-9389.
Gido,S.P.;Yu,S.M.;Tirrell,D.A.Macromolecules
-6199.J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008233
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
ARTICLESstate,assistedbyfoursetsofintramolecularhydrogen-bondinghelicalarraysofthependants.Inaddition,thehelicalstructuresofthepolyisocyanidesincludingthehelicalpitchandhanded-nesswereforthefirsttimedeterminedbyhigh-resolutionAFMobservationscombinedwithX-raydiffractionmeasurements.WeanticipatethatthehelicalpolyisocyanidesbearingPtandPdattheendsmayalsobeusedasanoveltemplatetoorganizeone-dimensionalarraysofinorganicmaterialsonthenanoscalebymodificationofthecatalyst,whichmaybeapplicabletothenext-generationoptical,electric,andmagneticdevices.
ExperimentalSection
Instruments.TheNMRspectraweremeasuredusingaVarianAS500spectrometer(Varian,PaloAlto,CA)operatingat500MHzfor1Hand125MHzfor13C,usingTMSastheinternalstandard.TheIRspectrawererecordedusingaJASCOFT/IR-680spectrometer(JASCO,Tokyo,Japan).TheabsorptionandCDspectrawereobtainedina1.0-mmquartzcellusingaJASCOV570spectrophotometerandaJASCOJ820spectropolarimeter,respectively.Thepolymerconcen-trationwascalculatedonthebasisofthemonomerunitsandwas0.2mg/mL.Theopticalrotationsweremeasuredina2-cmquartzcellonaJASCOP-1030polarimeter.SECwasperformedusingaJASCOPU-2080liquidchromatographequippedwithUV-visible(JASCOUV-2070)andCD(JASCOCD-2095)detectors.TwoTosohTSKgelMultiporeHXL-MSECcolumns(Tosoh,Tokyo,Japan)wereconnectedinseries,andTHFcontaining0.1wt%tetra-n-butylammoniumbromidewasusedastheeluentattheflowrateof1.0mL/min.Themolecularweightcalibrationcurvewasobtainedwithstandardpolystyrenes(Tosoh).TheWAXDmeasurementswerecarriedoutusingaRigakuRINTRAPID-RX-raydiffractometer(Rigaku,Tokyo,Japan)witharotating-anodegeneratorandgraphitemonochromatedCuKRradiation(0.15418nm)focusedthrougha0.3mmpinholecollimator,whichwassuppliedata45kVvoltageanda60mAcurrent,equippedwithacurvedimagingplatehavingaspecimen-to-platedistanceof120.0mm.TheX-rayphotographsweretakenatambienttemperature(20-25°C)fromtheedge-viewpositionwithabeamparalleltothefilmsurface.TheSEC-MALSmeasurementswereperformedusinganHLC-8220GPCsystem(Tosoh)equippedwithadifferentialrefrac-tometercoupledtoaDAWN-EOSMALSdeviceequippedwithasemiconductorlaser(λ)690nm)(WyattTechnology,SantaBarbara,CA)operatedat25°CusingtwoTSKgelMultiporeHXL-Mcolumns(Tosoh)inseries.Thescatteredlightintensitiesweremeasuredby18light-scatteringdetectorsatdifferentangles.Thedifferentialrefractiveindexincrement,dn/dc,ofthepolymerwithrespecttothemobilephaseat25°CwasalsomeasuredbyanOptilabrEXinterferometricrefractometer(WyattTechnology).TheAFMmeasurementswereperformedusingaNanoscopeIIIaorNanoscopeIVmicroscope(VeecoInstruments,SantaBarbara,CA)inairatambienttemperature(ca.25°C)withstandardsiliconcantilevers(NCH,NanoWorld,Neufcha tel,Switzerland)inthetappingmode.ThepolarizingopticalmicroscopicobservationswerecarriedoutwithanE600POLpolarizingopticalmicroscope(Nikon,Tokyo,Japan)equippedwithaDS-5MCCDcamera(Nikon)connectedtoaDS-L1controlunit(Nikon).Thesamplesolutionwasplacedonaglassplatewithacoverglasstodeveloptheplanarstructurebeforeobservationofthemicroscopictextureatambienttemperature(20-25°C).TheSR-SAXSmeasurementswereperformedattheInstituteofMaterialsStructureScience,Tsukuba,Japan(PhotonFactory),withsmall-angleX-rayequipmentinstalledonabeamline,BL15A,withtheapprovalofthePhotonFactoryProgramAdvisoryCommittee(No.2006G293).ThewavelengthoftheincidentX-raybeamwas0.1508nm.X-rayphotographsweretakenusingaflatimagingplateplaced2400mmfromthesamplepositionatambienttemperature(20-25°C).TheTEMobservationswereperformedusingaHitachiH-800instrumentoperatedat100kV.Thesamplewaspreparedbycastingaconcentratedsolutionofpoly-D-1(+)inchloro-234J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008
Onouchietal.
formshowinganLCphaseonapoly(tetrafluoroethylene)(PTFE)petridish.Aftergradualevaporationofthesolvent,thecastfilmwasannealedat170°Cfor2days.Theobtainedcastfilmwasembeddedinepoxyresin(ThreeBond2082C)andultramicrotomedperpendiculartothecastfilmsurface.Thethinfilm(ca.30nmthick)wasthenstainedbyRuO4vaporfor7minbeforetheTEMobservations.
Materials.Anhydrouschloroformandtoluene(watercontent<50ppm)werepurchasedfromAldrichandstoredunderdrynitrogen.THFwasdriedoversodiumbenzophenoneketyl,distilledontoLiAlH4undernitrogen,anddistilledunderhighvacuumjustbeforeuse.The4-isocyanobenzoyl-L-andD-alaninedecylesters(L-1andD-1)8andtheµ-ethynediylPt-Pdcomplex(2)10werepreparedaspreviouslyreported.Polymerization.ThepolymerizationofL-1wascarriedoutinadryglassampuleunderadrynitrogenatmosphereusing2asthecatalystindryTHF.Atypicalexperimentalprocedureisdescribedbelow.MonomerL-1(300mg,0.84mmol)wasplacedinadryampule,whichwasthenevacuatedonavacuumlineandflushedwithdrynitrogen.Afterthisevacuation-flushprocedurehadbeenrepeatedthreetimes,athree-waystopcockwasattachedtotheampule,anddryTHF(3.4mL)wasaddedbyasyringe.Tothiswasaddedasolutionof2inTHF(10µM,0.81mL)atambienttemperature.TheconcentrationsofL-1and2were0.2and0.002M,respectively([1]/[2])100).Themixturewasthenstirredunderadrynitrogenatmosphereandheatedto55°C.After20h,theresultingpolymer(poly-L-1)wasprecipitatedinalargeamountofmethanol,collectedbycentrifugation,anddriedinvacuoatroomtemperatureovernight(286mg,96%yield).
Spectroscopicdataofpoly-L-1:IR(KBr,cm-1):3277(νN-H),1750(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.87(broad,CH3,3H),1.26(broad,CH2,14H),1.53(broad,CH3andCH2,5H),4.09(broad,CH2,2H),4.51(broad,CH,1H),4.8-7.7(broad,aromatic,4H),7.9-9.0(broad,NH,1H);[R]25D-995°(c0.1,chloroform);Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.23;H,8.56;N,7.68.
Fractionation.Theobtainedpoly-L-1(70.8mg)wassuspendedin30mLofacetone,andthemixturewasstirredatambienttemperaturefor3h.Afterfiltration,thefiltratewasevaporatedtodrynessunderreducedpressure,givingpoly-L-1(+)(10.0mg,14%).Theacetone-insolublepolymerwasdissolvedinasmallamountofchloroform,thesolutionwasprecipitatedinalargeamountofacetone,andtheprecipitatewasthencollectedbyfiltration.Afterthisprocedurewasrepeatedagain,thepoly-L-1(-)wasobtained(44.5mg,63%).
Spectroscopicdataofpoly-L-1(+):IR(KBr,cm-1):3279(νN-H),1750(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.90(broad,CH3,3H),1.29(broad,CH2,14H),1.62(broad,CH3andCH2,5H),4.11(broad,CH2,2H),4.51(broad,CH,1H),4.9-7.7(broad,aromatic,4H),8.3-9.0(broad,NH,1H);[R]25D+1530°(c0.05,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.18;H,8.44;N,7.78.
Spectroscopicdataofpoly-L-1(-):IR(KBr,cm-1):3282(νN-H),1750(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.87(broad,CH3,3H),1.25(broad,CH2,14H),1.53(broad,CH3andCH2,5H),4.09(broad,CH2,2H),4.51(broad,CH,1H),4.8-7.7(broad,aromatic,4H),7.9-8.9(broad,NH,1H);[R]25D-1615°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.35;H,8.36;N,7.64.
Poly-D-1wasalsopreparedbythepolymerizationofD-1with2([1]/[2])100)inthesamewayasdescribedabove,andtheacetone-insolublepart(poly-D-1(+))wasobtainedbyfractionationwithacetone.Spectroscopicdataofpoly-D-1:IR(KBr,cm-1):3276(νN-H),1751(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.87(broad,CH3,3H),1.26(broad,CH2,14H),1.54(broad,CH3andCH2,5H),4.10(broad,CH2,2H),4.52(broad,CH,1H),4.9-7.7(broad,aromatic,4H),8.0-9.1(broad,NH,1H);[R]25D+1062°(c0.05,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.36;H,8.32;N,7.64.
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
SmecticOrderingofHelicalPolymers
Spectroscopicdataofpoly-D-1(+):IR(KBr,cm-1):3277(νN-H),1751(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.86(broad,CH3,3H),1.26(broad,CH2,14H),1.53(broad,CH3andCH2,5H),4.10(broad,CH2,2H),4.52(broad,CH,1H),4.9-7.8(broad,aromatic,4H),7.9-8.9(broad,NH,1H);[R]25D+1487°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.00;H,8.62;N,7.42.
Inthesameway,poly-L-150([1]/[2])50)andpoly-L-1200([1]/[2])200)werepreparedbythepolymerizationofL-1with2inTHFat55°Cfor20h,andpoly-L-150(-)andpoly-L-1200(-)wereobtainedastheacetone-insolublepartfromthepoly-L-150andpoly-L-1200,respec-tively.
Spectroscopicdataofpoly-L-150:IR(KBr,cm-1):3281(νN-H),1748(νCdOester),1636(amideI),1536(amideII);1HNMR(CDCl3,55°C):δ0.89(broad,CH3,3H),1.26(broad,CH2,14H),1.56(broad,CH3andCH2,5H),4.12(broad,CH2,2H),4.53(broad,CH,1H),4.7-7.7(broad,aromatic,4H),7.9-9.1(broad,NH,1H);[R]25D-876°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.13;H,8.28;N,7.99.
Spectroscopicdataofpoly-L-150(-):IR(KBr,cm-1):3279(νN-H),1750(νCdOester),1634(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.88(broad,CH3,3H),1.26(broad,CH2,14H),1.54(broad,CH3andCH2,5H),4.11(broad,CH2,2H),4.52(broad,CH,1H),4.9-7.7(broad,aromatic,4H),7.9-9.0(broad,NH,1H);[R]25D-1659°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.38;H,8.50;N,7.72.
Spectroscopicdataofpoly-L-1200:IR(KBr,cm-1):3276(νN-H),1751(νCdOester),1635(amideI),1535(amideII);1HNMR(CDCl3,55°C):δ0.86(broad,CH3,3H),1.24(broad,CH2,14H),1.53(broad,CH3andCH2,5H),4.07(broad,CH2,2H),4.47(broad,CH,1H),4.8-7.7(broad,aromatic,4H),7.9-9.0(broad,NH,1H);[R]25D-1083°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.09;H,8.32;N,7.63.
Spectroscopicdataofpoly-L-1200(-):IR(KBr,cm-1):3277(νN-H),1740(νCdOester),1635(amideI),1533(amideII);1HNMR(CDCl3,55°C):δ0.87(broad,CH3,3H),1.24(broad,CH2,14H),1.53(broad,CH3andCH2,5H),4.08(broad,CH2,2H),4.51(broad,CH,1H),4.8-7.7(broad,aromatic,4H),7.9-9.0(broad,NH,1H);[R]25D-1714°(c0.1,chloroform).Anal.Calcd(%)for(C21H30N2O3)n:C,70.36;H,8.44;N,7.81.Found:C,70.34;H,8.36;N,7.70.
WAXDMeasurements.Theorientedhelicalpoly-L-1(-)andpoly-L-1(+)films(ca.20µmthickness)fortheX-rayanalyseswerepreparedfromconcentratedLCbenzenesolutionsinanelectricfieldof6000V/cm.TheWAXDpatternsoftheorientedpoly-L-1(-)andpoly-L-1(+)filmswithdifferentrangesofsensitivitiestoshowboththestrongandweakreflections(FigureS2),wherethemainlayerlineshavebeenindicatedandtheindicesofthereflectionsarelabeled,exhibitdiffuseequatorialreflections,andseveralmeridionalandoff-meridionalreflectionsonthelayerlines,althoughtheonlybroadreflectionswereobservedinthediffractionpatternofpoly-L-1(+)probablyduetoitsrelativelylowmolecularweight.Thereflectionsinthediffractionpatternsofpoly-L-1(-)andpoly-L-1(+)canbeproperlyindexedwithhexagonallattices;a)26.78Å,c)13.05Å,anda)26.45Å,c)13.20Å,respectively.ThespacingsandmirrorindicesofthereflectionsarelistedinTableS1.Althoughwecouldnotobserveameridionalreflectiononthe15thlayerline(0.87Å)evenwhentheX-raymeasurementswereperformedusingacylindricalcamerawiththesamplestiltedca.62°normaltothebeam,themostprobablestructureofthehelicalpoly-L-1(-)andpoly-L-1(+)canbeproposedtobea15/4helixbyconsideringthelayerlineintensitiesobservedinthediffractionpatternsandthedensitymeasurement14andcalculationresults.
SAXSMeasurements.Theorientedhelicalpoly-L-1(-),poly-D-1(+),andpoly-L-150(-)filmsfortheSAXSmeasurementswerepreparedbygradualsolventevaporationofaconcentratedLCchloroformsolutionofeachpolymer(initialconcentration:ca.20wt
ARTICLES
%)inaborosilicateglasscapillarytubeinahighmagneticfield(11.75T)usingaVarianAS500NMRinstrument,afterthepolymershadbeentreatedwithCuClinpiperidinetoeliminatethePdresiduesatthepolymerends,followedbySECfractionation.Wenotedthatthesmecticlayerreflectionscouldnotbeobservedforthemagnetic-orientedpolymersbearingtheterminalPdresiduespreparedundertheidenticalconditions;thereasonisnotclear,butprobablyduetothehighatomicscatteringfactorofthePdmetalsatthepolymerends.
Atypicalprocedurefortheeliminationreactionisdescribedbelow(seeScheme1).Toasolutionofpoly-L-1(-)(41mg)inpiperidine(4mL)wasaddedasolutionofCuClinpiperidine(28.8mM,50µL;2equivtothepolymer)atambienttemperature.Themixturewasthenstirredat120°Cunderadryargonatmosphere.After9h,theresultingpolymerwasprecipitatedinalargeamountofacetonitrile,collectedbyfiltration,andwashedwithacetonitrile.Thepolymerwasthendissolvedinasmallamountofchloroformandprecipitatedinacetonitrilewhichwasrepeatedasecondtime.Theobtainedpolymerhadabroadpolydispersity(Mw/Mn)1.20),andthepolymerwasfractionatedbySECusingTHFcontaining0.1wt%tetra-n-butylam-moniumbromideastheeluent,yieldingpoly-L-1(-)withanarrowpolydispersity(25mg,61%yield,Mn)6.75×104,Mw/Mn)1.04, 364)-21.8)afterbeingpurifiedbyreprecipitationanddriedinvacuoatambienttemperaturefor10h.Inthesameway,thePd-eliminatedpoly-L-150(-)(Mn)2.83×104,Mw/Mn)1.03, 364)-19.9)andpoly-D-1(+)(Mn)5.13×104,Mw/Mn)1.03, 364)+21.6)wereprepared,andthesesampleswereusedfortheSR-SAXSmeasurements.TheresultingPd-eliminatedpolymersgavealmostidenticalCD,absorption,andNMRspectratothoseoftheoriginalpolymers,althoughtheirmolecularweightsandMWDswereslightlychanged.TheseresultssuggestthatthePdeliminationproceduredidnotcauseasubstantialchangeofthehelicalstructuresoftheoriginalpolymers.
SEC-MALSMeasurements.TheSEC-MALSmeasurementswerecarriedoutwithTHFcontaining0.1wt%tetra-n-butylammoniumbromideusedastheeluentattheflowrateof0.5mL/min.Astandardpolystyrene(Mw)30500(PolymerLaboratories,Shropshire,U.K.))wasusedtocalculatethedeviceconstants,suchastheinterdetectordelay,interdetectorbandbroadening,andlight-scatteringdetectornormalization.Poly-L-1(-)andpoly-L-1(+)werecompletelydissolvedintheeluentattheconcentrationof0.1-0.2%(wt/vol)undergentlestirringfor1-2hbeforeinjection.TheevaluationsofthemolecularweightswereaccomplishedusingASTRAVsoftware(version5.1.3.0).Thedn/dcvaluesofpoly-L-1(-)andpoly-L-1(+)intheeluentusedfortheevaluationswere0.1369and0.1367mL/g,respectively.
AFMMeasurements.Stocksolutionsofpoly-L-1,poly-L-1(+),poly-L-1(-),poly-D-1(+),andpoly-L-1200(-)indrybenzeneorTHF(0.015or0.02mg/mL)wereprepared.SamplesfortheAFMmeasure-mentswerepreparedbycasting20µLaliquotsofthestocksolutionsofthepolymers.ThecastingwasdoneatroomtemperatureonfreshlycleavedHOPGunderbenzeneorTHFvaporatmospheres.AfterthepolymershadbeendepositedontheHOPG,theHOPGsubstrateswerefurtherexposedtobenzeneorTHFvaporsfor12or2h,respectively,andthenthesubstratesweredriedundervacuumfor2haccordingtothereportedprocedure.8,16Theorganicsolventvaporswerepreparedbyputting1mLofbenzeneorTHFintoa2-mLflaskthatwasinsidea50-mLflask,andtheHOPGsubstrateswerethenplacedinthe50-mLflask.ThetypicalsettingsoftheAFMforthehigh-magnificationobservationswereasfollows:amplitude1.0-1.5V,setpoint0.9-1.4V,scanrate2.5Hz.TheNanoscopeimageprocessingsoftwarewasusedfortheimageanalysis.
Acknowledgment.WethankProfessorsA.TakanoandY.
Matsushita(NagoyaUniversity)fortheirhelpwiththeSR-SAXSmeasurements.
J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008235
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
ARTICLESOnouchietal.
SupportingInformationAvailable:Molecularmodelingand
calculationsofhelicalstructuresofpoly-L-1(+)andpoly-L-1(-),SECchromatogramsandCDandUV-visspectraofas-preparedpoly-D-1,poly-D-1(+),andpoly-D-1(-),WAXDpatternsandlatticedataoforientedpoly-L-1(-)andpoly-L-1(+)films,IRspectraofpoly-L-1,poly-L-1(-),andpoly-L-1(+)inchloroform,crystallinestructureofL-1,AFM
imagesof2Dself-assembled,as-preparedpoly-L-1,poly-D-1(+),poly-L-1(-)200,poly-L-1(-),andpoly-L-1(+)onHOPG,SR-SAXSpatternofamagneticallyorientedpoly-L-1(-)50.ThismaterialisavailablefreeofchargeviatheInternetat.
JA074627U
236J.AM.CHEM.SOC.
9
VOL.130,NO.1,2008
正在阅读:
Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers06-06
中学生运动会广播稿02-23
小学运动会的广播稿02-23
少先队中秋节活动方案少先队主题活动方案03-21
报菜名09-30
用药不当引起肉鸡肾脏疾病的4个案例02-28
班队活动方案03-24
2016.7婚姻家庭法学期末复习题01-08
抽奖活动方案11-11
溶液法测定极性分子的偶极矩实验报告07-08
- 1Dynamical properties of the two-dimensional Holstein-Hubbard
- 2Symmetries, Conserved Charges and (Black) Holes in Two Dimensional String Theory
- 3A New Two-dimensional Coordination Polymer Based on Trinuclear Manganese Clusters①
- 4Solar Rotary Reactor for Continuous H2 Production Using Two-
- 5Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice
- 6Surface freezing and a two-step pathway of the isotropic-smectic phase transition in colloi
- 7Grade Three book one unit three
- 8Grade Three book one unit three
- 9A Test for Module Three Unit Three 2005
- 10A Test for Module Three Unit Three 2005
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Dimensional
- Ordering
- Polymers
- Smectic
- Helical
- Single
- Handed
- Three
- Two
- 让“展示”演绎课堂的精彩
- 微机防误系统总结
- 《风筝》教学设计和反思
- 成套低压电容补偿柜
- 宽阻带阶跃阻抗发夹线带通滤波器设计
- 2014年高考完型高频单词
- 中国煤层气勘探开发技术进展浅析
- 2013-2014学年高二下学期期末英语试卷
- JAVA课程设计21点扑克牌
- “十三五”重点项目-低聚木糖开发项目商业计划书
- 第十章稳恒磁场10.1-10.4
- 银行消防演练应急预案
- 冰储冷空调系统的安装与调试
- 暗黑破坏神2的赫拉迪克方块的合成公式
- 手工制作 马蹄莲教案
- 2015年广东省中考英语阅读理解和写作专题备考策略
- 石榴公园绿化改造工程施工组织设计方案(精品文档)
- CMA考试相关知识重点随时记
- 第六章 汽车仪表和报警系统
- 劳动力成本上升对泉州民营企业影响的调查与思考(1)