2.5.1平面几何中的向量方法592

更新时间:2023-05-26 13:18:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2.52.5.1

平面向量应用举例平面几何中的向量方法

问题提出

1 5730 p 2

t

1.用有向线段表示向量,使得向量可以 进行线性运算和数量积运算,并具有鲜 明的几何背景,从而沟通了平面向量与 平面几何的内在联系,在某种条件下, 平面向量与平面几何可以相互转化.

2.平行、垂直、夹角、距离、全等、相 似等,是平面几何中常见的问题,而这 些问题都可以由向量的线性运算及数量 积表示出来.因此,平面几何中的某些问 题可以用向量方法来解决,但解决问题 的数学思想、方法和技能,需要我们在 实践中去探究、领会和总结.

探究(一):推断线段长度关系

思考1:如图,在平行四边形ABCD中,已 知AB=2,AD=1,BD=2,那么对角线AC的 长是否确定?D A B C

A D b,则向量 A C 思考2:设向量A B a, 等于什么?向量 DB 等于什么? AC

=a+b, DB =a-b

思考3:AB=2,AD=1,BD=2,用向量语言 怎样表述? D C b |a|=2,|b|=1,|a-b|=2. A a B 思考4:利用 | A C | (A C ) ,若求| A C | 需要解决什么问题?2 2

思考5:利用|a|=2,|b|=1,|a-b|=2, 如何求a· b? | A C | 等于多少?a b 1 , | AC | 2 6

思考6:根据上述思路,你能推断平行四 边形两条对角线的长度与两条邻边的长 度之间具有什么关系吗? 平行四边形两条对角线长的平方和等于 两条邻边长的平方和的两倍.

探究(二):推断直线位置关系

思考1:三角形的三条高线具有什么位置 关系? 交于一点 思考2:如图,设△ABC的两条高AD与BE 相交于点P,要说明AB边上的高CF经过点 A P,你有哪些办法?E

证明PC⊥AB.B

F

P D C

思考3:设向量 PA a, b, PB PC c, 那么PC⊥BA可转化为什么向量关系?A F

aP

E

c· ( a - b) = 0 .B

bD

cC

思考4:对于PA⊥BC,PB⊥AC,用向量观 点可分别转化为什么结论? a· ( c- b ) = 0 , b · ( a - c) = 0 .

思考5:如何利用这两个结论: a· (c - b ) = 0 , b · ( a - c )= 0 推出c· ( a- b ) = 0 ? 思考6:你能用其它方法证明三角形的三 条高线交于一点吗? AEF P D C

B

探究(三):计算夹角的大小

思考1:如图,在等腰△ABC中,D、E分 别是两条腰AB、AC的中点,若CD⊥BE, 你认为∠A的大小是否为定值?A

D

E

三角形.gspB C

A C b,可以利 思考2:设向量 A B a, 用哪个向量原理求∠A的大小?A

aD

bE

cos AC

a b | a || b |

B

思考3:以a,b为基底,向量 B E , CD 如 A 何表示?BE CD 1 b 2 1 a 2 a baD

bE

B

C

思考4:将CD⊥BE转化为向量运算可得 什么结论?2 a· b = (a2+b2) 5

思考5:因为△ABC是等腰三角形,则 |a|=|b|,结合上述结论: a· b=2 2+b2 ( a 5

),cosA等于多少?A

cos A

a b | a || b |

4 5B

aD

bE

C

理论迁移

例1 如图,在平行四边形ABCD中,点E、 F分别是AD、DC的中点,BE、BF分别与AC 相交于点M、N,试推断AM、MN、NC的长 度具有什么关系,并证明你的结论.D E A M F N C

结论:AM=MN=NCB

三等分.gsp

例2 如图,△ABC的三条高分别为AD,BE, CF,作DG⊥BE,DH⊥CF,垂足分别为G、 H,试推断EF与GH是否平行.A E

结论:EF∥GHB

F G D PH

C

小结作业

1.用向量方法解决平面几何问题的基本 思路:几何问题向量化 向量运算关 系化 向量关系几何化. 2.用向量方法研究几何问题,需要用向 量的观点看问题,将几何问题化归为向 量问题来解决.它既是一种数学思想,也 是一种数学能力.其中合理设置向量,并 建立向量关系,是解决问题的关键.

作业:

P113习题2.5A组:1,2. B组:3.

本文来源:https://www.bwwdw.com/article/d1o4.html

Top