职高数学试题及答案
更新时间:2023-07-23 01:29:01 阅读量: 实用文档 文档下载
1.如果log3m+log3n=4,那么m+n的最小值是( )
A.4 B.4 C.9 D.18
* 2.数列{an}的通项为an=2n-1,n∈N,其前n项和为Sn,则使Sn>48成立的n的最小值
为( )
A.7 B.8 C.9 D.10
3.若不等式|8x+9|<7和不等式ax+bx-2>0的解集相同,则a、b的值为( )
A.a=-8 b=-10 B.a=-4 b=-9 C.a=-1 b=9 D.a=-1 b=2
4.△ABC中,若c=2a cosB,则△ABC的形状为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.锐角三角形 2
5.在首项为21,公比为的等比数列中,最接近1的项是( )
A.第三项 B.第四项 C.第五项 D.第六项
6.在等比数列中,,则等于( )
A. B. C.或 D.-或-
7.△ABC中,已知(a+b+c)(b+c-a)=bx,则A的度数等于( )
A.120° B.60° C.150° D.30°
8.数列{an}中,a1=15,3an+1=3an-2(n∈N),则该数列中相邻两项的乘积是负数的是( )
A.a21a22 B.a22a23 C.a23a24 D.a24a25
9.某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )
A.1.1 B.1.1 C.10×(1.1-1) D.11×(1.1-1)
10.已知钝角△ABC的最长边为2,其余两边的长为a、b,则集合P={(x,y)|x=a,y=b}所表示的平面图形面积等于( ) 4565*
A.2 B.π-2 C.4 D.4π-2
11.在R上定义运算
则( ) ,若不等式对任意实数x成立,
A.-1<a<1 B.0<a<2 C.-<a< D.-<a<
12.设a>0,b>0,则以下不等式中不恒成立的是( )
A. B.
C. D.
二、填空题(本题共4小题,每小题4分,共16分,请把正确答案写在横线上)
13.在△ABC中,已知BC=12,A=60°,B=45°,则AC=____.
14.设变量x、y满足约束条件,则z=2x-3y的最大值为____.
15.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使较多的三份之和的是较少的两份之和,则最少1份的个数是____.
16.设,则数列{bn}的通项公式为____.
三、解答题(本题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题12分)△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且
.
(1)求∠B的大小;
(2)若a=4,S=5,求b的值.
18.(本小题12分)已知等差数列{an}的前四项和为10,且a2,a3,a7成等比数列.
(1)求通项公式an;
(2)设,求数列bn的前n项和.
19.(本小题12分)在北京故宫的四个角上各矗立着一座角楼,设线
段AB表示角楼的高(如图),在点A(A点不能到达)所在的水平面内取C,
D两点(A,C,D不共线),设计一个测量方案,包括:①指出需要测量的
数据(请考生自己作图并在图中标出);②用文字和公式写出计算AB的步
骤.
20.(本小题12分)围建一个面积为360m的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).
(I)将总费用y表示为x的函数;
(II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
21.(本小题12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 2
22.(本小题14分)设不等式组所表示的平面区域为
*,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N).
(1)求f(1),f(2)的值及f(n)的表达式;
(2)记,试比较与的大小;若对于一切的正整数n,总有成立,求实数m的取值范围;
(3)设为数列的前n项的和,其中,问是否存在正整数n,t,使
成立?若存在,求出正整数n,t;若不存在,说明理由.
参考答案
1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.C
12.B
13.4 14.2 15.10 16.
17.(1)由(2分)
∴2sinAcosB=-sin(B+C)2sinAcosB=-sinA(4分)
,又0<B<π,∴.(6分)
(2)由a=4,S=5有.(9分)
18.(1)由题意知(2分)
,(4分)
所以或.(5分) .(12分) ,
(2)当时,数列是首项为、公比为8的等比数列,所以
.(8分)
当时,,所以.(11分)
综上,所以.(12分)
19.如图.(1)测出∠ADC=α,∠ACD=β及CD的长;在D点测出点B
的仰角φ.(4分)
(2)在△ACD中,由正弦定理
(3)在△ABD中,AB=ADtanφ.(12分)
20.解:(I)设矩形的另一边长为am. ,求出AD.(8分)
则y=45x+180(x-2)+180·2a=225x+360a-360.(3分)
由已知,得,(5分)
所以.(6分)
(II)∵x>0,∴.(8分)
∴.当且仅当,即x=24m时,等号成立.(10分) 答:当x=24m时,修建围墙的总费用最小,最小总费用是10440元.(12分)
21.解:,设z=x+0.5y,当时,z取最大值7万元.
22.(1)f(1)=3,f(2)=6.
当x=1时,y取值为1,2,3,…,2n,共有2n个格点,
当x=2时,y取值为1,2,3,…,n,共有n个格点,
∴f(n)=n+2n=3n.(2分)
(2)
当n=1,2时,Tn+1≥Tn,
当n≥3时,,(6分)
∴n=1时,T1=9,
n=2时,,
n≥4时,,
∴中的最大值为.(8分)
要使对于一切的正整数n恒成立,只需
(3)
将代入,化简得,
若t=1时,即,显然n=1. .(4分) , ∴.(9分) .(10分) .(*)(11分)
若t>1时式化简为不可能成立.(13分) 综上,存在正整数n=1,t=1使
成立.(14分)
正在阅读:
职高数学试题及答案07-23
高纯度燕麦β-葡聚糖测定方法研究05-18
兽医基础知识试题08-16
2014-2015年度新版译林牛津英语8A期末综合复习试卷08-29
实验二 用例图03-08
青春无悔_初一作文02-23
游深圳海岸线作文700字07-12
沃尔玛在重庆的内外部条件分析04-27
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 职高
- 数学试题
- 答案
- 一决高下之地 封魔谷地图详解
- 防溺水安全教育实施方案20130503
- 2005年全国高中化学奥林匹克竞赛山东省预赛试题
- EXCEL使用技巧汇总
- 商业地产建筑案例分析
- 人工挖孔桩钢筋砼护壁及灌注砼桩芯工程量计算表
- 全国2014年4月高等教育自学考试商品流通概论试题
- 通信机房施工队注意事项
- 插层聚合物凝胶深部液流转向剂的研制与性能评价
- 用Matlab扩展Excel的功能
- 临床医学专业代码
- 浅谈城市固体废物处理(1)
- 我国个人信用制度构建之探讨
- 2011黑龙江省银行从业资格考试个人贷款真题精选2(必备资料)
- 现代教育技术试题及答案
- 英语语言学练习题
- 青年岗位能手先进事迹材料
- 专业硕士实践总结报告(刘新)
- 混凝土搅拌站管理实施细则
- 2017年春季新版华东师大版八年级数学下学期19.2.1、菱形的性质导学案2