大功率LED封装技术及其发展
更新时间:2024-05-11 06:36:01 阅读量: 综合文库 文档下载
- led封装技术发展趋势推荐度:
- 相关推荐
大功率LED封装技术及其发展
一、前言
大功率led封装由于结构和工艺复杂,并直接影响到led的使用性能和寿命,一直是近年来的研究热点,特别是大功率白光led封装更是研究热点中的热点。led封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高led性能;3.光学控制,提高出光效率,优化光束分布;4.供电
管理,包括交流/直流转变,以及电源控制等。
led封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,led封装先后经历了支架式(Lamp led)、贴片式(SMD led)、功率型led(Power led)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对led封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技
术思路来进行封装设计。 二、大功率led封装关键技术
大功率led封装主要涉及光、热、电、结构与工艺等方面,如图1所示。这些因素彼此既相互独立,又相互影响。其中,光是led封装的目的,热是关键,电、结构与工艺是手段,而性能是封装水平的具体体现。从工艺兼容性及降低生产成本而言,led封装设计应与芯片设计同时进行,即芯片设计时就应该考虑到封装结构和工艺。否则,等芯片制造完成后,可能由于封装的需要对芯片结构进行调整,从而延长了产品研
发周期和工艺成本,有时甚至不可能。
具体而言,大功率led封装的关键技术包括:
(一)低热阻封装工艺
对于现有的led光效水平而言,由于输入电能的80%左右转变成为热量,且led芯片面积小,因此,芯片散热是led封装必须解决的关键问题。主要包括芯片布置、封装材料选择基板材料、热界面材料)与工艺、
热沉设计等。
led封装热阻主要包括材料(散热基板和热沉结构)内部热阻和界面热阻。散热基板的作用就是吸收芯片产生的热量,并传导到热沉上,实现与外界的热交换。常用的散热基板材料包括硅、金属(如铝,铜)、陶瓷(如,AlN,SiC)和复合材料等。如Nichia公司的第三代led采用CuW做衬底,将1mm芯片倒装在CuW衬底上,降低了封装热阻,提高了发光功率和效率;Lamina Ceramics公司则研制了低温共烧陶瓷金属基板,如图2(a),并开发了相应的led封装技术。该技术首先制备出适于共晶焊的大功率led芯片和相应的陶瓷基板,然后将led芯片与基板直接焊接在一起。由于该基板上集成了共晶焊层、静电保护电路、驱动电路及控制补偿电路,不仅结构简单,而且由于材料热导率高,热界面少,大大提高了散热性能,为大功率led阵列封装提出了解决方案。德国Curmilk公司研制的高导热性覆铜陶瓷板,由陶瓷基板(AlN或)和导电层(Cu)在高温高压下烧结而成,没有使用黏结剂,因此导热性能好、强度高、绝缘性强,如图2(b)所示。其中氮化铝(AlN)的热导率为160W/mk,热膨胀系数为(与硅的热膨胀系
数相当),从而降低了封装热应力。
研究表明,封装界面对热阻影响也很大,如果不能正确处理界面,就难以获得良好的散热效果。例如,室温下接触良好的界面在高温下可能存在界面间隙,基板的翘曲也可能会影响键合和局部的散热。改善led封装的关键在于减少界面和界面接触热阻,增强散热。因此,芯片和散热基板间的热界面材料(TIM)选择十分重要。led封装常用的TIM为导电胶和导热胶,由于热导率较低,一般为0.5-2.5W/mK,致使界面热阻很高。而采用低温或共晶焊料、焊膏或者内掺纳米颗粒的导电胶作为热界面材料,可大大降低界面
热阻。
(二)高取光率封装结构与工艺
在led使用过程中,辐射复合产生的光子在向外发射时产生的损失,主要包括三个方面:芯片内部结构缺陷以及材料的吸收;光子在出射界面由于折射率差引起的反射损失;以及由于入射角大于全反射临界角而引起的全反射损失。因此,很多光线无法从芯片中出射到外部。通过在芯片表面涂覆一层折射率相对较高的透明胶层(灌封胶),由于该胶层处于芯片和空气之间,从而有效减少了光子在界面的损失,提高了取光效率。此外,灌封胶的作用还包括对芯片进行机械保护,应力释放,并作为一种光导结构。因此,要求其透光率高,折射率高,热稳定性好,流动性好,易于喷涂。为提高led封装的可靠性,还要求灌封胶具有低吸湿性、低应力、耐老化等特性。目前常用的灌封胶包括环氧树脂和硅胶。硅胶由于具有透光率高,折射率大,热稳定性好,应力小,吸湿性低等特点,明显优于环氧树脂,在大功率led封装中得到广泛应用,但成本较高。研究表明,提高硅胶折射率可有效减少折射率物理屏障带来的光子损失,提高外量子效率,但硅胶性能受环境温度影响较大。随着温度升高,硅胶内部的热应力加大,导致硅胶的折射率降低,从而
影响led光效和光强分布。
荧光粉的作用在于光色复合,形成白光。其特性主要包括粒度、形状、发光效率、转换效率、稳定性(热和化学)等,其中,发光效率和转换效率是关键。研究表明,随着温度上升,荧光粉量子效率降低,出光减少,辐射波长也会发生变化,从而引起白光led色温、色度的变化,较高的温度还会加速荧光粉的老化。原因在于荧光粉涂层是由环氧或硅胶与荧光粉调配而成,散热性能较差,当受到紫光或紫外光的辐射时,易发生温度猝灭和老化,使发光效率降低。此外,高温下灌封胶和荧光粉的热稳定性也存在问题。由于常用荧光粉尺寸在1um以上,折射率大于或等于1.85,而硅胶折射率一般在1.5左右。由于两者间折射率的不匹配,以及荧光粉颗粒尺寸远大于光散射极限(30nm),因而在荧光粉颗粒表面存在光散射,降低了出光效率。通过在硅胶中掺入纳米荧光粉,可使折射率提高到1.8以上,降低光散射,提高led出光效
率(10%-20%),并能有效改善光色质量。
传统的荧光粉涂敷方式是将荧光粉与灌封胶混合,然后点涂在芯片上。由于无法对荧光粉的涂敷厚度和形状进行精确控制,导致出射光色彩不一致,出现偏蓝光或者偏黄光。而Lumileds公司开发的保形涂层(Conformal coating)技术可实现荧光粉的均匀涂覆,保障了光色的均匀性,如图3(b)。但研究表明,当荧光粉直接涂覆在芯片表面时,由于光散射的存在,出光效率较低。有鉴于此,美国RenssELaer 研究所提出了一种光子散射萃取工艺(Scattered Photon Extraction method,SPE),通过在芯片表面布置一个聚焦透镜,并将含荧光粉的玻璃片置于距芯片一定位置,不仅提高了器件可靠性,而且大大提高了
光效(60%),如图3(c)。
总体而言,为提高led的出光效率和可靠性,封装胶层有逐渐被高折射率透明玻璃或微晶玻璃等取代的趋势,通过将荧光粉内掺或外涂于玻璃表面,不仅提高了荧光粉的均匀度,而且提高了封装效率。此外,减
少led出光方向的光学界面数,也是提高出光效率的有效措施。
(三)阵列封装与系统集成技术
经过40多年的发展,led封装技术和结构先后经历了四个阶段,如图4所示。
正在阅读:
大功率LED封装技术及其发展05-11
新人教八下Unit 3 综合水平测试07-04
《制造公司企业文化体系构建》-周建企业文化培训课程2012版 - 图05-25
你不知道的china daily常用词05-13
培训资料 我的店长提升课程之07-07
视频会议啸叫干扰03-25
目标与绩效管理10-04
日本建筑大师安藤忠雄(TADAO - ANDO)作品解析及个人发展简介 -03-26
2016广州英语小升初 感叹句 专题复习01-19
111,人教版一年级上册数学第一单元试卷12-25
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 大功率
- 封装
- 及其
- 发展
- 技术
- LED