最新七年级上册代数式易错题(Word版 含答案)

更新时间:2023-04-13 08:14:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、初一数学代数式解答题压轴题精选(难)

1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:

方法①:________ 方法②:________

请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________

(2)根据(1)中的等式,解决如下问题:

①已知:,求的值;

②己知:,求的值.

【答案】(1)(a-b)2;a 2-2ab+b2;(a-b )2=a2-2ab+b 2

(2)解:①把代入

∴,

②原式可化为:

【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .

方法②:草坪的面积= ;

等式为:

故答案为:,;

【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和

的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.

2.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.

(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?

(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.

(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.

【答案】(1)解:60×8+(50-8×3)×3-50=508(元)

(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x

(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.

【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

3.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.

方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.

(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).

【答案】(1)解:方案一:∵石子路宽为4,

∴S石子路面积=4a+4b-16,

方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2

(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;

方案二:S石子路面积=129m2,则S植物=600-129=471m2.

故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;

方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;

(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.

4.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初

出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.

(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?

【答案】(1)由题意可得:

该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);

该商月末出售时的利润为:30%x-700=(0.3x-700)(元);

(2)当x=40000时,

该商月初出售时的利润为:0.265×40000=10600(元),

该商月末出售时的利润为:0.3×40000-700=11300(元),

∵11300>10600,

∴选择月末出售这种方式,

即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.

【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;

(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

5.先阅读下面文字,然后按要求解题.

例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.

因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.

解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.

(1)补全例题解题过程;

(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).

【答案】(1)解:101×50

(2)解:原式=50×(2a+99b)=100a+4950b.

【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.

(2)仿照(1)利用加法的交换律和结合律进行计算即可.

6.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:

月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分

收费标准

2.2

3.3

4.4

(元/吨)

②.以上表中的价格均不包括1元/吨的污水处理费

(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?

(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.

【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)

(2)解:①m≤15吨时,所缴水费为2.2m元,

②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,

③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。

(2)分①m≤15吨,②1525吨三种情况分别根据图表的收费标准列出代数式并计算即可得解。

7.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.

(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位

上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;

(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.

【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),

由题意得:s+b=t+a=4,

∴b=4﹣s,a=4﹣t,

∵四位数为能被11整除,

∴ =1000s+100t+10a+b,

=1000s+100t+10(4﹣t)+4﹣s,

=999s+90t+44,

=1001s+88t+44+2t﹣2s,

=11(91s+8t+4)+2(t﹣s),

∵91s+8t+4是整数,

∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,

∵1≤s≤9,

∴﹣9≤﹣s≤﹣1,

∵0≤t≤9,

∴﹣9≤t﹣s≤8,

∴t﹣s只能为0,即t=s,

∵是整数,4﹣s≥0,4﹣t≥0,

∴s=t=2或s=t=4,

当s=t=2时,a=b=2,

当s=t=4时,a=b=0,

综上所述,这个四位“对称等和数”有2个,分别是:2222,4400

(2)解:证法一:

证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),

∴2a=1+5,a=3,

∴A=135,

由题意设:B= ,C= ,则b+c=2x,d+e=2y,

∵A+B+C=1800,

∴B+C=1800﹣135=1665,

∴ =1665,

∴15≤b+d≤16,

①当b+d=15时,x+y=16,c+e=5,

∴b+d+c+e=15+5=20,

即2x+2y=20,

x+y=10≠16,不符合题意;

②当b+d=15时,x+y=15,c+e=15,

∴b+d+c+e=15+15=30,

即2x+2y=30,

x+y=15,符合题意;

∴y=﹣x+15,

③当b+d=16时,x+y=6,c+e=5,

∴b+d+c+e=16+5=21,

即2x+2y=21,

x+y=10.5≠6,不符合题意;

④当b+d=16时,x+y=5,c+e=15,

∴b+d+c+e=16+15=31,

即2x+2y=31,

x+y=15.5≠5,不符合题意;

综上所述,则y=﹣x+15.

证法二:

证明:∵数A 是三位“对称等和数”,且A= (1≤a≤9,a为整数),

∴2a=1+5,a=3,

∴A=135,

由题意设:B= ,C= ,

∵A+B+C=1800,

即135+ + =1800,

+ =1665,

100m+10x+2x﹣m+100n+10y+2y﹣n=1665,

99(m+n)+12(x+y)=1665,

33(m+n)+4(x+y)=555,

x+y= =139﹣8(m+n)+ ,

∵0≤x≤9,0≤y≤9,且x、y是整数,

∴是整数,

∵1≤m≤9,1≤n≤9,

∴2≤m+n≤18,

∴3≤1+m+n≤19,

则1+(m+n)=4,8,12,16,

∴m+n=3,7,11,15,

当m+n=3时,x+y=139﹣8×3+ =114(舍),

当m+n=7时,x+y=139﹣8×7+ =81(舍),

当m+n=11时,x+y=139﹣8×11+ =48(舍),

当m+n=15时,x+y=139﹣8×15+ =15,

∴y=﹣x+15

【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由

这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;

(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A 可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣

m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。

8.阅读下面材料:

点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;

如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;

如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)

=∣a-

b∣;

回答下列问题:

(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;

(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为________

(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是________.

【答案】(1)3;3;4

(2);1或-3

(3)-1;5

【解析】【解答】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果

|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5

【分析】(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A 和B 之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式

∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-

1≤x≤2;求出代数式的值

.

9.以下关于的各个多项式中,

,,,均为常数.

(1)根据计算结果填写下表:

二次项系数一次项系数

常数项

2________2

6________-2

________

(2)若的积中不含的二次项和一次项,求

的值.

(3)多项式与多项式的乘积为,则的值为________.

【答案】(1)5;-1;

(2)解:原式

∵积中不含的二次项和一次项∴解得原式

(3)-4

【解析】【解答】解:(1)

故答案为:

( 3 )∵多项式与多项式的乘积为

∴设多项式

【分析】(1)根据多项式乘以多项式即可求解;(2)先根据多项式乘以多项式展开,合并同类项后使二次项系数和一次项系数为0即可求解;(3)根据多项式乘以多项式的结果可以设多项式M,再根据恒等式的意义求解.

10.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项

c.

系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、

(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?

(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点

P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t ,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.

【答案】(1)﹣24;﹣10;10

(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.

②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,

③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,

∴t=2s或5s时,P到A、B、C的距离和为40个单位.

(3)解:当点P追上T的时间t1= .

当Q追上T的时间t 2= .

当Q追上P的时间t 3= =20,

时,位置如图,

∴当<t <

=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t

=74-28

=46.

【解析】【解答】解:(1)∵M=(a+24)x3﹣10x 2+10x+5是关于x的二次多项式,

∴a+24=0,b=﹣10,c=10,∴a=﹣24

故答案为﹣24,﹣10,10.

【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=

.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.

11.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=________,S乙=________(用含a、b的代数式分别表示);

2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;

(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.

【答案】(1)(a+b)(a-b)

;a2-b2

(2)由两个图形的面积相等可知,(a+b)(a-b)=a2-b2。

(3)

S正方形=(a+b)2, S 正方形=(a-b)2+4ab

∴(a+b)2=(a-b)2+4ab

【解析】【分析】(1)根据图形的面积。列式得到答案即可;

(2)根据两组图案所表示的面积相等,即可得到等量关系;

(3)同理,首先根据面积列出两种方式表示的面积,得到答案即可。

12.任何一个整数,可以用一个多项式来表示:

例如:.已知是一个三位数.

(1)为________.

(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.

(3)在一次游戏中,小明算出,,,与这个数和是,请

你求出

这个三位数.

【答案】(1)

(2)解:

;与的差一定是的倍数.

(3)解:,由已知条件可得

=

= = 即

.是个三位数至少从16开始,经尝试发现,只有满足条件,此时,这个三位数为

【解析】【解答】解:(1)

【分析】(1)根据每个数位上的数字所表示的意义:个位上的数字是几就表示几个1,十位上的数字是几就表示表示几个10,百位上的数字是几就表示几个100…,从而得出答案;

(2)根据(1)所得的方法,将被减数与减数分别改写成一个加法算式,然后根据整式的加法法则,去括号再合并同类项互为最简形式,根据结果判断是否是9的倍数即可;(3)根据,,,与这个数和是及(1)发现的改写规律列出方程,再根据等式的性质在方程的两边都加上,然后化简得出

,是个三位数a+b+c 至少从16开始,经尝试发现,只有满足条件,此时 .

本文来源:https://www.bwwdw.com/article/cx3l.html

Top