最新整理数中考试题分类汇编函数与几何图形 doc
更新时间:2023-12-18 15:07:01 阅读量: 教育文库 文档下载
- 江南逢李龟年中考试题整理推荐度:
- 相关推荐
中考试卷分类—函数与几何图形(2)
1. 如图4,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形
ABCD的顶点上,且它们的各边与正方形ABCD各边平行或垂直.若小正方形的边长为x,且0 2. (连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1 和2.将它们分别放置于平面直角坐标系中的ΔAOB,ΔCOD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至ΔPEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由. 解:(1)由直角三角形纸板的两直角边的长为1和2, 知A2)(21). ,C两点的坐标分别为(1,,,设直线AC所对应的函数关系式为y?kx?b. ···················································· 2分 ?k?b?2,?k??1,有?解得? 2k?b?1.b?3.??所以,直线AC所对应的函数关系式为y??x?3. ············································· 4分 (2)①点M到x轴距离h与线段BH的长总相等. 因为点C的坐标为(2,1), 所以,直线OC所对应的函数关系式为y?又因为点P在直线AC上, 所以可设点P的坐标为(a,3?a). 过点M作x轴的垂线,设垂足为点K,则有MK?h. 因为点M在直线OC上,所以有M(2h,h). ···················· 6分 因为纸板为平行移动,故有EF∥OB,即EF∥GH. 又EF?PF,所以PH?GH. y 1x. 2A P I C N M II O G K B H F E (第24题答图) x 法一:故Rt△MKG∽Rt△PHG∽Rt△PFE, GKGHEF1???. MKPHPF21111得GK?MK?h,GH?PH?(3?a). 222213所以OG?OK?GK?2h?h?h. 2213又有OG?OH?GH?a?(3?a)?(a?1). ················································ 8分 2233所以h?(a?1),得h?a?1,而BH?OH?OB?a?1, 22从而总有h?BH. ······················································································ 10分 GHEF1法二:故Rt△PHG∽Rt△PFE,可得??. PHPF211故GH?PH?(3?a). 2213所以OG?OH?GH?a?(3?a)?(a?1). 22从而有故G点坐标为??3?(a?1),0?. ?2?设直线PG所对应的函数关系式为y?cx?d, ?3?a?ca?d,?c?2?则有?解得 3?0?c(a?1)?d.d?3?3a???2所以,直线PG所对的函数关系式为y?2x?(3?3a). ········································ 8分 将点M的坐标代入,可得h?4h?(3?3a).解得h?a?1. 而BH?OH?OB?a?1,从而总有h?BH. ················································ 10分 ②由①知,点M的坐标为(2a?2,a?1),点N的坐标为?a,a?. ??1?2?S?S△ONH?S△ONG?111113a?3NH?OH?OG?h??a?a???(a?1) 22222221331?3?3·························································· 12分 ??a2?a????a???. · 2242?2?8当a?33时,S有最大值,最大值为. 28?33?S取最大值时点P的坐标为?,?. ?22? 3. (沈阳)如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上, 边OC在y轴的正半轴上,且AB=1,OB=3,矩形ABOC绕点O按顺时针方向旋转600后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由. 解:(1)点E在y轴上 ··············································································· 1分 理由如下: 连接AO,如图所示,在Rt△ABO中, AB?1,BO?3, ?AO?2 ?sin?AOB?1,??AOB?30 2由题意可知:?AOE?60 ??BOE??AOB??AOE?30?60?90 点B在x轴上,?点E在y轴上. ································································· 3分 (2)过点D作DM?x轴于点M OD?1,?DOM?30 ?在Rt△DOM中,DM?点D在第一象限, 31,OM? 22?31??点D的坐标为?··············································································· 5分 ??2,? ·2??由(1)知EO?AO?2,点E在y轴的正半轴上 ?点E的坐标为(0,2) , ?点A的坐标为(?31)·················································································· 6分 抛物线y?ax?bx?c经过点E, 2?c?2 ,,D?由题意,将A(?31)?31?2代入y?ax?bx?2中得 ,??22???8??3a?3b?2?1a???9?? 解得 ?3?31b?2??a??b??53?422?9?853x?2 ·?所求抛物线表达式为:y??x2?················································· 9分 99(3)存在符合条件的点P,点Q. ································································· 10分 理由如下: 矩形ABOC的面积?ABBO?3 ?以O,B,P,Q为顶点的平行四边形面积为23. 由题意可知OB为此平行四边形一边, 又 OB?3 ······················································································ 11分 ?OB边上的高为2 ·依题意设点P的坐标为(m,2) 点P在抛物线y??8253x?x?2上 99853??m2?m?2?2 99解得,m1?0,m2??53 8?53??P(0,2),P2??2?1?8,? ??以O,B,P,Q为顶点的四边形是平行四边形, ?PQ∥OB,PQ?OB?3, ?当点P1的坐标为(0,2)时, 点Q的坐标分别为Q1(?3,2),Q2(3,2); A B F y E C D O M x 当点P2的坐标为???53?2??8,?时, ???133??33?点Q的坐标分别为Q3??,2?2???,Q4??8,?. 8???? 4. (徐州)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF =90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三..角板绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..DEF.....E... 【探究一】在旋转过程中, (1) 如图2,当(2) 如图3,当 CE=1时,EP与EQ满足怎样的数量关系?并给出证明. EACE=2时EP与EQ满足怎样的数量关系?,并说明理由. EACE=m时,EP与EQ满足的EA(3) 根据你对(1)、(2)的探究结果,试写出当 数量关系式 为_________,其中m的取值范围是_______(直接写出结论,不必证明) 【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中: (1) S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在, 说明理由. (2) 随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取 值范围. 5. (河南)如图,直线y??4x?4和x轴、y轴的交点分别为B、C,3点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.① 求S与t的函数关系式;② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值. 6. 如图20,在平面直角坐标系中,四边形OABC是矩形,点B的坐标 为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边.. 分别交于点M、N,直线m运动的时间为t(秒).(1) 点A的坐标 是__________,点C的坐标是__________; (2) 当t= 秒或 秒时,MN= 1AC;(3) 设△OMN的面积为S,求S与t的函数关2系式;(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由. 解:(1)(4,0),(0,3); ··································································· 2分 (2) 2,6; ·························································································· 4分 (3) 当0<t≤4时,OM=t. 由△OMN∽△OAC,得∴ ON= OMON, ?OAOC33····························· 6分 t,S=t2. · 48当4<t<8时, 如图,∵ OD=t,∴ AD= t-4. 方法一: 33······················ 7分 (t?4),∴ BM=6-t. · 444由△BMN∽△BAC,可得BN=BM=8-t,∴ =t-4. ······························· 8分 3由△DAM∽△AOC,可得AM= S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积 3133(6-t)-(t?4) (t?4)-(8-t) 22423=?t2?3t. ·············································································· 10分 8=12-方法二: 易知四边形ADNC是平行四边形,∴ =AD=t-4,BN=8-t. ······························· 7分 由△BMN∽△BAC,可得BM=以下同方法一. (4) 有最大值. 方法一: 当0<t≤4时, 333············· 8分 BN=6-t,∴ AM=(t?4). · 44432t的开口向上,在对称轴t=0的右边, S随t的增大而增大, 83∴ 当t=4时,S可取到最大值?42=6; ················································ 11分 8∵ 抛物线S=当4<t<8时, ∵ 抛物线S=?32,∴ S<6. t?3t的开口向下,它的顶点是(4,6) 8综上,当t=4时,S有最大值6. ····························································· 12分 方法二: ?32t,0?t≤4??8∵ S=? ??3t2?3t,4?t?8??8∴ 当0<t<8时,画出S与t的函数关系图像,如图所示. ························· 11分 显然,当t=4时,S有最大值6. 7. (郴州)如图10,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC 边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..(1) 求证:ΔBEF ∽ΔCEG.(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.(3)设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? (1) 因为四边形ABCD是平行四边形, 所以ABDG ··························· 1分 所以?B??GCE,?G??BFE 所以△BEF∽△CEG ··············································································· 3分 (2)△BEF与△CEG的周长之和为定值. ····················································· 4分 理由一: 过点C作FG的平行线交直线AB于H , 因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH 因此,△BEF与△CEG的周长之和等于BC+CH+BH 由 BC=10,AB=5,AM=4,可得CH=8,BH=6, 所以BC+CH+BH=24 ··············································································· 6分 理由二: H由AB=5,AM=4,可知 DA在Rt△BEF与Rt△GCE中,有: 4343EF?BE,BF?BE,GE?EC,GC?CE, 55551212所以,△BEF的周长是BE, △ECG的周长是CE 55FBMxEGC又BE+CE=10,因此BEF与CEG的周长之和是24. ···································· 6分 43x,GC?(10?x) 551143622所以y?EFDG?······························· 8分 x[(10?x)?5]??x2?x 2255255655121配方得:y??. (x?)2?256655所以,当x?时,y有最大值. ·································································· 9分 6121最大值为. 6(3)设BE=x,则EF? 8. (镇江)如图,在直角坐标系xoy中,点P为函数y?12x在第一象限内的图象上的4任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连结AQ交x轴于H,直线PH交y轴于R.(1)求证:H点为线段AQ的中点;(2)求证:①四边形APQR为平行四边形;②平行四边形APQR 为菱形;(3)除P点外,直线PH与抛物线y? (1)法一:由题可知AO?CQ?1. 12x有无其它公共点?并说明理由. 4?AOH??QCH?90,?AHO??QHC, ············································································· (1分) ?△AOH≌△QCH. ·························································· (2分) ?OH?CH,即H为AQ的中点. ·法二: ················································· (1分) A(01),,B(0,?1),?OA?OB. · 又BQ∥x轴,?HA?HQ. ···································································· (2分) (2)①由(1)可知AH?QH,?AHR??QHP, AR∥PQ,??RAH??PQH, ············································································ (3分) ?△RAH≌△PQH. · ?AR?PQ, 又AR∥PQ,?四边形APQR为平行四边形. ············································ (4分) ②设P?m,m?, ??142??1PQ∥y轴,则Q(m,?1),则PQ?1?m2. 4过P作PG?y轴,垂足为G,在Rt△APG中, 1?1??1?AP?AG2?PG2??m2?1??m2??m2?1??m2?1?PQ. 4?4??4??平行四边形APQR为菱形. ···································································· (6分) (3)设直线PR为y?kx?b,由OH?CH,得H?22?m??1?,2?,P?m,m2?代入得: ?4??2?m?m?k?b?0,k?,??m1?2?2?直线PR为y?x?m2. · ??···················· (7分) ?1124?km?b?m2.?b??m2.???4?4设直线PR与抛物线的公共点为?x,x2?,代入直线PR关系式得: ??14??12m11?1?x?x?m2?0,(x?m)2?0,解得x?m.得公共点为?m,m2?. 4244?4?所以直线PH与抛物线y?12x只有一个公共点P. 49. (无锡)如图,已知点A从(1,0)出发,以1个单位长度/秒的速度 沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=600,;以P(0,3)为圆心,PC为半径作圆.设点A运动了t秒,求:(1)点C的坐标(用含t的代数式表示);(2)当点A在运动过程中,所有使⊙P与菱形OABC的边所在直线相切的t的值. 解:(1)过C作CD?x轴于D, OA?1?t,?OC?1?t, y C B x ?OD?OCcos60?3(1?t)1?t,DC?OCsin60?, 22P ?1?t3(1?t)??点C的坐标为?··········· (2分) ??2,2?. · ??(2)①当 ,切点为C,此时PC?OC, P与OC相切时(如图1) O D A 图1 3, ?OC?OPcos30,?1?t?32?t?②当 y C P O 图2 E A x B 33?1. ················· (4分) 2,则切点为O,PC?OP, P与OA,即与x轴相切时(如图2) 1过P作PE?OC于E,则OE?OC, ····················································· (5分) 2?1?t33?OPcos30?,?t?33?1. ··············································· (7分) 22③当 P与AB所在直线相切时(如图3),设切点为F,PF交OC于G, 3(1?t), 2则PF?OC,?FG?CD??PC?PF?OPsin30?3(1?t). ························································ (8分) 2222过C作CH?y轴于H,则PH?CH?PC, y H C B x P G O A F ??33(1?t)??1?t??3(1?t)???3????, ????????2222??????2化简,得(t?1)?183(t?1)?27?0, 222解得t?1?93?66, t?93?66?1?0, ?t?93?66?1. ?所求t的值是 10. (辽宁)如图14,在RtΔABC中,∠A=900,AB=AC,BC=42,另有一等腰梯形DEFG (GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.(1)求等腰梯形DEFG的面积;(2)操作:固定ΔABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图15).探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由.探究2:设在运动过程中ΔABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式. 解:如图6,(1)过点G作GM?BC于M. 33?1,33?1和93?66?1. 2AB?AC,?BAC?90,BC?42,G为AB中点 ?GM?2. 又 A G,F分别为AB,AC的中点 G F 1································ 2分 ?GF?BC?22 2C(E) (D)B 1M 图6 ?S梯形DEFG?(22?42)?2?6 2?等腰梯形DEFG的面积为6. ······································································· 3分 (2)能为菱形 如图7,由BG∥DG?,GG?∥BC ?四边形BDG?G是平行四边形 当BD?BG?A F 1AB?2时,四边形BDG?G为菱形,此时可求得x?2 G?G 2 ?当x?2秒时,四边形BDG?G为菱形. (3)分两种情况:①当0≤x?22时, 方法一: B D M 图7 F? C E GM?2,?SBDG?G?2x ?重叠部分的面积为:y?6?2x ?当0≤x?22时,y与x的函数关系式为y?6?2x ··································· 10分 ②当22≤x≤42时, 设FC与DG?交于点P,则?PDC??PCD?45 G A F G? P D Q 图8 C F? E ??CPD?90,PC?PD 作PQ?DC于Q,则PQ?DQ?QC?B 1(42?x) 2?重叠部分的面积为: 1111y?(42?x)?(42?x)?(42?x)2?x2?22x?8 2244 11. 如图14,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M, 圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线OM的函数解析式;(3)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与ΔOO1M相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. 解:(1)圆心O1的坐标为(2,0),O1半径为1,?A(1,0), ········································································································ 1分 B(3,0) ·二次函数y??x?bx?c的图象经过点A,B, 2??1?b?c?0?可得方程组? ·········································································· 2分 ?9?3b?c?0?解得:??b?4?二次函数解析式为y??x2?4x?3 ············································ 3分 ?c??3(2)过点M作MF?x轴,垂足为F. ···························································· 4分 . OM是O1的切线,M为切点,?O1M?OM(圆的切线垂直于经过切点的半径)在Rt△OO1M中,sin?O1OM?O1M1? OO12y P P2 1O M B x ?O1OM为锐角,??O1OM?30 ····························· 5分 3?OM?OO1cos30?2??3, 2在Rt△MOF中,OF?OMcos30?3?H A F O1 33?. 22MF?OMsin30?3?13?. 22?33??点M坐标为?,? ················································································· 6分 ?22?·??设切线OM的函数解析式为y?kx(k?0),由题意可知333?k,?k? ·········· 7分 223?切线OM的函数解析式为y?3x ································································ 8分 3(3)存在. ·································································································· 9分 ①过点A作AP1?x轴,与OM交于点P1.可得Rt△APO1∽Rt△MO1O(两角对应相等两三角形相似) ?33?P,?P········································· 10分 1A?OAtan?AOP1?tan30?1??1,3?? ·3??②过点A作AP2?OM,垂足为P2,过P2点作P2H?OA,垂足为H. 可得Rt△AP2O∽Rt△O1MO(两角对应相等两三角开相似) 在Rt△OP2A中, OA?1,?OP2?OAcos30?3, 2在Rt△OP2H中,OH?OP2cos?AOP2?333??, 224P2H?OP2sin?AOP2??33?313??,?P2?,? ······································ 11分 ??224?44??3??33??符合条件的P点坐标有?1,?,?,? ?3??44????? 12. 如图9,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆, 交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由. 解:(1)作CH?x轴,H为垂足, ············································· 1分 CH?1,半径CB?2 ································· 3分 ?BCH?60,??ACB?120 ·(2) CH?1,半径CB?2 ?HB?3,故A(1?3,0), ······································ 5分 B(1?3,0) ······························································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1····························· 7分 ,3) ·设抛物线解析式y?a(x?1)?3 ······································································· 8分 20)代入上式,解得a??1 ·把点B(1?3,···························································· 9分 ?y??x2?2x?2 ······················································································· 10分 (4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ······· 11分 ?PC∥OD且PC?OD. ·································································· 12分 PC∥y轴,?点D在y轴上. ·又 PC?2,?OD?2,即D(0,2). 2又D(0,2)满足y??x?2x?2, ?点D在抛物线上 ························································································ 13分 所以存在D(0,2)使线段OP与CD互相平分. 13. (芜湖)如图,已知 A(?4,0),B(0,4),现以A点为位似中心,相似比为9:4, 将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式; (2)抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为32的点P. 解: (1) 过C点向x轴作垂线,垂足为D,由位似图形性质可知: △ABO∽△ACD, ∴ AOBO4??. ADCD9由已知A(?4,0),B(0,4)可知: AO?4,BO?4. ∴AD?CD?9.∴C点坐标为(5,9). ··············· 2分 直线BC的解析是为: y?4x?0 ?9?45?0化简得: y?x?4 ·········································· 3分 (2)设抛物线解析式为y?ax?bx?c(a?0),由题 24?c??意得:?9?25a?5b?c , ?b2?4ac?0?1?a??225?4?b??a1?1?25??解得: ?b1??4?c?42?c?4??1? 2∴解得抛物线解析式为y1?x?4x?4或y2?124x?x?4. 255又∵y2?124x?x?4的顶点在x轴负半轴上,不合题意,故舍去. 2552∴满足条件的抛物线解析式为y?x?4x?4 ······················································ 5分 (准确画出函数y?x?4x?4图象) ······························································· 7分 2 (3) 将直线BC绕B点旋转与抛物线相交与另一点P,设P到 直线AB的距离为h, 故P点应在与直线AB平行,且相距32的上下两条平行直线l1和l2上. ·················· 8分 由平行线的性质可得:两条平行直线与y轴的交点到直线BC的距离也为32. 如图,设l1与y轴交于E点,过E作EF⊥BC于F点, 在Rt△BEF中EF?h?32,?EBF??ABO?45, ∴BE?6.∴可以求得直线l1与y轴交点坐标为(0,10) ······································· 10分 同理可求得直线l2与y轴交点坐标为(0,?2) ······················································· 11分 ∴两直线解析式l1:y?x?10;l2:y?x?2. ?y?x2?4x?4?y?x2?4x?4根据题意列出方程组: ⑴?;⑵? ?y?x?10?y?x?2?x1?6?x2??1?x3?2?x4?3 ∴解得:?;?;?;? y?0y?9y?1y?16?2?4?1?3∴满足条件的点P有四个,它们分别是P1(6,16),P2(?1,9),P3(2,0),P4(3,1) 14. (大连)如图24-1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形 ABCD为矩形,CD边经过点P,AB = 2AD.⑴求矩形ABCD的面积;⑵如图24-2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;⑶若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积(用a、b、c表示,并直接写出答案).附加题:若将24题中“y=x2”改为“y=ax2+bx+c”,“AB = 2AD”条件不要,其他条件不变,探索矩形ABCD面积为常数时,矩形 ABCD需要满足什么条件?并说明理由. 15. (大连)如图,△ABC的高AD为3,BC为4,直线EF∥BC,交线段AB 于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.⑴求线段AG(用x表示);⑵求y与x的函数关系式,并求x的取值范围. 16. (株洲)如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点 B的坐标为(3,-1),二次函数y=-x2的图象为l1. (1)平移抛物线l1, 使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图(2),求抛物线l2的函数解析式及顶点C的坐标.(3)设P为 y轴上一点,且S△ABC=S△ABP,求点P的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线l2上是否存在点Q,使?QAB为等腰三角形. 若存 在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由. (1)y??x2?2x?3或y??x2?4x?5等 (满足条件即可) 2??2??1?b?c(2)设l2的解析式为y??x?bx?c,联立方程组?, ??1??9?3b?c解得:b?9,c??11,则l2的解析式为y??x2?9x?11, ……3 2222分 点C的坐标为(9,?7) ……4 416分 (3)如答图23-1,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,则AD?2, 73CF?,BE?1,DE?2,DF?5,FE?. 1644得:S?ABC?S梯形ABED?S梯形BCFE?S梯形ACFD?15. ……5 16分 延长BA交y轴于点G,直线AB的解析式为y?1x?5,则点G的坐标为(0,?5), 222设点P的坐标为(0,h) 55①当点P位于点G的下方时,连结AP、BP,则S?,PG???h,?S?S???hPBAGPB?GPA?22又S?ABC?S?ABP?15,得h??55,点P的坐标为(0,?55). …… 6 161616分 ②当点P位于点G的上方时,PG?5?h,同理h??25,点P的坐标为(0,?25). 21616综上所述所求点P的坐标为(0,?55)或(0,?25) …… 7 1616分 (4) 作图痕迹如答图23-2所示. 由图可知,满足条件的点有Q1、Q2、Q3、Q4,共4个可能的位置. …… 10分 F E 答图23-1 答图23-2 17. (南昌)如图,抛物线y1=-ax2-ax+1经过点P(- 19,),且 与抛28物线y2=ax2-ax-1相交于A,B两点.(1)求a值;(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A,B两点的横坐标分别记为XA,XB,若在x轴上有一动点Q(x,0),且XA≤x≤XB,过Q作一条垂直于x轴的直线,与两条抛物线分别 交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少? 解:(1) 2点P??,?在抛物线y1??ax?ax?1上, ?19??28?119·················································································· 2分 ??a?a?1?, · 4281. ································································································· 3分 211111(2)由(1)知a?,?抛物线y1??x2?x?1,y2?x2?x?1. ··········· 5分 2222211y 当?x2?x?1?0时,解得x1??2,x2?1. 22P 解得a?点M在点N的左边,?xM??2,xN?1. ··············· 6分 当 A M E O N F B x 121x?x?1?0时,解得x3??1,x4?2. 22点E在点F的左边,?xE??1,xF?2. ····················································· 7分 xM?xF?0,xN?xE?0, ?点M与点F对称,点N与点E对称. ··························································· 8分 1y (3)a??0. 2P ?抛物线y1开口向下,抛物线y2开口向上. ··················· 9分 根据题意,得CD?y1?y2 A C O Q D x B 11?1??1????x2?x?1???x2?x?1???x2?2. ············································· 11分 22?2??2?xA≤x≤xB,?当x?0时,CD有最大值2. 18. (山西)如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B 两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1 试探究:当t为何值时,△PCQ为等腰三角形? 19. (黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐 标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面 积的 2?(3)动点P从点O出7发,沿折线OABD的路线移动 过程中,设ΔOPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由. 20. (仙桃)如图,直角梯形OABC中,AB∥CD,O为坐标原点,点A在y轴正半轴上, 点C在x轴正半轴上,点B坐标为(2,23),∠BCO= 60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若ΔOPQ的面积为S(平方单位). 求S与t之间的函数关系式.并求t为何值时,ΔOPQ的面积最大,最大值是多少?(3)设PQ与OB交于 点M.①当ΔOPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论. 解:(1)∵AB∥OC ∴ ?OAB??AOC?900 在Rt?OAB中,AB?2 ,AO?23 ∴OB?4, ?ABO?600 ∴?BOC?600 而?BCO?600 ∴?BOC为等边三角形 ∴OH?OBcos30?4?3?23…(3分) 2(2)∵OP?OH?PH?23?t 03tt yp?OPsin300?3? 22113t) ∴S??OQ?xp??t?(3?222323t?t (0?t?23)…………………………(6分) =?42333(t?3)2?即S?? 44∴xp?OPcos30?3?0 33………………………………………(7分) 4y (3)①若?OPM为等腰三角形,则: ∴当t?3时,S最大?(i)若OM?PM,?MPO??MOP??POC A ∴PQ∥OC ∴OQ?yp 即t?B H 3?t 2P 23解得:t? 3O x C323232323 8分) ?()???此时S??………………………………(43233y (ii)若OP?OM,?OPM??OMP?750 0B A ∴?OQP?45 过P点作PE?OA,垂足为E,则有: EQ?EP H Q M13t 即t?(3?t)?3?E22P 解得:t?2 O x C33?22??2?3?3……………………………………(9分) 此时S??42(iii)若OP?PM,?POM??PMO??AOB ∴PQ∥OA 此时Q在AB上,不满足题意.……………………………………………(10分) ②线段OM长的最大值为 Q M3 221. (孝感)锐角ΔABC中,BC=6,SΔABC=12,两动点M,N分别在边AB,AC上滑动, 且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与ΔABC公共部分的面积为y(y>0).(1)ΔABC中边BC上高AD= ((2)当x= 时,PQ恰好落在边BC上(如图1);(3)当PQ在ΔABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少? 解:(1)AD?4; ·················································································· 2分 (2)x?2.4(或 12); ················································································· 6分 5(3)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形. 设ME?NF?h,AD交MN于G(如图2) GD?NF?h,AG?4?h. MN∥BC, M G B E P D F Q C A N ?△AMN∽△ABC. MNAGx4?h,即? ??BCAD642······················································ 8分 ?h??x?4. · 3?2??y?MNNF?x??x?4? ?3?2········································································· 10分 ??x2?4x(2.4?x?6). · 32配方得:y??(x?3)2?6. ······································································· 11分 3?当x?3时,y有最大值,最大值是6. 22. (宜昌)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动 点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.(1)请你确定n的值和点B的坐标;(2)当动点P是经过点O,C的 抛物线y=ax+bx 211上时,求这时四边形OABC的面积. 5x1 .解:(1) 从图中可知,当P从O向A运动时,△POC的面积S=mz, z由0逐步增 2+c的顶点,且在双曲线y= 大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分) 同理,AB=1,故点B的坐标是(1,2).(2分) (2)解法一: ∵抛物线y=ax+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分) ∴抛物线为y=ax-amx,顶点坐标为( 22m1 ,- am2).(4分) 42yAB如图1,设经过点O,C,P的抛物线为l. 当P在OA上运动时,O,P都在y轴上, 这时P,O,C三点不可能同在一条抛物线上, ∴这时抛物线l不存在, 故不存在m的值..① O1Cx(25题图1) 当点P与C重合时,双曲线y=11不可能经过P, 5x故也不存在m的值.②(5分) (说明:①②任做对一处评1分,两处全对也只评一分) 当P在AB上运动时,即当0 容易求得直线BC的解析式是:y?2x?2m,(7分) 1?m1?m当P在BC上运动,设P的坐标为 (x0,y0),当P是顶点时 x0= m,2). 2111111m上,可得 m=,∵>2,与 x0=≤1不合,舍去.(6分)5x552m, 222mmmm=,顶点P为(,), x0?1?m1?mm?12m?1m11∵1< x0= 25xmm112于是,×=,化简后得5m-22m+22=0, 2m?15故得y0=解得m1?22?21122?211,m2?,(8分) 101022?211?2, 10211?2,?22?211?20,?m2?与题意2 m 10故由①②③④,满足条件的只有一个值:m?这时四边形OABC的面积= 16?111. (1?m)?2= 52 23. (襄樊)如图15,四边形OABC是矩形,OA=4,OC=8,,将矩 形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.(1)求OE的长;(2)求过O,D,C三点抛物线的解析式;(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒) 为何值时,直线PF把ΔFAC分成面积之比为1:3的两部分? 解:(1) 四边形OABC是矩形, ··············································· (1分) ??CDE??AOE?90,OA?BC?CD. ············································· (2分) ?CED??OEA,?△CDE≌△AOE. ·?OE?DE. 又 ?OE2?OA2?(AD?DE)2, 即OE?4?(8?OE), 解之,得OE?3. ·········································(3分) (2)EC?8?3?5.如图4,过D作DG?EC于G, ···································(4分) ?△DGE≌△CDE. · 222?DEDGDEEG129,.?DG?,EG?. ??ECCDECDE55?2412?···········································(5分) ?D?,?. · ?55?因O点为坐标原点,故可设过O,C,D三点抛物线的解析式为y?ax?bx. 25??64a?8b?0,a??,???32???24?2 2412解之,得??b?5.???a?b?.55??5???4y??(3) 525················································································· (7分) x?x. · 324抛物线的对称轴为x?4,?其顶点坐标为?4,?. ??5?2?1??8k?b?0,?k?,设直线AC的解析式为y?kx?b,则?解之,得?2 b??4.???b??4.?y?1······················································································ (9分) x?4. · 2??12??设直线FP交直线AC于H?m,m?4?,过H作HM?OA于M. ?△AMH∽△AOC.?HM:OC?AH:AC. S△FAH:S△FHC?1:3或3:1, ?AH:HC?1:3或3:1,?HM:OC?AH:AC?1:4或3:4. ?HM?2或6,即m?2或6. ?1). ·?H1(2,?3),H2(6,···································································· (10分) 111718x?.当y??4时,x?. 421171954直线FH2的解析式为y??x?.当y??4时,x?. 4271854?当t?秒或秒时,直线FP把△FAC分成面积之比为1:3的两部分 117直线FH1的解析式为y? 24. (兰州)如图19-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图19-2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t(0 于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标. 解:(1)依题意可知,折痕AD是四边形OAED的对称轴, ?在Rt△ABE中,AE?AO?5,AB?4. ?BE?AE2?AB2?52?42?3.?CE?2. . ··················································································· 2分 ?E点坐标为(2,4) 在Rt△DCE中,DC2?CE2?DE2, 又 DE?OD. ?(4?OD)2?22?OD2 . 解得:CD?5. 2?5?····················································································· 3分 ?D点坐标为?0,? ·2??△APM∽△AED. PM∥ED,?PMAP5,又知AP?t,ED?,AE?5 ??EDAE2t5t?PM???, 又PE?5?t. 522而显然四边形PMNE为矩形. t15················································· 5分 ?S矩形PMNE?PMPE??(5?t)??t2?t · 222(2)如图① ?S四边形PMNE51?5?25???t???,又0??5 22?2?82 525时,S矩形PMNE有最大值. ······························································ 6分 28(3)(i)若以AE为等腰三角形的底,则ME?MA(如图①) 在Rt△AED中,ME?MA,PM?AE,?P为AE的中点, 15?t?AP?AE?. 22y 又PM∥ED,?M为AD的中点. E C B 过点M作MF?OA,垂足为F,则MF是△OAD的中位线, N P D 1515?MF?OD?,OF?OA?, M 2422?当t??当t?55??时,?0??5?,△AME为等腰三角形. 22???55??24?O F 图① A x 此时M点坐标为?,?. ·············································································· 8分 (ii)若以AE为等腰三角形的腰,则AM?AE?5(如图②) 5?5?在Rt△AOD中,AD?OD2?AO2????52?5. 22??过点M作MF?OA,垂足为F. △APM∽△AED. PM∥ED,?2y C N D M O F 图② A x E P B APAM. ?AEADAMAE5?51?t?AP???25,?PM?t?5. 52AD52??MF?MP?5,OF?OA?AF?OA?AP?5?25, ?当t?25时,(0?25?5),此时M点坐标为(5?25,5). ····················· 11分 综合(i)(ii)可知,t?5或t?25时,以A,M,E为顶点的三角形为等腰三角形,2相应M点的坐标为?,?或(5?25,5). 25. (哈尔滨市)在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE =DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点 Q.(1) 当点P在线段ED上时(如图1),求证:BE=PD+设PQ长为x,以P、Q、D三 3PQ; (2)若 BC=6,3?55??24?点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长。 26. (哈尔滨市)如图,在平面直角坐标系中,直线y=x?5与x轴、y轴分别交于A、 B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A′B′相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.(1)求点D的坐标;(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;(3)若以动点为E圆心,以25为半径作⊙E,连接A′E,t为何值时。Tan∠EA′B′=理由。 1?并判断此时直线A′O与⊙E的位置关系,请说明812
正在阅读:
外链建设发布03-12
2楼租赁合同10-22
2017-2018七年级数学下册期末试卷03-07
柴沟中学音乐社团活动计划08-06
新鲜出炉:2017年英国完全大学指南排名03-12
(部编版)2020学年高中历史第三单元第2课美国国父华盛顿练习选修04-29
街道办事处班子述廉报告(精选多篇)09-26
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 几何图形
- 中考试题
- 汇编
- 函数
- 整理
- 分类
- 最新
- doc
- 雅思考试,美国留学的法宝
- 高数同济五版(7)
- 六年级10班古诗词朗诵表演串词
- 关于广东省行政审批制度改革中涉及海关保税监管业务有关问题的公告
- 6063铝合金型材表面腐蚀的分析
- 锁骨下静脉穿刺护理流程再造与效果观察
- 7送东阳马生序说课第一课时
- 精装修界面划(高层公寓类)
- 我国高速公路的信息化管理
- 大学生金融危机思想汇报
- 3.1.1(第一微分中值定理)
- 浙教版四年级下信息技术教案
- 分层实施“高效课堂”实施方案
- 嘉善县综合交通发展规划-4 - 1 - .24
- 生产许可证整改报告报送定稿
- 地理信息系统及工程应用复习
- 2016-2021年中国资产管理行业市场分析及投资可行性研究报告
- 二年级下册语文期末检测卷
- 1技术改造工程管理制度 - 图文
- 毕业生就业推荐表填写说明-北京化工大学理学院