普通高中数学课程标准

更新时间:2024-01-27 03:58:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

普通高中数学课程标准

(实 验)

第一部分 前言

数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

一、课程性质

高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。

高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。 高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

二、课程的基本理念

1. 构建共同基础,提供发展平台

高中教育属于基础教育。高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。高中数学课程由必修系列课程和选修系列课程组成,必修系列课

1

程是为了满足所有学生的共同数学需求;选修系列课程是为了满足学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。

2. 提供多样课程,适应个性选择

高中数学课程应具有多样性与选择性,使不同的学生在数学上得到不同的发展。

高中数学课程应为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。学生可以在教师的指导下进行自主选择,必要时还可以进行适当地转换、调整。同时,高中数学课程也应给学校和教师留有一定的选择空间,他们可以根据学生的基本需求和自身的条件,制定课程发展计划,不断地丰富和完善供学生选择的课程。

3. 倡导积极主动、勇于探索的学习方式

学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。同时,高中数学课程设立“数学探究”“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。

4. 注重提高学生的数学思维能力

高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。

5. 发展学生的数学应用意识

20世纪下半叶以来,数学应用的巨大发展是数学发展的显著特征之一。当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。我国的数学教育在很长一段时间内对于数学与实际、数学与其他学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。近几年来,我国大学、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。

高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。

2

6. 与时俱进地认识“双基”

我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,新世纪的高中数学课程应发扬这种传统。与此同时,随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。

7. 强调本质,注意适度形式化

形式化是数学的基本特征之一。在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。数学的现代发展也表明,全盘形式化是不可能的。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。

8. 体现数学的文化价值

数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”等专题。

9. 注重信息技术与数学课程的整合_

现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。高中数学课程应提倡实现信息技术与课程内容的有机整合(如把算法融入到数学课程的各个相关部分),整合的基本原则是有利于学生认识数学的本质。高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。

10. 建立合理、科学的评价体系

现代社会对人的发展的要求引起评价体系的深刻变化,高中数学课程应建立合理、科学的评价体系,包括评价理念、评价内容、评价形式和评价体制等方面。评价既要关注学生数学学习的结果,也要关注他们数学学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的

3

变化。在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。例如,过程性评价应关注对学生理解数学概念、数学思想等过程的评价,关注对学生数学地提出、分析、解决问题等过程的评价,以及在过程中表现出来的与人合作的态度、表达与交流的意识和探索的精神。对于数学探究、数学建模等学习活动,要建立相应的过程评价内容和方法。

三、课程设计思路

高中数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机地结合起来。

(-)高中数学课程框架 1. 课程框架

高中数学课程分必修和选修。必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;每个模块2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。课程结构如图所示。

注:上图中 代表模块(36学时), 代表专题(18学时)。 2. 必修课程

必修课程是每个学生都必须学习的数学内容,包括5个模块。

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。 数学2:立体几何初步、平面解析几何初步。 数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。 数学5:解三角形、数列、不等式。 3. 选修课程

对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望 进行选择。选修课程由系列1,系列2,系列3,系列4等组成。 ◆系列1:由2个模块组成。

选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。 ◆系列2:由3个模块组成。

选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。 选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。

4

选修2-3:计数原理、统计案例、概率。 ◆系列3:由6个专题组成。 选修3-1:数学史选讲。 选修3-2:信息安全与密码。 选修3-3:球面上的几何。 选修3-4:对称与群。

选修3-5:欧拉公式与闭曲面分类。 选修3-6:三等分角与数域扩充。 ◆系列4:由10个专题组成。 选修4-1:几何证明选讲。 选修4-2:矩阵与变换。 选修4-3:数列与差分。 选修4-4:坐标系与参数方程。 选修4-5:不等式选讲。 选修4-6:初等数论初步。

选修4-7:优选法与试验设计初步。 选修4-8:统筹法与图论初步。 选修4-9:风险与决策。

选修4-10:开关电路与布尔代数。 4. 关于课程设置的说明 ◆课程设置的原则与意图

必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。

选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。其中,

系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列1,系列2内容是选修系列课程中的基础性内容。

系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。其中的专题将

5

随着课程的发展逐步予以扩充,学生可根据自己的兴趣、志向进行选择。根据系列3内容的特点,系列3不作为高校选拔考试的内容,对这部分内容学习的评价适宜采用定量与定性相结合的方式,由学校进行评价,评价结果可作为高校录取的参考。

◆设置了数学探究、数学建模、数学文化内容

高中数学课程要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,并在高中阶段至少安排较为完整的一次数学探究、一次数学建模活动。高中数学课程要求把数学文化内容与各模块的内容有机结合。具体的要求可以参考数学探究、数学建模、数学文化的要求(参见第98页)。

◆模块的逻辑顺序

必修课程是选修课程中系列1,系列2课程的基础。选修课程中系列3、系列4基本上不依赖其他系列的课程,可以与其他系列课程同时开设,这些专题的开设可以不考虑先后顺序。必修课程中,数学1是数学2,数学3,数学4和数学5的基础。

◆系列3、系列4课程的开设

学校应在保证必修课程,选修系列1、系列2开设的基础上,根据自身的情况,开设系列3和系列4中的某些专题,以满足学生的基本选择需求。学校应根据自身的情况逐步丰富和完善,并积极开发、利用校外课程资源(包括远程教育资源)。对于课程的开设,教师也应该根据自身条件制定个人发展计划。

(二)对学生选课的建议

学生的兴趣、志向与自身条件不同,不同高校、不同专业对学生数学方面的要求也不同,甚至同一专业对学生数学方面的要求也不一定相同。随着时代的发展,无论是在自然科学、技术科学等方面,还是在人文科学、社会科学等方面,都需要一些具有较高数学素养的学生,这对于社会、科学技术的发展都具有重要的作用。据此,学生可以选择不同的课程组合,选择以后还可以根据自身的情况和条件进行适当的调整。以下提供课程组合的几种基本建议。

1. 学生完成10个学分的必修课程,在数学上达到高中毕业要求。

2. 在完成10个必修学分的基础上,希望在人文、社会科学等方面发展的学生,可以有两种选择。一种是,在系列1中学习选修1-1和选修1-2,获得4学分;在系列3中任选2个专题,获得2学分,共获得16学分。另一种是,如果学生对数学有兴趣,并且希望获得较高数学素养,除了按上面的要求获得16学分,同时在系列4中获得4学分,总共获得20学分。

3. 希望在理工(包括部分经济类)等方面发展的学生,在完成10个必修学分的基础上,可以有两种选择。一种是,在系列2中学习选修2-1,选修2-2和选修2-3,获得6学分;在系列3中任选2个专题,获得2学分;在系列4中任选2个专题,获得2学分,共获得20学分。另一种是,如果学生对数学有

6

兴趣,希望获得较高数学素养,除了按上面的要求获得20学分,同时在系列4中选修4个专题,获得4学分,总共获得24学分。

课程的组合具有一定的灵活性,不同的组合可以相互转换。学生作出选择之后,可以根据自己的意愿和条件向学校申请调整,经过测试获得相应的学分即可转换。

(三)本标准中使用的主要行为动词

本标准的目标要求包括三个方面:知识与技能,过程与方法,情感、态度与价值观,所涉及的行为动词水平大致分类如下。

第二部分 课程目标

高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1. 获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2. 提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3. 提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4. 发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5. 提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6. 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

第三部分 内容标准

一、必修课程

必修课程是整个高中数学课程的基础,包括5个模块,共10学分,是所有学生都要学习的内容。其内容的确定遵循两个原则:一是满足未来公民的基本数学需求;二是为学生进一步的学习提供必要的数学准备。

5个模块的内容为:

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

7

数学2:立体几何初步、平面解析几何初步。 数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。 数学5:解三角形、数列、不等式。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

向量是近代数学最重要和最基本的概念之一,是沟通几何、代数、三角等内容的桥梁,它具有丰富的实际背景和广泛的应用。

现代社会是一个信息化的社会,人们常常需要根据所获取的数据提取信息,做出合理的决策,在必修课程中将学习统计与概率的基本思想和基础知识,它们是公民的必备常识。

算法是一个全新的课题,已经成为计算科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用。算法的思想和初步知识,也正在成为普通公民的常识。在必修课程中将学习算法的基本思想和初步知识,算法思想将贯穿高中数学课程的相关部分。

必修课程的呈现力求展现由具体到抽象的过程,努力体现数学知识中蕴涵的基本思想方法和内在联系,体现数学知识的发生、发展过程和实际应用。教师和教材编写者应根据具体内容在适当的地方(如统计、简单线性规划等)安排一些实习作业。

数 学 1

在本模块中,学生将学习集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。 集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言。使用集合语言,可以简洁、准确地表达数学的一些内容。高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。

函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

8

内容与要求 1. 集合(约4课时) (1)集合的含义与表示

①通过实例,了解集合的含义,体会元素与集合的“属于”关系。

②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

(2)集合间的基本关系

①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解全集与空集的含义。 (3)集合的基本运算

①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 2. 函数概念与基本初等函数I(约32课时) (1)函数

①通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 ③通过具体实例,了解简单的分段函数,并能简单应用。

④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

⑤学会运用函数图象理解和研究函数的性质(参见例1)。 (2)指数函数

①通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。

②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。

9

(3)对数函数

①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。

②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。

③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。 (4)幂函数

通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。 (5)函数与方程

①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

(6)函数模型及其应用

①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

(7)实习作业

根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求(参见第104页)。

说明与建议

1. 集合是一个不加定义的概念,教学中应结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生理解集合的含义。学习集合语言最好的方法是使用,在教学中要创设使学生运用集合语言进行表达和交流的情境和机会,以便学生在实际使用中逐渐熟悉自然语言、集合语言、图形语言各自的特点,进行相互转换并掌握集合语言。在关于集合之间的关系和运算的教学中,使用Venn图是重要的,有助于学生学习、掌握、运用集合语言和其他数学语言。

10

2. 函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质。函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体实例,体会数集之间的一种特殊的对应关系,即函数。考虑到多数高中学生的认知特点,为了有助于他们对函数概念本质的理解,建议采用后一种方式,从学生已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念。再通过对指数函数、对数函数等具体函数的研究,加深学生对函数概念的理解。像函数这样的核心概念需要多次接触、反复体会、螺旋上升,逐步加深理解,才能真正掌握,灵活应用。

3. 在教学中,应强调对函数概念本质的理解,避免在求函数定义域、值域及讨论函数性质时出现过于繁琐的技巧训练,避免人为地编制一些求定义域和值域的偏题。

4. 指数幂的教学,应在回顾整数指数幂的概念及其运算性质的基础上,结合具体实例,引入有理指数幂及其运算性质,以及实数指数幕的意义及其运算性质,进一步体会“用有理数逼近无理数”的思想,并且可以让学生利用计算器或计算机进行实际操作,感受“逼近”过程。

5. 反函数的处理,只要求以具体函数为例进行解释和直观理解,例如,可通过比较同底的指数函数和对数函数,说明指数函数 和对数函数 互为反函数(a>0,a≠1)。不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数。

6. 在函数应用的教学中,教师要引导学生不断地体验函数是描述客观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用。

7. 应注意鼓励学生运用现代教育技术学习、探索和解决问题。例如,利用计算器、计算机画出指数函数、对数函数等的图象,探索、比较它们的变化规律,研究函数的性质,求方程的近似解等。

参考案例

例1. 田径队的小刚同学,在教练指导下进行3000米跑的训练,训练计划要求是: (1)起跑后,匀加速,10秒后达到每秒5米的速度,然后匀速跑到2分; (2)开始均匀减速,到5分时已减到每秒4米,再保持匀速跑4分时间; (3)在1分之内,逐渐加速达到每秒5米的速度,保持匀速往下跑; (4)最后200米,均匀加速冲刺,使撞线时的速度达到每秒8米。 请按照上面的要求,解决下面的问题。 (1)画出小刚跑步的时间与速度的函数图象。

(2)写出小刚进行长跑训练时,跑步速度关于时间的函数。 (3)按照上边的要求,计算跑完3000米的所用时间。

11

解:(1) (2) (3)略。

例2. 家用电器(如冰箱等)使用的氟化物的释放破坏了大气上层的臭氧层。臭氧含量Q呈指数函数型变化,满足关系式 ,其中 是臭氧的初始量。

(1)随时间的增加,臭氧的含量是增加还是减少? (2)多少年以后将会有一半的臭氧消失? 数 学 2

在本模块中,学生将学习立体几何初步、平面解析几何初步。

几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证。学生还将了解一些简单几何体的表面积与体积的计算方法。

解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

内容与要求

1. 立体几何初步(约18课时) (1)空间几何体

①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不

12

作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 (2)点、线、面之间的位置关系

①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 ◆公理2:过不在一条直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 ◆公理4:平行于同一条直线的两条直线平行。

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理。

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 ◆一个平面过另一个平面的垂线,则两个平面垂直。

通过直观感知、操作确认,归纳出以下性质定理,并加以证明。

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。 ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。 ◆垂直于同一个平面的两条直线平行。

◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 ③能运用已获得的结论证明一些空间位置关系的简单命题。 2. 平面解析几何初步(约18课时) (1)直线与方程

①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

③能根据斜率判定两条直线平行或垂直。

④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),

13

体会斜截式与一次函数的关系。

⑤能用解方程组的方法求两直线的交点坐标。

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 (2)圆与方程

①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。 ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。 ③能用直线和圆的方程解决一些简单的问题。

(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 (4)空间直角坐标系

①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。

②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

说明与建议

1. 立体几何初步的教学重点是帮助学生逐步形成空间想像能力。本部分内容的设计遵循从整体到局部、具体到抽象的原则,教师应提供丰富的实物模型或利用计算机软件呈现的空间几何体,帮助学生认识空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,巩固和提高义务教育阶段有关三视图的学习和理解,帮助学生运用平行投影与中心投影,进一步掌握在平面上表示空间图形的方法和技能(参见例1)。

2. 几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言。教师可以使用具体的长方体的点、线、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的点、线、面之间的位置关系;通过对图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用问题(参见例2)。

3. 立体几何初步的教学中,要求对有关线面平行、垂直关系的性质定理进行证明;对相应的判定定理只要求直观感知、操作确认,在选修系列2中将用向量方法加以论证。

4. 有条件的学校应在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性质(包括证明)的教学提供形象的支持,提高学生的几何直观能力。教师可以指导和帮助学生运用立体几何知识选择课题,进行探究。

5. 在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代

14

数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

参考案例

例1. 如图,这是一个奖杯的三视图,请你画出它的直观图,并求出这个奖杯的体积。 例2. 观察自己的教室,说出观察到的点、线、面之间的位置关系,并说明理由。 数 学 3

在本模块中,学生将学习算法初步、统计、概率。

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

现代社会是信息化的社会,人们常常需要收集数据,根据所获得的数据提取有价值的信息,作出合理的决策。统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。因此,统计与概率的基础知识已经成为一个未来公民的必备常识。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,通过实际问题情境,学习随机抽样、样本估计总体、线性回归的基本方法,体会用样本估计总体及其特征的思想;通过解决实际问题,较为系统地经历数据收集与处理的全过程,体会统计思维与确定性思维的差异。学生将结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。

内容与要求

1. 算法初步(约12课时) (1)算法的含义、程序框图

①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

15

(2)基本算法语句

经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 2. 统计(约16课时) (1)随机抽样

①能从现实生活或其他学科中提出具有一定价值的统计问题。 ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅资料、设计调查问卷等方法收集数据。 (2)用样本估计总体

①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会它们各自的特点。

②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。

⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。

⑥形成对数据处理过程进行初步评价的意识。 (3)变量的相关性

①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(参见例2)。

3. 概率(约8课时)

(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

16

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。 说明与建议

1. 算法是高中数学课程中新内容,其思想是非常重要的,但并不神秘。例如,运用消元法解二元一次方程组、求最大公因数等的过程就是算法。本模块中的算法内容是将数学中的算法与计算机技术建立联系,形式化地表示算法,在条件允许的学校,使其能在计算机上实现。为了有条理地、清晰地表达算法,往往需要将解决问题的过程整理成程序框图;为了能在计算机上实现,还需要将自然语言或程序框图翻译成计算机语言。本模块的主要目的是使学生体会算法的思想,提高逻辑思维能力。不要将此部分内容简单处理成程序语言的学习和程序设计。

2. 算法教学必须通过实例进行,使学生在解决具体问题的过程中学习一些基本逻辑结构和语句。有条件的学校,应鼓励学生尽可能上机尝试。

3. 算法除作为本模块的内容之外,其思想方法应渗透在高中数学课程其他有关内容中,鼓励学生尽可能地运用算法解决相关问题。

4. 教师应引导学生体会统计的作用和基本思想,统计的特征之一是通过部分的数据来推测全体数据的性质。学生应体会统计思维与确定性思维的差异,注意到统计结果的随机性,统计推断是有可能犯错误的。

5. 统计是为了从数据中提取信息,教学时应引导学生根据实际问题的需求选择不同的方法合理地选取样本,并从样本数据中提取需要的数字特征。不应把统计处理成数字运算和画图表。对统计中的概念(如“总体”“样本”等)应结合具体问题进行描述性说明,不应追求严格的形式化定义。

6. 统计教学必须通过案例来进行。教学中应通过对一些典型案例的处理,使学生经历较为系统的数据处理全过程,并在此过程中学习一些数据处理的方法,并运用所学知识、方法去解决实际问题。例如,在学习线性相关的内容时,教师可以鼓励学生探索用多种方法确定线性回归直线。在此基础上,教师可以引导学生体会最小二乘法的思想,根据给出的公式求线性回归方程。对感兴趣的学生,教师可以鼓励他们尝试推导线性回归方程。

7. 概率教学的核心问题是让学生了解随机现象与概率的意义。教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一

17

些错误认识(如“中奖率为 的彩票,买1000张一定中奖”)。

8. 古典概型的教学应让学生通过实例理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性。让学生初步学会把一些实际问题化为古典概型。教学中不要把重点放在“如何计数”上。

9. 应鼓励学生尽可能运用计算器、计算机来处理数据,进行模拟活动,更好地体会统计思想和概率的意义。例如,可以利用计算器产生随机数来模拟掷硬币的试验等。

参考案例

例1. 某赛季甲、乙两名篮球运动员每场比赛得分情况如下。

甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50。 乙的得分:8,13,14,16,23,26,28,33,38,39,51。

上述的数据可以用下图来表示,中间数字表示得分的十位数,两边数字分别表示两个人各场比赛得分的个位数。

通常把这样的图叫做茎叶图。请根据上图对两名运动员的成绩进行比较。

从这个茎叶图上可以看出,甲运动员的得分情况是大致对称的,中位数是36;乙运动员的得分情况除一个特殊得分外,也大致对称,中位数是26。因此甲运动员发挥比较稳定,总体得分情况比乙好。

用茎叶图表示有两个突出的优点,其一,从统计图上没有信息的损失,所有的信息都可以从这个茎叶图中得到;其二,茎叶图可以在比赛时随时记录,方便记录与表示。但茎叶图只能表示两位的整数,虽然可以表示两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录那么直观、清晰。

例2. 下表是某小卖部6天卖出热茶的杯数与当天气温的对比表。

气温/℃ 26 18 13 10 4 -1 (1)将上表中的数据制成散点图;

(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?

(3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系; (4)如果某天的气温是-5℃,预测这天小卖部卖出热茶的杯数。

18

杯数 20 24 34 38 50 64 当运用直线近似表示温度与杯数的关系时,学生可能选择能反映直线变化的两个点,例如(4,50),(18,24)确定一条直线;也可以取一条直线,使得直线一侧和另一侧点的个数基本相同;还可能多取几组点,确定几条直线方程,再分别算出各条直线科率、截距的算术平均值,作为所求直线的斜率、截距。

例3. 在所示的图中随机撒一大把豆子(可以利用计算器、计算机模拟这一过程),计算落在圆中的豆子数与落在正方形中的豆子数之比。由此估计圆周率的值,并初步体会几何概型的意义。

数 学 4

在本模块中,学生将学习三角函数、平面上的向量(简称平面向量)、三角恒等变换。

三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本模块中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

三角恒等变换在数学中有一定的应用,同时有利于发展学生的推理能力和运算能力。在本模块中,学生将运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换。

内容与要求

1. 三角函数(约16课时) (1)任意角、弧度

了解任意角的概念和弧度制,能进行弧度与角度的互化。 (2)三角函数

①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。

③借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。

④理解同角三角函数的基本关系式:

⑤结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。

19

⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。 2. 平面向量(约12课时)

(1)平面向量的实际背景及基本概念

通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

(2)向量的线性运算

①通过实例,掌握向量加、减法的运算,并理解其几何意义。

②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。

③掌握数量积的坐标表达式,会进行平面向量数量积的运算。

④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用

经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

3. 三角恒等变换(约8课时)

(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。 (2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。

说明与建议

1. 在三角函数的教学中,教师应根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型

20

的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型(参见例1)。

2. 在三角函数的教学中,应发挥单位圆的作用。单位圆可以帮助学生直观地认识任意角、任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。借助单位圆的直观,教师可以引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。

3. 提醒学生重视学科之间的联系与综合,在学习其他学科的相关内容(如单摆运动、波的传播、交流电)时,注意运用三角函数来分析和理解。

4. 弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位(圆周的 所对的圆心角或周角的 )。随着后续课程的学习,他们将会逐步理解这一概念,在此不必深究。

5. 向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。教师还可以引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于向量的非正交分解只要求学生作一般了解,不必展开。

6. 在三角恒等变换的教学中,可以引导学生利用向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。

7. 在本模块的教学中,应鼓励学生使用计算器和计算机探索和解决问题。例如,求三角函数值,求解测量问题,分析 中参数变化对函数的影响等。在三角函数、平面上的向量和三角恒等变换相应的内容中可以插入数学探究或数学建模活动。

参考案例

例1. 海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表:

时刻 0∶00 3∶00 6∶00

水深/米 5.0 7.5 5.0 时刻 9∶00 12∶00 15∶00 水深/米 2.5 5.0 7.5 时刻 18∶00 21∶00 24∶00 水深/米 5.0 2.5 5.0 21

(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值;

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2∶00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

数 学 5

在本模块中,学生将学习解三角形、数列、不等式。

学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

内容与要求

1. 解三角形(约8课时)

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 2. 数列(约12课时)

(1)数列的概念和简单表示法

通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。

(2)等差数列、等比数列

①通过实例,理解等差数列、等比数列的概念。

②探索并掌握等差数列、等比数列的通项公式与前n项和的公式。

22

③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。

④体会等差数列、等比数列与一次函数、指数函数的关系。 3. 不等式(约16课时) (1)不等关系

通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

①经历从实际情境中抽象出一元二次不等式模型的过程。 ②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。 (4)基本不等式: 。

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的最大(小)值问题(参见例4)。 说明与建议

1. 解三角形的教学要重视正弦定理和余弦定理在探索三角形边角关系中的作用,引导学生认识它们是解决测量问题的一种方法,不必在恒等变形上进行过于繁琐的训练。

2. 等差数列和等比数列有着广泛的应用,教学中应重视通过具体实例(如教育贷款、购房贷款、放射性物质的衰变、人口增长等),使学生理解这两种数列模型的作用,培养学生从实际问题中抽象出数列模型的能力。

3. 在数列的教学中,应保证基本技能的训练,引导学生通过必要的练习,掌握数列中各量之间的基本关系。但训练要控制难度和复杂程度。

4. 一元二次不等式教学中,应注重使学生了解一元二次不等式的实际背景。求解一元二次不等式,首先可求出相应方程的根,然后根据相应函数的图象求出不等式的解;也可以运用代数的方法求解。鼓励学生设计求解一元二次不等式的程序框图。

5. 不等式有丰富的实际背景,是刻画区域的重要工具。刻画区域是解决线性规划问题的一个基本步

23

骤,教学中可以从实际背景引入二元一次不等式组。

6. 线性规划是优化的具体模型之一。在本模块的教学中,教师应引导学生体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题,不必引入很多名词。

参考案例

例1. 教育储蓄的收益与比较。

要求学生收集本地区有关教育储蓄的信息,思考以下问题。

(1)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?

(2)依教育储蓄的方式,每月存a元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?

(3)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)时一次可支取本息比同档次的“零存整取”多收益多少元?

(4)欲在3年后一次支取教育储蓄本息合计1万元,每月应存入多少元? (5)欲在3年后一次支取教育储蓄本息合计a万元,每月应存入多少元?

(6)依教育储蓄的方式,原打算每月存100元,连续存6年,可是到4年时,学生需要提前支取全部本息,一次可支取本息共多少元?

(7)依教育储蓄的方式,原打算每月存a元,连续存6年,可是到b年时,学生需要提前支取全部本息,一次可支取本息共多少元?

(8)开放题:不用教育储蓄的方式,而用其他的储蓄形式,以每月可存100元,6年后使用为例,探讨以现行的利率标准可能的最大收益,将得到的结果与教育储蓄比较。

例2. 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨,产生的利润为10000元;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨,产生的利润为5000元。现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产。请列出条件的数学关系式,并画出其图象。

解:设x,y分别为计划生产甲、乙两种混合肥料的车皮数,于是

例3. 某厂拟生产甲、乙两种试销产品,每件销售收入分别为3千元、2千元。甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲所需工时分别为1时、2时,加工一件乙所需工时分别为2时、1时,A,B两种设备每月有效使用台时数分别为400和500。如何安排生产可使收入最大?

解:这个问题的数学模型是二元线性规划。

设甲、乙两种产品的产量分别为x,y件,约束条件是

24

目标函数是 。

要求出适当的x,y,使 取得最大值。

先要画出可行域,如图。考虑 是参数,将它变形为 ,这是斜率为 、随 变化的一簇直线。 是直线在y轴上的截距,当 最大时 最大,当然直线要与可行域相交,即在满足约束条件时目标函数取得最大值。

在这个问题中,使 取得最大值的 是两直线 与 的交点(200,100)。

因此,甲、乙两种产品的每月产量分别为200、100件时,可得最大收入800千元。

例4. 某工厂建造一个长方体无盖贮水池,其容积为 ,深度为3m。如果池底每 的造价为150元,池壁每 的造价为120元,怎样设计水池能使总造价最低,最低总造价是多少元?

二、选修课程 系列1,系列2说明

在完成必修课程学习的基础上,希望进一步学习数学的学生,可以根据自己的兴趣和需求,选择学习系列1,系列2。

系列1是为希望在人文、社会科学等方面发展的学生而设置的,包括2个模块,共4学分。系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,共6学分。

系列1的内容分别为:

选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1-2:统计案例、推理与证明、数系扩充与复数的引入、框图。 系列2的内容分别为;

选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。 选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。 选修2-3:计数原理、统计案例、概率。

在系列1、系列2的课程中,有一些内容及要求是相同的,例如,常用逻辑用语、统计案例、数系扩充与复数等;有一些内容基本相同,但要求不同,如导数及其应用、圆锥曲线与方程、推理与证明;还有一些内容是不同的,如系列1中安排了框图等内容,系列2安排了空间中的向量与立体几何、计数原理、离散型随机变量及其分布等内容。

系 列 1 选修1-1

本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、导数及其应用。

正确地使用逻辑用语是现代社会公民应该具备的基本素质。无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习

25

常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

内容与要求

1. 常用逻辑用语(约8课时) (1)命题及其关系

①了解命题的逆命题、否命题与逆否命题。

②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。 (2)简单的逻辑联结词

通过数学实例,了解逻辑联结词“或”“且”“非”的含义。 (3)全称量词与存在量词

①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。 ②能正确地对含有一个量词的命题进行否定。 2. 圆锥曲线与方程(约12课时)

(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 (2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。

(3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。 (4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。 (5)了解圆锥曲线的简单应用。 3. 导数及其应用(约16课时) (1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,

26

知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例3)。

②通过函数图象直观地理解导数的几何意义。 (2)导数的运算

①能根据导数定义,求函数 的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。

(4)生活中的优化问题举例

例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见例5)。

(5)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求(参见第104页)。

说明与建议

1. 在常用逻辑用语教学中,应特别注意以下几个问题。

(1)这里考虑的命题是指明确地给出条件和结论的命题,对“命题的逆命题、否命题与逆否命题”只要求作一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件。

(2)对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。

(3)对于量词,重在理解它们的含义,不要追求它们的形式化定义。

(4)注意引导学生在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简洁性。避免对逻辑用语的机械记忆和抽象解释,不要求使用真值表。

2. 在引入圆锥曲线时,应通过丰富的实例(如行星运行轨道、抛物运动轨迹、探照灯的镜面),使学生了解圆锥曲线的背景与应用。

3. 教师应向学生展示平面截圆锥得到椭圆的过程,使学生加深对圆锥曲线的理解。有条件的学校应

27

充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线(参见例1)。

4. 教师应向学生展现圆锥曲线在实际中的应用,例如,投掷铅球的运行轨迹,卫星的运行轨迹等。 5. 本模块中,导数的概念是通过实际背景和具体应用的实例引入的。教学中,可以通过研究增长率、膨胀率、效率、密度、速度等反映导数应用的实例,引导学生经历由平均变化率到瞬时变化率的过程,知道瞬时变化率就是导数。通过感受导数在研究函数和解决实际问题中的作用,体会导数的思想及其内涵。这样处理的目的是帮助学生直观理解导数的背景、思想和作用。

6. 在教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。应使学生认识到,任何事物的变化率都可以用导数来描述。应当避免过量的形式化运算练习。

参考案例

例1. 如图,用一个平面去截圆锥,这个平面与圆锥的交线是一个椭圆。在圆锥内做大小两个球分别与圆锥和截面相切。那么,截面与两个球的切点恰是椭圆的两个焦点。

例2. 国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连续检测结果如图所示。试问哪个企业治污效果好(其中W表示治污量)。

在 处,虽然 ,然而 ,所以说在单位时间里企业甲比企业乙的平均治污率大,因此企业甲比企业乙略好一筹。

例3. 我们知道,当运动员从10米高台跳水时,从腾空到进入水面的过程中,不同时刻的速度是不同的。假设t秒后运动员相对地面的高度为: ,在2秒时运动员的速度(瞬时速度)为多少?

该运动员在2秒到2.1秒(记为[2,2.1])的平均速度为:

同样,可以计算出[2,2.01],[2,2.001],……的平均速度,也可以计算出[1.99,2],[1.999,2],……的平均速度。

时间/s 间隔/s 平均速度/(m/s) [2,2.1] [2,2.01] [2,2.001] [2,2.0001] [2,2.00001] …… 0.1 0.01 0.001 0.0001 0.0001 …… -13.59 -13.149 -13.1049 -13.10049 -13.100049 …… [1.9,2] [1.99,2] [1.999,2] [1.9999,2] [1.99999,2] …… 0.1 0.01 0.001 0.0001 0.0001 …… 时间/s 间隔/s 平均速度/(m/s) -12.61 -13.051 -13.0951 -13.09951 -13.099951 …… 28

由此可以看出,当时间间隔越来越小时,平均速度趋于一个常数,这一常数(13.1)就可作为该运动员在2秒时的速度。

例4. 如图,直线 和圆c,当 从 开始在平面上绕点O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是( )

例5. 有一边长为a的正方形铁片,铁片的四角截去四个边长为x的小正方形,然后做成一个无盖方盒。

(1)试把方盒的容积V表示为x的函数; (2)求x多大时,做成方盒的容积V最大。 选修1-2

在本模块中,学生将学习统计案例、推理与证明、数系扩充及复数的引入、框图。

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。

框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。框图已经广泛应用于算法、计算机程序设计、工序流程的表述、设计方案的比较等方面,也是表示数学计算与证明过程中主要逻辑步骤的工具,并将成为日常生活和各门学科中进行交流的一种常用表达方式。在本模块中,学生将学习用“流程图”“结构图”等刻画数学问题以及其他问题的解决过

29

程;并在学习过程中,体验用框图表示数学问题解决过程以及事物发生、发展过程的优越性,提高抽象概括能力和逻辑思维能力,能清晰地表达和交流思想。

内容与要求

1. 统计案例(约14课时)

通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。 ①通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

②通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。

③通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。 ④通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。

2. 推理与证明(约10课时) (1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。 (2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

(3)数学文化

①通过对实例的介绍(如欧几里得《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。 3. 数系的扩充与复数的引入(约4课时)

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程

30

求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。

(2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。

(4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。 4. 框图(约6课时) (1)流程图

①通过具体实例,进一步认识程序框图。

②通过具体实例,了解工序流程图(即统筹图)(参见例4、例5)。 ③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用。 (2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息。 ②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。 说明与建议

1. 统计案例的教学中,应鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,认识统计方法的特点(如统计推断可能犯错误,估计结果的随机性),体会统计方法应用的广泛性。应尽量给学生提供一定的实践活动机会,可结合数学建模的活动,选择1个案例,要求学生亲自实践。对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不作要求,避免学生单纯记忆和机械套用公式进行计算。

2. 教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据,有条件的学校还可运用一些常见的统计软件解决实际问题。

3. 教学中应通过实例,引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想。教学的重点在于通过具体实例理解合情推理与演绎推理,而不追求对概念的抽象表述。

4. 本模块中设置的证明内容是对学生已学过的基本证明方法的总结。在教学中,应通过实例,引导学生认识各种证明方法的特点,体会证明的必要性。对证明的技巧性不宜作过高的要求。

5. 框图的教学,应从分析实例入手,引导学生运用框图表示数学计算与证明过程中的主要思路与步骤、实际问题中的工序流程、某一数学知识系统的结构关系等。使学生在运用框图的过程中理解流程图和结构图的特征,掌握框图的用法,体验用框图表示解决问题过程的优越性。

6. 在复数概念与运算的教学中,应注意避免繁琐的计算与技巧训练。对于感兴趣的学生,可以安排一些引申的内容,如求 的根、介绍代数学基本定理等。

31

参考案例

例1. 某地区羊患某种病的概率是0.4,且每只羊患病与否是彼此独立的。今研制一种新的预防药,任选5只羊做实验,结果这5只羊服用此药后均未患病。问此药是否有效。

初看起来,会认为这药一定有效,因为服药的羊均未患病。但细想一下,会有问题,因为大部分羊不服药也不会患病,患病的羊只占0.4左右。这5只羊都未患病,未必是药的作用。分析这问题的一个自然想法是:若药无效,随机抽取5只羊都不患病的可能性大不大。若这件事发生的概率很小,几乎不会发生,那么现在我们这几只羊都未患病,应该是药的效果,即药有效。

现假设药无效,5只羊都不生病的概率是

这个概率很小,该事件几乎不会发生,但现在它确实发生了,说明我们的假设不对,药是有效的。 这里的分析思想有些像反证法,但并不相同。给定假设后,我们发现,一个概率很小几乎不会发生的事件却发生了,从而否定我们的“假设”。

应该指出的是,当我们作出判断“药是有效的”时,是可能犯错误的。犯错误的概率是0.078。也就是说,我们有近92%的把握认为药是有效的。

例2. 探求凸多面体的面、顶点、棱之间的数量关系(欧拉公式的发现)。 例3. 平面上的圆与空间中的球的类比。 平面几何中的概念 圆 圆的切线 圆的弦 圆周长 圆面积 圆的性质 圆心与弦(非直径)中点的连线垂直于弦。 立体几何中的类似概念 球 球的切面 球的截面圆 球的表面积 球的体积 球的性质 球心与截面圆(不经过圆心的小截面圆)圆心的连线垂直于截面圆。 与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长。 …… 例4. 零件加工过程的流程图

工厂加工某种零件有三道工序:粗加工、返修加工和精加工。每道工序完成时,都要对产品进行检验。

与球心距离相等的两个截面圆相等;与球心距离不等的两个截面圆不等,距球心较近的截面圆较大。 …… 32

粗加工的合格品进入精加工,不合格品进入返修加工;返修加工合格品进入精加工,不合格品作为废品处理;精加工合格品为成品,不合格品为废品。请用流程图表示这个零件的加工过程。

例5. 数学建模过程的流程图如下。

根据这个流程图,结合一个具体实例,说明数学建模的过程。 系 列 2 选修2-1

在本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

正确地使用逻辑用语是现代社会公民应该具备的基本素质。无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

用空间向量处理立体几何问题,提供了新的视角。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。在本模块中,学生将在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。

内容与要求

1. 常用逻辑用语(约8课时) (1)命题及其关系

①了解命题的逆命题、否命题与逆否命题。

②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。 (2)简单的逻辑联结词

通过数学实例,了解逻辑联结词“或”“且”“非”的含义。 (3)全称量词与存在量词

①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。 ②能正确地对含有一个量词的命题进行否定。 2. 圆锥曲线与方程(约16课时)

33

(1)圆锥曲线

①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。

③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。

④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 (2)曲线与方程

结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想。 3. 空间向量与立体几何(约12课时) (1)空间向量及其运算

①经历向量及其运算由平面向空间推广的过程。

②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。

③掌握空间向量的线性运算及其坐标表示。

④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用

①理解直线的方向向量与平面的法向量。

②能用向量语言表述线线、线面、面面的垂直、平行关系。

③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)(参见例1、例2、例3)。 ④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 说明与建议

1. 在常用逻辑用语教学中,应特别注意以下几个问题。

(1)这里考虑的命题是指明确地给出条件和结论的命题,对“命题的逆命题、否命题与逆否命题”只要求做一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件。

(2)对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,帮助学生正确地表述相关的数学内容。

(3)对于量词,重在理解它们的含义,不要追求它们的形式化定义。

(4)注意引导学生在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简洁性。避免对逻辑用语的机械记忆和抽象解释,不

34

要求使用真值表。

2. 在引入圆锥曲线时,应通过丰富的实例(如行星运行轨道、抛物运动轨迹、探照灯的镜面),使学生了解圆锥曲线的背景与应用。

教师应向学生展示平面截圆锥得到椭圆的过程,使学生加深对圆锥曲线的理解。有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线(参见选修1-1案例中的例1)。

3. 教师可以向学生展现圆锥曲线在实际中的应用,例如,投掷铅球的运行轨迹、卫星的运行轨迹。 4. 曲线与方程的教学应以学习过的曲线为主,注重使学生体会曲线与方程的对应关系,感受数形结合的基本思想。对于感兴趣的学生,教师也可以引导学生了解圆锥曲线的离心率与统一方程。有条件的学校应充分发挥现代教育技术的作用,通过一些软件向学生演示方程中参数的变化对方程所表示的曲线的影响,使学生进一步理解曲线与方程的关系。

5. 空间向量的教学应引导学生运用类比的方法,经历向量及其运算由平面向空间推广的过程。教学过程中应注意维数增加所带来的影响。

6. 在教学中,可以鼓励学生灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题。 参考案例

例1. 已知直三棱柱 中,∠ACB=90°,∠BAC=30°, ,M是棱 的中点。 证明: 。

例2. 已知矩形ABCD和矩形ADEF垂直,以AD为公共边,但它们不在同一平面上。点M,N分别在对角线BD,AE上,且 。

证明:MN∥平面CDE。

例3. 已知单位正方体 ,E、F分别是棱 和 的中点。试求: (1) 与EF所成的角; (2)AF与平面 所成的角; (3)二面角 的大小。

选修2-2

在本模块中,学生将学习导数及其应用、推理与证明、数系的扩充与复数的引入。

微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性、极值等性质中的作用,初步了解定积分的概念,为以后进

35

一步学习微积分打下基础。通过该模块的学习,学生将体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生发展的客观需求和背景,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。

内容与要求

1. 导数及其应用(约24课时) (1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图象直观地理解导数的几何意义。 (2)导数的运算

①能根据导数定义求函数 的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。

③会使用导数公式表。 (3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

36

②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见选修1-1案例中的例5)。

(5)定积分与微积分基本定理

①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义(参见例1)。

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求(参见第104页)。

2. 推理与证明(约8课时) (1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修1-2案例中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。 (2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 (4)数学文化

①通过对实例的介绍(如欧几里得《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三

37

定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。 3. 数系的扩充与复数的引入(约4课时)

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。

(2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。

(4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。 说明与建议

1. 本模块中,导数的概念是通过实际背景和具体应用的实例引入的。教学中,可以通过研究增长率、膨胀率、效率、密度、速度等反映导数应用的实例,引导学生经历由平均变化率到瞬时变化率的过程,知道瞬时变化率就是导数。通过感受导数在研究函数和解决实际问题中的作用,体会导数的思想及其内涵。这样处理的目的是帮助学生直观理解导数的背景、思想和作用。

2. 在教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。应使学生认识到,任何事物的变化率都可以用导数来描述。

3. 教师应引导学生在解决具体问题的过程中,将研究函数的导数方法与初等方法作比较,以体会导数方法在研究函数性质中的一般性和有效性。

4. 教学中应通过实例,引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想。教学的重点在于通过具体实例理解合情推理与演绎推理,而不追求对概念的抽象表述。

5. 本模块中设置的证明内容是对学生已学过的基本证明方法的总结。在教学中,应通过实例,引导学生认识各种证明方法的特点,体会证明的必要性。对证明的技巧性不宜作过高的要求。

6. 教师应借助具体实例让学生了解数学归纳法的原理,对证明的问题要控制难度。

7. 在复数概念与运算的教学中,应注意避免繁琐的计算与技巧训练。对于感兴趣的学生,可以安排一些引申的内容,如求 的根,介绍代数学基本定理等。

参考案例

例1. 一个物体依照 规律在直线上运动,我们已经知道,其在某一时刻 的运动速度 (即瞬时速度或瞬时变化率)为 在 时刻的导数,即 。今考虑 在 到 之间位置的总变化。我们把区间 分割成n个小区间,不妨假设小区间的长度相等,其长度为 。对每一个小区间,我们假设 的变化率近似为某一常量,于是我们可以说

38

的变化率×时间。

在第一个小区间内,即从 到 ,假设 的变化率近似地为 ,于是有同样,对第二个小区间,即从 到 ,假设 的变化率近似地为 ,因此有等等。把在所有小区间上得到的位置变化近似值全部加在一起,得到s的总变化 ,我们可以把 在 到 之间位置的总变化写成 。另一方面,当分割无限加细、n趋于无穷时,和式 的极限就是定积分 或 ,也就是 在 到 之间位置的总变化。于是,我们可得到以下结论: 也就是说,变化率的定积分给出了总的变化。 特别地,当物体作匀速运动时,即 时, 当物体作匀加速运动时,即 (其中 是常数)时, 一般地,如果 是连续函数,并且 ,那么, 这就是微积分基本定理。这里给出的并不是非常严格的证明,但是,它反映了微积分基本定理的基本思想,反映了微分(导数)与积分的联系。

选修2-3

在本模块中,学生将学习计数原理、统计案例、概率。

计数问题是数学中的重要研究对象之一,分类加法计数原理。分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本模块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。

学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

内容与要求

1. 计数原理(约14课时)

(1)分类加法计数原理、分步乘法计数原理

通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。

(2)排列与组合

通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。

(3)二项式定理

能用计数原理证明二项式定理(参见例1);会用二项式定理解决与二项展开式有关的简单问题。 2. 统计与概率(约22课时)

39

(1)概率

①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性。

②通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用(参见例2)。 ③在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题(参见例3)。

④通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题(参见例4)。

⑤通过实际问题,借助直观(如实际问题的直方图),认识正态分布曲线的特点及曲线所表示的意义。

(2)统计案例

通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。 ①通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

②通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见选修1-2案例中的例1)。

③通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及其初步应用。 ④通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及其初步应用。

说明与建议

1. 分类加法计数和分步乘法计数是处理计数问题的两种基本思想方法。教学中,应引导学生根据计数原理分析、处理问题,而不应机械地套用公式。同时,在这部分教学中,应避免繁琐的、技巧性过高的计数问题。

2. 研究一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率,分布列正是描述了离散型随机变量取值的概率规律,二项分布和超几何分布是两个应用广泛的概率模型,要求通过实例引入这两个概率模型,不追求形式化的描述。教学中,应引导学生利用所学知识解决一些实际问题。

3. 统计案例的教学中,应鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,认识统计方法的特点(如统计推断可能犯错误,估计结果的随机性),体会统计方法应用的广泛性。应尽量给学生提供一定的实践活动机会,可结合数学建模的活动,选择一个案例,要求学生亲自实践。对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不做要求,避免学生单纯记忆和

40

机械套用公式进行计算。

4. 教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据,有条件的学校还可运用一些常见的统计软件解决实际问题。

5. 可以在二项式定理中介绍我国古代数学成就“杨辉三角”,在统计案例中介绍所学统计方法在社会生活中的广泛应用,以丰富学生对数学文化价值的认识。

参考案例

例1. 二项式定理的证明。

是n个 相乘,每个 在相乘时,有两种选择,选a或b,由分步计数原理可知展开式共有 项(包括同类项),其中每一项都是 的形式, 0,1,……,n;对于每一项 ,它是由k个 选了a, 个 选了b得到的,它出现的次数相当于从n个 中取k个a的组合数 ,将它们合并同类项,就得二项展开式,这就是二项式定理。

例2. 高三(1)班的联欢会上设计了一项游戏。在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同。游戏者一次从中摸出5个球,摸到4个红球的就中一等奖。求获一等奖的概率。

从30个球中摸出5个球的组合数为:那么, 如果令X表示摸出红球的个数,则X服从N=30, ;M=5,n=10,m=4的超几何分布,那么

例3. 将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果(出现正面,不出现正面),出现正面的概率为 。

如果令X为硬币正面出现的次数,则X服从 的二项分布,那么,由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为

学生在学习概率时会有一种误解,认为既然出现正面的概率为 ,那么掷100次硬币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8%左右。

例4. 据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01。设工地上有一台大型设备,为保护设备有以下三种方案。

方案1:运走设备,此时需花费3800元。

方案2:建一保护围墙,需花费2000元。但围墙无法防止大洪水,当大洪水来临,设备受损,损失费为60000元。

方案3:不采取措施,希望不发生洪水。此时大洪水来临损失60000元,小洪水来临损失10000元。 试比较哪一种方案好。

41

系列3,系列4说明

系列3,系列4分别由若干专题组成,每个专题1学分。

系列3包括数学史选讲、信息安全与密码、球面上的几何、对称与群、欧拉公式与闭曲面分类、三等分角与数域扩充等6个专题。系列4包括几何证明选讲、矩阵与变换、数列与差分、坐标系与参数方程、不等式选讲、初等数论初步、优选法与试验设计初步、统筹法与图论初步、风险与决策、开关电路与布尔代数等10个专题。

系列3,系列4的素材比较丰富,随着课程的发展,这些内容将进一步拓展、丰富和完善。 系列3,系列4所涉及的内容都是基础性的数学内容,不仅应鼓励那些希望在理工、经济等方面发展的学生积极选修,同时也应鼓励那些希望在人文、社会科学方面发展的学生选修这些课程。

系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容都是数学的基础性内容,反映了某些重要的数学思想。有些专题是中学课程某些内容的延伸,有些专题是通过典型实例介绍数学的一些应用方法。这些专题的学习有利于学生的终身发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识,有助于学生进一步打好数学基础,提高应用意识。

专题力求深入浅出、通俗易懂,进一步提高学生分析和解决问题的能力,让学生掌握和体会一些重要的概念、结论和思想方法,体会数学的作用,发展应用意识。

对于系列3,系列4的学习,应提倡多样化的学习方式,可以是教师讲授,也可以是在教师指导下学生的自主探索和合作交流,还应鼓励学生独立阅读、写专题总结报告等,力求使学生切身体会“做数学”是学好数学的有效途径,独立思考是“做数学”的基础。

系列3,系列4的评价方式是不同的,根据系列3内容的特点,对学习这部分内容的评价适宜采用定量与定性相结合的方式

系 列 3 数学史选讲 内容与要求

通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。

完成一个学习总结报告。对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写出自己的研究报告。

本专题由若干个选题组成,内容应反映数学发展的不同时代的特点,要讲史实,更重要的是通过史实

42

介绍数学的思想方法,选题的个数以不少于6个为宜。以下专题可供选择。

1. 早期算术与几何——计数与测量 ◆纸草书中记录的数学(古代埃及)。 ◆泥板书中记录的数学(两河流域)。 ◆中国《周髀算经》、勾股定理(赵爽的图)。 ◆十进位值制的发展。 2. 古希腊数学

◆毕达哥拉斯多边形数,从勾股定理到勾股数,不可公度问题。

◆欧几里得与《几何原本》,演绎逻辑系统,第五公设问题,尺规作图,公理化思想对近代科学的深远影响。

◆阿基米德的工作:求积法。 3. 中国古代数学瑰宝

◆《九章算术》中的数学(方程术、加减消元法、正负数)。 ◆大衍求一术(孙子定理)。 ◆中国古代数学家介绍。

4. 平面解析几何的产生——数与形的结合 ◆函数与曲线。 ◆笛卡儿方法论的意义。

5. 微积分的产生——划时代的成就 6. 近代数学两巨星——欧拉与高斯 ◆欧拉的数学直觉。

◆高斯时代的特点(数学严密化)。 7. 千古谜题——伽罗瓦的解答

◆从阿贝尔到伽罗瓦(一个中学生数学家)。 ◆几何作图三大难题。 ◆近世代数的产生。

8. 康托的集合论——对无限的思考 ◆无限集合与势。

◆罗素悖论与数学基础(哥德尔不完备定理)。 9. 随机思想的发展

43

◆概率论溯源。 ◆近代统计学的缘起。 10. 算法思想的历程 ◆算法的历史背景。 ◆计算机科学中的算法。 11. 中国现代数学的发展

◆现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程。 说明与建议

1. 本专题不必追求数学发展历史的系统性和完整性,通过学生生动活泼的语言与喜闻乐见的事例呈现内容,使学生体会数学的重要思想和发展轨迹。本专题的内容安排可以采取多种形式,既可以由古到今,追寻数学发展的历史;也可以从现实的、学生熟悉的数学问题出发,追根溯源,回眸数学发展中的重要事件和人物。例如,可以从“我们现在有多少种记数方法”出发,追溯历史上的记数法(巴比伦的60进制、英国的12进制、计算机的二进制以及10进制,二进制与中国的八卦)。又如,可以从学生熟悉的π入手,漫谈祖冲之的成果,用随机数方法计算π,介绍古希腊和中国古代如何对待无理数、目前计算机可以算π到小数点后多少位等问题。

2. 以上所提供的内容仅仅是一种选择,本专题内容的安排可以根据具体情况,作适当调整。内容应突出所蕴涵的思想性,突出数学发展的轨迹,突出数学家刻苦钻研的科学精神。内容的选择要符合学生的接受水平,呈现方式应图文并茂、丰富多彩,引起学生的兴趣。

3. 教学方式应灵活多样,可采取讲故事、讨论交流、查阅资料、撰写报告等方式进行。教师应鼓励学生对数学发展的历史轨迹。自己感兴趣的历史事件与人物,写出自己的研究报告。

信息安全与密码

数论和代数在现代信息理论、信息安全中有许多重要的应用。本专题将介绍和学习初等数论的某些知识(如整除与同余),以及数论在现代信息安全中的某些重要应用,使学生了解数学在信息科学中的应用,提高对数学的鉴赏力和学习数学的兴趣。

内容与要求

1. 初等数论的有关知识

(1)了解整除和同余,模m的完全同余系和简化剩余系,欧拉定理和费马小定理,大数分解问题。 (2)了解欧拉函数的定义和计算公式,威尔逊定理及在素数判别中的应用,原根与指数,模p的原根存在性,离散对数问题。

2. 数论在信息安全中的应用

44

(1)了解通讯安全中的有关概念(如明文、密文、密钥)和通讯安全中的基本问题(如保密、数字签名、密钥管理、分配和共享)。

(2)了解古典密码的一个例子:流密码(利用模m同余方式)。

(3)理解公钥体制(单向函数概念),以及加密和数字签名的方法(基于大数分解的RSA方案)。 (4)理解离散对数在密钥交换和分配中的应用——棣弗-赫尔曼(Diffi-Hellman)方案。 (5)理解离散对数在加密和数字签名中的应用——盖莫尔(ElGamal)算法。 (6)了解拉格朗日插值公式在密钥共享中的应用。 3. 完成一个学习总结报告

报告应包括两方面的内容:(1)知识的总结。对信息安全有关内容的理解和认识,体会数学(数论和代数学)在信息安全中的作用。(2)拓展。通过查阅课外资料,对某些内容和应用进行进一步探讨和思考。

说明与建议

1. 本专题的教材编写与教学应力求深入浅出。教学时,教师应注意介绍相关内容(如通信技术的发展等)的历史与背景,帮助学生理解信息安全中需要解决的问题以及如何利用公钥体制解决这些问题,体会大数分解和离散对数等思想方法在现代信息安全中所起的作用。

2. 在条件允许的情况下,教师应引导学生利用计算机对下列问题进行思考,编制程序、上机实验。 (1)用辗转相除计算最大公约数; (2)解同余方程 ;

(3)判断大整数是否为素数(用Wilson定理); (4)大数分解。 球面上的几何

我们生活在地球上,地球表面十分接近于一个球面。因此,在实际生活中,球面上的几何(简称球面几何)知识有着广泛的实际应用。例如,大地(天体)测量、航空、卫星定位等方面均需利用球面几何的知识。在理论上,球面几何是一个与欧氏平面几何不同的几何模型,是一个重要非欧几何的数学模型,球面几何在几何学的理论研究方面,具有特殊的作用。

本专题将使学生了解一个新的数学模型——球面几何,初步学习球面几何的一些基本知识及其在实际中的一些应用,通过比较球面几何和欧氏平面几何的差异和联系,感受自然界中存在着丰富多彩的数学模型。类比是学习这个专题所用到的重要的思想方法,空间想像和几何直观能力是学好这个专题的关键。

内容与要求

1. 通过丰富的实际问题(如测量、航空、卫星定位),体会引入球面几何知识的必要性。

2. 通过球面图形与平面图形的比较,感受球面几何与欧氏平面几何的异同。例如,球面上的大圆相

45

当于平面上的直线,球面上两点之间的最短距离是大圆弧的劣弧部分,球幂定理。

3. 通过对实例的分析,体会球面具有类似平面的对称性质。

4. 了解球面上的一些基本图形:大圆、小圆、球面角、球面二角形(月形)、极与赤道、球面三角形、球面三角形的极对称三角形(简称球极三角形)。

5. 通过球面几何与欧氏平面几何比较,探索欧氏平面图形的哪些性质能推广到球面上,并说明理由,由此理解球面三角形的全等定理s.s.s,s.a.s,a.s.a。

6. 理解单位球面三角形的面积公式( ),由此体会球面三角形内角和大于180°。 7. 了解球面三角形全等的a.a.a定理。

8. 利用球面三角形面积公式证明欧拉公式,体验球面几何与拓扑学的关系。

9. 利用向量的叉乘(向量积)探索并证明球面余弦定理( )和球面上的勾股定理(即当 时的球面余弦定理),能从球面的余弦定理推导出球面的正弦定理 。

10. 体会当球面半径无限增大时,球面接近于平面,球面的三角公式就变成相应的平面三角公式。 11. 初步了解另一种非欧几何模型——庞加莱模型。

12. 完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。对本专题整体结构和内容的理解,说明球面几何与平面几何中哪些公式(定理)是相同的,哪些公式有本质差异;说明为什么相对于半径来说很小的一小片球面可以作为一个平面来对待。(2)通过查阅资料、调查研究、访问求教、独立思考,进一步思考几何与现实空间的关系。(3)学习球面几何的感受、体会。

说明与建议

1. 本专题的重点是培养学生空间想像和几何直观能力。

2. 教学中应使学生切实地感受利用球面几何知识可以解决(或解释)生活或生产中的一些实际问题。在介绍球面几何时,让学生通过欧氏平面几何和球面几何的类比,得到球面几何的相关结论,促使学生思考平面几何模型与球面几何等非欧几何模型的差异。

3. 介绍球面几何与欧拉公式,主要是为了开拓学生的数学视野,使学生了解一些非欧几何模型,对学生掌握现代数学思想方法有很大帮助。

4. 球面几何涉及到大量的空间图形的对称性(变换),在条件允许的学校,教学中可以充分利用(CAI)多媒体技术。

对 称 与 群

对称是自然界一种十分重要的性质,像轴对称、中心对称。群是刻画对称性的数学概念,群论是现代数学的重要研究对象。

学生将从丰富的平面图形对称变换的实例入手,了解变换群的概念,学习群的表达方法,学会求出一

46

些比较简单的几何图形的对称群,并进一步体会群在研究事物对称性质和研究其他数学对象中的重要作用。

内容与要求

1. 通过丰富的对称图形,感受日常生活和现实世界中存在着大量对称现象。 2. 了解刚体运动的基本性质。

3. 通过分析图形的不同对称性和刚体运动,寻求刻画不同图形对称性的思想,逐步形成图形对称变换的概念。

4. 结合简单的具体图形,找出其所有对称变换。

5. 结合具体的图形实例,逐步形成对称变换合成的概念,理解对称变换合成的封闭性。 6. 结合具体的图形实例,通过操作认识对称变换满足结合律。

7. 结合具体的图形实例,通过操作,理解恒等变换的概念,逆变换的概念及其性质,针对具体的图形能找出一个对称变换的逆变换。

8. 通过具体实例,建立变换群的概念,并初步了解抽象群的概念。

9. 能借助几何直观求出一些几何图形和具有一定对称性的简单化学分子模型的对称群。 10. 通过具体实例,了解一种群的表示方法——乘法表法。

11. 从具体的实例入手,了解一种由较为简单群构造出较为复杂群的方法——直积。 12. 了解群论在现实生活中的重要应用,如晶体分类定理。

13. 考察其他形式的对称变换,如代数式。通过二次、三次方程的求解过程,了解代数方程根的对称群的含义,并了解伽罗瓦利用群论方法解决方程根式解问题的科学史实,感受群论在现代数学中的重大作用。

14. 完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。对本专题整体结构和内容的理解,对对称的数学描述和群的概念的认识。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步探讨对称在自然界中的广泛性和群对刻画对称的作用。(3)学习本专题的感受、体会。

说明与建议

1. 由于对称变换、变换的合成(乘法)运算等概念是比较抽象的概念,因此学习过程都应从具体的实例和恰当的情境引入,而不能从抽象的定义出发。

2. 对于中学生来说,群是一个全新的学习对象。对称变换群是把对称变换作为一个运算系统来研究,与过去所学习的数与代数式的运算系统有很大的区别。因此本专题只能以比较简单的具体的群为例。教学的重点在于使学生了解群在刻画对称性中的作用,而尽量避免论述群的抽象定义和性质。同时要求学生能通过具体的几何图形的分析,学会求出一些简单几何图形的对称群,在操作实践过程中感受群的含义。

3. 晶体分类与方程的伽罗瓦理论是群论的两项重大应用成果,在本单元不能详细证明晶体分类定理

47

和方程的伽罗瓦定理,但向学生介绍这两项成果可以使学生感受现代数学的研究方法和特点,因此做好这种介绍性工作也是本单元的教学目标之一。

欧拉公式与闭曲面分类

使用变换对几何图形进行分类,是几何学的重要内容,揭示在不同变换下几何图形的不变性质或不变量是研究这类问题的基本思想方法。本专题主要讨论欧拉公式和欧拉示性数等重要的拓扑不变量,并利用它们对曲线、曲面进行分类。

内容与要求

1. 复习已学过的变换,并使用它们对平面图形分类

(1)复习平移、旋转、平面运动、反射、全等、位似、伸缩、相似变换,以及对平面图形分类。 (2)在上述变换下,探索什么几何性质是不变的。 (3)体会变换的一些基本特征:1-1对应,连续。 2. 欧拉公式

(1)通过探索发现欧拉公式的过程,理解欧拉公式。 (2)理解欧拉公式的拓扑证明。

(3)使用欧拉公式解决一些问题(如探索正多面体的个数)。 (4)探索非欧拉多面形的面数、棱数、顶点数的关系。 3. 理解曲面三角剖分的概念。

4. 会对一些曲面进行三角剖分,并能计算它们的欧拉示性数。 5. 了解拓扑变换的直观含义。

6. 知道一些拓扑不变量,并能用它们对一些曲线、闭曲面进行分类,了解一些曲线、闭曲面的分类结果。

7. 了解拓扑思想的一些应用(如平面布线问题、一笔画问题、布劳威尔不动点定理与经济稳定点问题、四色问题)。

8. 完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。本专题整体结构和内容的理解,以及对数学变换思想的认识。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步理解变换的不变量和曲面分类的思想。(3)学习本专题的感受、体会。

说明与建议

1. 这部分内容比较抽象,首先要复习中学阶段学过的几何变换以及分析在这些变换下不变的几何性质,并由此体会变换和变换不变量的思想。

2. 引导学生探索发现欧拉公式的过程,以及对欧拉公式证明的理解,帮助学生体会数学家的创造性

48

工作,这是一个非常好的范例。

3. 三角剖分是研究图形拓扑性质的重要思想方法,引导学生经历对具体曲面使用三角剖分的方法研究其性质的过程,使学生通过操作和实践学习和掌握三角剖分的思想方法。

4. 拓扑变换是一个非常抽象的概念,应该关注学生对拓扑变换形象和直观的理解,例如,把拓扑变换理解为橡皮变换,不要引导学生追求拓扑变换形式化的定义。

5. 在介绍拓扑学应用时,应注重对拓扑思想方法的介绍,不追求严格化的叙述。 三等分角与数域扩充

三等分角问题、倍方问题和化圆为方问题被称为古希腊的三大几何作图问题。解决这类问题的思想方法不仅在数学上,而且在人类的思想史上都具有重大意义。

本专题将通过对三等分角问题的讨论使学生了解解决这类问题的基本思想方法,并能用此方法解决倍方问题和仅用圆规直尺不能作正七边形的问题。另外还介绍用代数方法讨论正十七边形是可作图的(即可用尺规作图方法作出正十七边形)。通过以上的讨论,使学生体会和理解其中蕴涵的数学思想方法,提高分析和解决数学问题的能力。

内容与要求

1. 了解古希腊三大几何作图问题,通过三等分角问题了解它们的正确提法。在不限于圆规和直尺的前提下,了解三等分角的几种不同作法。

2. 理解解决三等分角问题的基本思路——刻画尺规作图的范围。 3. 给定线段a,b,会用尺规作图方法作出长为 的线段。

4. 对于给定的任何已知线段,若把它作为单位长,则任一(正)有理数是可作图的(即仅用圆规和直尺可作出该有理数长的线段)。

5. 通过有理数对加、减、乘、除运算的封闭性,了解有理数域和一般数域的概念。

6. 设F是一数域, 且 。证明:集合 也是一个数域,且F是集合 的子集合。了解扩域的概念。 7. 给出一些数域、扩域的具体实例。

8. 给定长为a的线段,会用尺规作图方法作出长为 的线段。 9. 学会把三等分角问题代数化。

10. 证明:不能用尺规作图的方法三等分60度角。

11. 用上述方法讨论“倍方问题”或“用圆规和直尺不可能作出正七边形”。 12. 体会解决古希腊三大作图问题的思想方法和它在人们思想认识上的作用。

13. 了解复数乘法的棣莫弗公式,会用代数方法讨论正十七边形是可作图的(即可用尺规作图方法作出正十七边形)。

49

14. 完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。解决三等分角问题的基本思路,清楚地表述证明的过程。体会和理解其中蕴涵的数学思想方法。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步体会几何问题代数化的方法和处理几何作图问题的思想。(3)学习本专题的感受、体会。

说明与建议

1. 本专题在思想上和证明的论述上的要求都是比较高的。要求学生学会把握解决问题的整体思路,还要求学生在证明时,层次分明,条理清楚。培养学生表达和论述的能力。

2. 在教学过程中,教师应该引导学生对某些问题进行探索。

3. 通过本专题的学习,让学生认识到数学的作用不限于解决问题,在形成人类正确的思想方法和世界观方面数学同样发挥着重要的作用。

系列4 几何证明选讲

几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想像能力、几何直观能力和运用综合几何方法解决问题的能力。

内容与要求

1. 复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。 2. 证明圆周角定理、圆的切线的判定定理及性质定理。

3. 证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。

4. 了解平行投影的含义,通过圆柱与平面的位置关系,体会平行投影;证明平面与圆柱面的截线是椭圆(特殊情形是圆)。

5. 通过观察平面截圆锥面的情境,体会下面定理:

定理 在空间中,取直线 为轴,直线 与 相交于O点,其夹角为α, 围绕 旋转得到以O为顶点, 为母线的圆锥面,任取平面π,若它与轴 交角为β(π与 平行,记住β=0),则:

(1)β>α,平面π与圆锥的交线为椭圆; (2)β=α,平面π与圆锥的交线为抛物线; (3)β<α,平面π与圆锥的交线为双曲线。

6. 利用Dandelin双球(这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥均相切)证明上述定理(1)情况。

50

本文来源:https://www.bwwdw.com/article/cvsw.html

Top