最新精品学案:新课标高中数学人教A版必修1全册导学案及答案

更新时间:2023-04-11 01:43:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

精品文档

精品文档 §1.1.1集合的含义及其表示

[自学目标]

1.认识并理解集合的含义,知道常用数集及其记法;

2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;

3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.

[知识要点]

1. 集合和元素

(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;

(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ?.

2.集合中元素的特性:确定性;无序性;互异性.

3.集合的表示方法:列举法;描述法;Venn 图.

4.集合的分类:有限集;无限集;空集.

5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .

[预习自测]

例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.

(1)小于5的自然数;

(2)某班所有高个子的同学;

(3)不等式217x +>的整数解;

(4)所有大于0的负数;

(5)平面直角坐标系内,第一、三象限的平分线上的所有点.

分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.

例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )

A.直角三角形

B.锐角三角形

C.钝角三角形

D.等腰三角形

例3.设()()(){}

22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值. 分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.

精品文档

精品文档

例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.

[课内练习]

1.下列说法正确的是( )

(A )所有著名的作家可以形成一个集合

(B )0与 {}0的意义相同

(C )集合?

?????

∈==+N n n x x A ,1 是有限集 (D )方程0122=++x x 的解集只有一个元素

2.下列四个集合中,是空集的是

( ) A .}33|{=+x x

B .},,|),{(22R y x x y y x ∈-=

C .}0|{2≤x x

D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是 ( )

A .)}1,1{(

B .}1,1{

C .(1,1)

D .}1{. 4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =

5.若}4,3,2,2{-=A ,},|{2

A t t x x

B ∈==,用列举法表示B= .

[归纳反思]

1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;

2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。这是解决有关集合问题的一种重要方法;

3.确定的对象才能构成集合.可依据对象的特点或个数的多少来表示集合,如个数较少的有限集合可采用列举法,而其它的一般采用描述法.

4.要特别注意数学语言、符号的规范使用.

[巩固提高]

精品文档

精品文档 1.已知下列条件:①小于60的全体有理数;②某校高一年级的所有学生;③与2相差很小的数;④方程2x =4的所有解。其中不可以表示集合的有--------------------( )

A .1个

B .2个

C .3个

D .4个

2.下列关系中表述正确的是-----------------------------------------( )

A .{}200x ∈=

B .(){}00,0∈

C .0∈?

D .0N ∈

3.下列表述中正确的是----------------------------------------------( )

A .{}0=?

B .{}{}1,22,1=

C .{}?=?

D .0N ? 4.已知集合A={}23,21,1a a a ---,若3-是集合A 的一个元素,则a 的取值是( ) A .0 B .-1 C .1 D .2

5.方程组3254x y x y =+??+=?

的解的集合是---------------------------------------( ) A .(){}1,1- B .(){}1,1- C .()(){},1,1x y - D .{}1,1-

6.用列举法表示不等式组240121x x x +>??+≥-?

的整数解集合为: 7.设215022x x ax ??∈--=???

?,则集合21902x x x a ??--=????中所有元素的和为: 8、用列举法表示下列集合:

⑴(){},3,,x y x y x N y N +=∈∈ ⑵{}3,,y x y x N y N +=∈∈

9.已知A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2 ∈B ,求实数a 的值.

精品文档 精品文档

10.设集合

{}

,3A n n Z n =∈≤,集合

{}

21,B y y x x A ==-∈,

集合,试用列举法分别写出集合A 、B 、C.

1.1.2子集、全集、补集

[自学目标]

1.了解集合之间包含关系的意义.

2.理解子集、真子集的概念.

3.了解全集的意义,理解补集的概念. [知识要点]

1.子集的概念:如果集合A 中的任意一个元素都是集合B 中的元素(若a A ∈,则a B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ?或A B ?,.

B A ?还可以用Venn 图表示.

我们规定:A ??.即空集是任何集合的子集. 根据子集的定义,容易得到:

⑴任何一个集合是它本身的子集,即A A ?.

⑵子集具有传递性,即若B A ?且B C ?,则A C ?.

2.真子集:如果B A ?且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B

⑴规定:空集是任何非空集合的真子集. ⑵如果A B, B C ,那么A C

3.两个集合相等:如果B A ?与B A ?同时成立,那么,A B 中的元素是一样的,即A B =. 4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U.

5.补集:设A S ?,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集

A B (){}

2

,1,C x y y x

x A

=

=-∈

精品文档

精品文档 (complementary set ), 记作:S A e(读作A 在S 中的补集),即

{,}.S A x x S x A =∈?且e

补集的Venn 图表示:

[预习自测]

例1.判断以下关系是否正确:

{}{}a a ?; ⑵{}{}1,2,33,2,1=; ⑶{}0??; ⑷

{}00∈; ⑸

{}0?∈; ⑹{}0?=; 例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.

例 3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d 的值(用a 表示).

例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.

例5.已知{}3A x x =<,{}

B x x a =<.

⑴若B A ?,求a 的取值范围;

⑵若A B ?,求a 的取值范围

;

精品文档

精品文档 ⑶若R C A R C B ,求a 的取值范围.

[课内练习]

1. 下列关系中正确的个数为( )

①0∈{0},②Φ{0},③{0,1}?{(0,1)},④{(a ,b )}={(b ,a )} A )1 (B )2 (C )3 (D )4

2.集合{}8,6,4,2的真子集的个数是( )

(A )16 (B)15 (C)14 (D) 13

3.集合{

}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}

梯形=D ,则下面包含关系中不正确的是( )

(A )B A ? (B) C B ? (C) D C ? (D) C A ?

4.若集合 ,则_____=b .

5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}.

(Ⅰ)若M ?N ,求实数a 的取值范围;

(Ⅱ)若M ?N ,求实数a 的取值范围.

[归纳反思]

1. 这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意

空集与全集的相关知识,学会数轴表示数集.

2. 深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,

抓住集合语言向文字语言或图形语言转化是打开解题大门的钥匙,解决集合问题时要注意充

分运用数轴和韦恩图,发挥数形结合的思想方法的巨大威力。

[巩固提高]

1.四个关系式:①?}0{?;②0}0{∈;③}0{∈?;④}0{=?.其中表述正确的是[ ]

A .①,②

B .①,③

C . ①,④

D . ②,④ 2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则

=P C U ----------------------[ ] A .{x ∣x 是直角三角形} B .{x ∣x 是锐角三角形}

精品文档

精品文档 C .{x ∣x 是钝角三角形} D .{x ∣x 是锐角三角形或钝角三角形}

3.下列四个命题:①{}0?=;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中

正确的有---------------------------------------------------[ ]

A.0个 B.1个 C.2个 D.3个

4.满足关系{}1,2A ? {}1,2,3,4,5的集合A的个数是--------------------------[ ]

A.5 B.6 C.7 D.8

5.若,x y R ∈,(){},A x y y x ==,(),1y B x y x ??==????

,则,A B 的关系是---[ ] A.A B B.A B C.A =B D.A ?B

6.设A={}5,x x x N ≤∈,B={x ∣1< x <6,x }N ∈,则

=B C A 7.U={x ∣},01582R x x x ∈=+-,则U 的所有子集是

8.已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ?,求实数a 的取值范围.

9.已知集合P={x ∣},062R x x x ∈=-+,S={x ∣},01R x ax ∈=+,

若S ?P ,求实数a 的取值集合.

10.已知M={x ∣x ,0>R x ∈},N={x ∣x ,a >R x ∈}

(1)若M N ?,求a 得取值范围;

(2)若M N ?,求a 得取值范围;

(3)若

M C R N C R ,求a 得取值范围.

精品文档

精品文档交集、并集

[自学目标]

1.理解交集、并集的概念和意义

2.掌握了解区间的概念和表示方法

3.掌握有关集合的术语和符号

[知识要点]

1.交集定义:A∩B={x|x∈A且x∈B}

运算性质:(1)A∩B?A,A∩B?B

(2) A∩A=A,A∩φ=φ

(3) A∩B= B∩A

(4) A? B ? A∩B=A

2.并集定义:A∪B={x| x∈A或x∈B }

运算性质:(1) A ?(A∪B),B ?(A∪B) (2) A∪A=A,A∪φ=A

(3) A∪B= B∪A (4) A? B ? A∪B=B

[预习自测]

1.设A={x|x>—2},B={x|x<3},求 A∩B和A∪B

2.已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩C U B= {5,13,23},C U A∩B={11,19,29},C U A∩C U B={3,7},求A,B.

3.设集合A={|a+1|,3,5},集合B={2a+1,a2+2a,a2+2a—1}当A∩B={2,3}时,求A∪B

[课内练习]

1.设A=(]3,1-,B=[)4,2,求A∩B

精品文档

精品文档

2.设A=(]1,0,B={0},求A ∪B

3.在平面内,设A 、B 、O 为定点,P 为动点,则下列集合表示什么图形

(1){P|PA=PB} (2) {P|PO=1}

4.设A={(x,y )|y=—4x+b},B={(x,y )|y=5x —3 },求A ∩B

5.设A={x|x=2k+1,k ∈Z},B={x|x=2k —1,k ∈Z},C= {x|x=2k ,k ∈Z},

求A ∩B ,A ∪C ,A ∪B

[归纳反思]

1.集合的交、并、补运算,可以借助数轴,还可以借助文氏图,它们都是数形结合思想的体现

2.分类讨论是一种重要的数学思想法,明确分类讨论思想,掌握分类讨论思想方法。

[巩固提高]

1. 设全集U={a ,b ,c ,d ,e},N={b ,d ,e}集合M={a ,c ,d},则C U (M ∪N )

等于

2.设A={ x|x <2},B={x|x >1},求A ∩B 和A ∪B

3.已知集合A=[)4,1, B=()a ,∞-,若A B ,求实数a 的取值范围

4.求满足{1,3}∪A={1,3,5}的集合A

? ≠

精品文档

精品文档

5.设A={x|x 2

—x —2=0},B=(]2,2-,求A ∩B

6、设A={(x,y )| 4x+m y =6},B={(x,y )|y=nx —3 }且A ∩B={(1,2)},

则m= n=

7、已知A={2,—1,x 2—x+1},B={2y ,—4,x+4},C={—1,7}且A ∩B=C ,求x ,y 的值

8、设集合A={x|2x 2+3px+2=0},B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,且A ∩B={

2

1}时,求p 的值和A ∪B

9、某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,两车都乘的18人,求:⑴只乘电车的人数 ⑵不乘电车的人数 ⑶乘车的人数 ⑷只乘一种车的人数

10、设集合A={x|x 2+2(a+1)x+a 2—1=0},B={x|x 2+4x=0}

⑴若A ∩B=A ,求a 的值

⑵若A ∪B=A ,求a 的值

集合复习课

[自学目标]

1.加深对集合关系运算的认识

2.对含字母的集合问题有一个初步的了解

精品文档

精品文档 [知识要点]

1.数轴在解集合题中应用

2.若集合中含有参数,需对参数进行分类讨论

[预习自测]

1.含有三个实数的集合可表示为?

?????1,,

a b a ,也可表示为{}0,,2b a a +,求20042003b a +

2.已知集合A={}21|>-

3.已知全集U={1,3,x x x 2323++},A={1,|2x —1|},若C U A={0},则这样的实数x 是否存在,若存在,求出x 的值,若不存在,说明理由

[课内练习]

1.已知A={x|x<3},B={x|x

(1)若B ?A ,求a 的取值范围

(2)若A ?B ,求a 的取值范围

(3)若C R A C R B ,求a 的取值范围

2.若P={y|y=x 2,x ∈R},Q={y| y=x 2+1,x ∈R },则P ∩Q =

3.若P={y|y=x 2,x ∈R},Q={(x ,y )| y=x 2,x ∈R },则P ∩Q =

4.满足{a ,b} A ?{a ,b ,c ,d ,e}的集合A 的个数是

? ≠ ? ≠

精品文档

精品文档 [归纳反思]

1.由条件给出的集合要明白它所表示的含义,即元素是什么?

2.含参数问题需对参数进行分类讨论,讨论时要求既不重复也不遗漏。

[巩固提高]

1.已知集合M={x|x 3—2x 2—x+2=0},则下列各数中不属于M 的一个是 ( )

A .—1

B .1

C .2

D .—2

2.设集合A= {x|—1≤x <2},B={ x|x

A .a <2

B .a >—2

C .a >—1

D .—1≤a ≤2

3.集合A 、B 各有12个元素,A ∩B 中有4个元素,则A ∪B 中元素个数为

4.数集M={x|N k k x ∈+=,41},N={ x|N k k x ∈-=,4

12},则它们之间的关系是 5.已知集合M={(x,y )|x+y=2 },N={(x,y )|x —y=4},那么集合M ∩N=

6.设集合A={x|x 2—px+15=0},B={x|x 2—5x+q=0},若A ∪B={2,3,5},则A= B=

7.已知全集U=R ,A={x|x ≤3},B={ x|0≤x ≤5},求(C U A )∩B

8.已知集合A={x|x 2—3x+2=0},B={x|x 2—mx+(m —1)=0},且B A ,求实数m 的值

9.已知A={x|x 2+x —6=0},B={x|mx+1=0},且A ∪B=A ,求实数m 的取值范围

10.已知集合A={x|—2<x <—1或x >0},集合B={ x|a ≤x ≤b},满足A ∩B={x|0<x ≤2},A ∪B={x|x >—2},求a 、b 的值

? ≠

精品文档

§2.1.1函数的概念与图象(

1)

[自学目标]

1.体会函数是描述变量之间的依赖关系的重要数学模型,理解函数的概念;

2

.了解构成函数的要素有定义域、值域与对应法则;

[知识要点]

1.函数的定义:

)(x f y

=,A x ∈.

2.函数概念的三要素:定义域、值域与对应法则.

3

.函数的相等.

[预习自测]

例1.判断下列对应是否为函数:

(1)2,0,;x x x R x

→≠∈ (2),x y →这里2,y x =,.x N y R ∈∈

补充:(1),{A R B x ==∈R ︱0x >},:f x y x →=;

(2),:3A B N f x y x ==→=-;

(3){A x R =∈︱0}x >,,:B R f x y =→=

(4){0A x =≤x ≤6},{0B x =≤x ≤3},:2

x f x y →= 分析:判断是否为函数应从定义入手,其关键是是否为单值对应,单值对应的关键是元素对应的存在性和唯一性。

例2. 下列各图中表示函数的是------------------------------------------[ ]

精品文档

精品文档

例3. 在下列各组函数中,)(x f 与)(x g 表示同一函数的是------------------[ ]

A .)(x f =1,)(x g =0x

B .x y =与2x y =

C .2x y =与2)1(+=x y

D .)(x f =∣x ∣,)(x g =2x

63-x (x ≥0)

例4 已知函数=)(x f 求)1(f 及)]1([f f

5+x (x 0<),

[课内练习]

1.下列图象中表示函数y=f(x)关系的有--------------------------------( )

A.(1)(2)(4)

B.(1)(2)

C.(2)(3)(4)

D.(1)(4)

2.下列四组函数中,表示同一函数的是----------------------------------( )

A .24129y x x =-+32y x =-

B .2y x =和y x x =

C .y x =和2y x =

D .y x =和2y x =

3.下列四个命题

(1)f(x)=x x -+-12有意义;

(2))(x f 表示的是含有x 的代数式

(3)函数y=2x(x N ∈)的图象是一直线;

(4)函数y=?????<-≥0,0

,22x x x x 的图象是抛物线,其中正确的命题个数是

) A .1 B .2 C .3 D .0

4.已知f(x)=221(1)1(1)x x x x ?->??-

)= ;

精品文档

精品文档 5.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f =

[归纳反思]

1.本课时的重点内容是函数的定义与函数记号()f x 的意义,难点是函数概念的理解和正确应用;

2.判断两个函数是否是同一函数,是函数概念的一个重要应用,要能紧扣函数定义的三要素进行分析,从而正确地作出判断.

[巩固提高]

1.下列各图中,可表示函数)(x f y =的图象的只可能是--------------------[ ]

C .1,y x x R =-∈与1,y x x N =-∈

D . =)(x f 2-x 1与12)(-=t t g

3.若=)(x f a x +2(a 为常数),)2(f =3,则a =------------------------[ ]

A .1-

B .1

C .2

D .2- 4.设=)(x f 1,1

1±≠-+x x x ,则)(x f -等于--------------------------------[ ] A .)(1x f B .)(x f - C .)(1x f - D . )(x f

5.已知)(x f =12

+x ,则)2(f = , )1(+x f = 6.已知)(x f =1-x ,Z x ∈且]4,1[-∈x ,则)(x f 的定义域是 , 值域是

7.已知)(x f = ()()221111x x x x ?-≥??-

=)33(f

8.设3

()1f x

x =+,求

)]}0([{f f f 的值

精品文档

精品文档

9.已知函数1()3,2f x x =

+求使9()(,4)8

f x ∈的x 的取值范围

10.若12)(2+=x x f ,1)(-=x x g ,求)]([x g f ,)]([x f g

§2.1.1函数的概念与图象(2)

[自学目标]

掌握求函数定义域的方法以及步骤;

[知识要点]

1、函数定义域的求法:

(1)由函数的解析式确定函数的定义域;

(2)由实际问题确定的函数的定义域;

(3)不给出函数的解析式,而由)(x f 的定义域确定函数)]([x g f 的定义域。

[预习自测]

例1.求下列函数的定义域:

(1

)()f x x = (2))(x f =x x -1(3)1()21f x x

=+ (4))(x f =+-x 5x -21 分析:如果()f x 是整式,那么函数的定义域是实数集R ;如果()f x 是分式,那么函数的定义域是使分母0≠的实数的集合;如果()f x 是二次根式,那么函数的定义域是使根号内的表达式≥0

精品文档

精品文档 的实数的集合。★注意定义域的表示可以是集合或区间。 例2.周长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x

,求

此框架围成的面积y 与x 的函数关系式,并指出其定义域

例3.若函数=y )(x f 的定义域为[]1,1-

(1)求函数(1)f x +的定义域;

(2)求函数=y )41

()41(-++x f x f 的定义域。

[课内练习]

1.函数()1

f x x x =-的定义域是―――――――――――――――――( )

A.(),0-∞ B.()0,+∞ C.[0,)+∞ D.R

2.函数f(x)的定义域是[1

2,1],则y=f(3-x)的定义域是―――――――――(

) A [0,1] B [2,5

2] C [0,5

2] D (),3-∞

3.函数()f x =()011x x -+-的定义域是:

4.函数)5lg()(-=x x f 的定义域是

5.函数()()1log 143++--=x x x

x f 的定义域是

[归纳反思]

1.函数定义域是指受限制条件下的自变量的取值;

2.求函数的定义域常常是归结为解不等式和不等式组;

精品文档

精品文档 [巩固提高]

1.函数y =21x -+12-x 的定义域是----------------------------[ ]

A .[1-,1]

B .(),1[]1,+∞-∞-Y

C .[0,1]

D .{1,1-}

2.已知)(x f 的定义域为[2,2-],则)21(x f -的定义域为------------[ ]

A .[2,2-]

B .[]23,21-

C .[]3,1-

D .[,2-]2

3 3.函数

1x y +=------------------------------------[ ]

A .{}0x x >

B .{}0x x <

C .{}0,1x x x <≠-

D .{}

0,1x x x ≠≠- 4.函数y =x

x 1+的定义域是 5.函数)(x f =1+x 的定义域是 ;值域是 。

6.函数11y x

=-的定义域是: 。 7.求下列函数的定义域

(1) y =32+x ; (2)y =

)

1)(21(1+-x x ; (3)51+-=x x y

8.若函数()f x 的定义域为[]3,1x ∈-,则()()()F x f x f x =+-的定义域.

9.用长为30cm 的铁丝围成矩形,试将矩形面积S (2cm )表示为矩形一边长()x cm 的函数,并画出函数的图象.

精品文档

精品文档

10.已知函数)(x f =c bx ax ++2

,若1)()1(,0)0(++=+=x x f x f f ,求)(x f 的表达式.

§2.1.1函数的概念与图象(3)

[自学目标]

掌握求函数值域的基本求法;

[知识要点]

函数值域的求法

函数的值域是由函数的定义域与对应法则确定的,因此,要求函数的值域,一般要从函数的定义域与对应法则入手分析,常用的方法有:

(1)观察法;(2)图象法;(3)配方法;(4)换元法。

[预习自测]

例1. 求下列函数的值域:

(1)21,{1,2,3,4,5}y x x =+∈;

(2)=y x 1+;

(3)=y 1

+x x ;

(4)=y 22

11x

x +-;

精品文档

精品文档 (5)=y 322+--x x 变题:=y 322+--x x 5(-≤x ≤2-);

(6)=y 12-+x x

分析:求函数的值域,一种常用的方法就是将函数的解析式作适当的变形,通过观察或利用熟知的基本函数(如一次函数、二次函数等)的值域,从而逐步推出所求函数的值域(观察法);或者也可以利用换元法进行转化求值域。

例2. 若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4-

-,求m 的取值范围

[课堂练习]

1.函数()201y x x

=>+的值域为( ) A .[]0,2 B .(]0,2 C .()0,2 D .[)0,2

2.函数y=2x 2-4x-3,0≤x ≤3的值域为 ( )

A (-3,3)

B (-5,-3)

C (-5,3)

D (-5,+∞)

3.函数[]2,4,1y x x =-∈--的最大值是 ( )

A .2

B .

12 C . 1- D . 4- 4.函数2y x =()2x ≠-的值域为

5.求函数

[归纳反思]

求函数的值域是学习中的一个难点,方法灵活多样,初学时只要掌握几种常用的方法,如观察法、图象法、配方法、换元法等,在以后的学习中还会有一些新的方法(例如运用函数的单调

精品文档

精品文档 性、配方法、分段讨论法、不等式法等等),可以逐步地深入和提高。

[巩固提高]

1.函数y =)1(1>x x

的值域是---------------------------------------[ ] A .(),0()0,+∞∞-Y B .R C .(0,1) D .(1,)∞+走

2.下列函数中,值域是(0,∞+)的是--------------------------------[ ]

A .y = 132+-x x

B .y =21+x ()0>x

C .12++=x x y

D .21

x y =

3.已知函数()f x 的值域是[]2,2-,则函数()1y f x =+的值域是--------[ ]

A.[]1,3-

B.[]3,1-

C.[]2,2-

D.[]1,1-

4.)(x f =∈-x x x ,2{3,2,1±±±},则)(x f 的值域是: .

5.

函数2y x =-的值域为: .

6.函数2122

y x x =-+的值域为: . 7.求下列函数的值域 (1

)1y =

(2)221y x x =--- (3)2(23)y x x =-≤≤ (4)2211x y x -=+ (5

)2y x =(6)y =x

x 3121-+

8.当[1,3]x ∈时,求函数2

()26f x x x c =-+的值域

§2.1.1函数的概念与图象(4)

[自学目标]

1.会运用描点法作出一些简单函数的图象,从“形”的角度进一步加深对函数概念的理解;

2.通过对函数图象的描绘和研究,培养数形结合的意识,提高运用数形结合的思想方法解决数学

问题的能力.

[知识要点]

本文来源:https://www.bwwdw.com/article/cvrl.html

Top