土木建筑工程工程管理毕业论文中英文资料外文翻译文献
更新时间:2023-03-08 04:57:29 阅读量: 外语学习 文档下载
- 电大土木建筑工程毕业论文推荐度:
- 相关推荐
土木建筑工程工程管理 中英文资料外文翻译文献
Abstract:To study the application of continuum structural topology optimization methods to real engineering structures,an optimization method for an optimal topology design of multistory steel frame bracing systems is presented.On a sensitivity analysis,an element removal criterion for continuum structures with stress and multi-displacement constraints under multiple lateral loading conditions is proposed.A concept of mean thickness of a design domain is provided to ensure the reasonableness of optimal results.In the proposed optimization method,the optimal design of an unbraced steel frame without displacement constraints is performed firstly,and then the optimal topology of a bracing system for the multistory steel frame considering displacement constraints is obtained by using evolutionary structural optimization and the given removal criterion,and finally the optima layout of the bracing system is interpreted as bracing members.An example of 3-bay 12-story plane steel frame shows that it is effective for the given optimization method in the optimal design of bracing systems for multistory steel frames.
Key words:steel frame;bracing system;continuum;topology optimization;evolutionary structural optimization
2.1 Reinforced Concrete
Plain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened
word文档可自由复制编辑
concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.
It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.
The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.
Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.
It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site,
word文档可自由复制编辑
availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.
A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.
The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.
2.2 Earthwork
Because earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.
Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by
word文档可自由复制编辑
drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.
The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.
Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.
Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.
Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m 3 heaped. The largest self-propelled scrapers are of 19 m 3 struck capacity ( 25 m 3 heaped )and they are driven by a tractor engine of 430 horse-powers.
Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m 3, and the largest standard types are of about 4.5 m 3. Special types include the self-loading dumper of up to 4 m 3
word文档可自由复制编辑
and the articulated type of about 0.5 m 3. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.
2.3 Safety of Structures
The principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.
Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. There are two categories of limit state :
(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.
(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.
Computational methods used to verify structures with respect to the different safety conditions can be separated into:
(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.
(2)Probabilistic methods, in which the main parameters are considered as random parameters.
Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:
(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.
word文档可自由复制编辑
正在阅读:
土木建筑工程工程管理毕业论文中英文资料外文翻译文献03-08
项目部安全例会制度09-04
医学统计学__统计分析方法的选择08-21
生活的启示群文阅读反思12-16
汽车事故工程11-01
15《管子· 重令第十五》白话译文08-01
chenyiwei新会计准则解答汇编12-18
教师个人工作总结08-23
- 奶牛焦虫病的诊断与防治 - 医学期刊频道--首席医学网
- 外包工程发包流程
- 管理信息系统(路晓丽版)课后题答案(1-12章全)
- 小学语文课题研究方案
- 企业内部培训师管理制度
- 《史记》拓展阅读设计
- 入口广场铺装施工方案
- 附录B塔式起重机安装验收记录表
- 云南省昆明三中2014-2015学年高二下学期期中考试物理试卷 (Word版含答案)
- 郑州大学毕业设计附件
- 民俗学视野下的中国百年歌谣研究
- 巩固练2020统编版(2019)高二选择性必修上册第一单元阶段复习 第一单元仿真模拟训练
- 量化研究学习书单
- 给尾注编号加方括号超级简单方法
- 第1课《放大镜》
- 定价的步骤及新产品定价策略(1)
- 八年级英语下册第六单元基础知识
- 全省地方志工作会议综述
- An Investigation of Tightly Coupled Time Synchronous Speech Language Interfaces Using a Uni
- 新目标英语八年级(上)单元测试题(Units6-7)
- 外文
- 工程管理
- 土木
- 中英文
- 毕业论文
- 建筑工程
- 文献
- 翻译
- 资料
- 2018高中英语课外阅读材料集锦(阅读+单词学习)
- 2017小升初综合素质测评英语阅读材料汇总!
- 小学英语教师经验交流材料
- 牛津高中英语模块一Unit1自主学习辅导材料
- 高考听力练习材料4-10套
- 英语基础知识复习资料
- 英语答案
- U1-七年级英语(上)辅助学习资料
- 智慧课室环境下小学生自主学习的英语教学模式建构
- 探究英汉翻译软件在大学生英语学习中的应用
- 《民族地区农村初中英语分层教学实践研究》课题研究中期汇报材料
- 托福口语强化班讲义
- 三学四整顿剖析材料
- 小升初英语复习资料大全
- 最新托福口语复习材料
- 人教版七年级英语(上册)辅导材料
- 最新人教版六年级英语上册教案(全册)
- 托福综合口语Task 6满分攻略
- 浅谈初中英语教学中学生自主学习能力的培养
- 英语单词学习有哪几种方法