The penultimate rate of growth for graph properties
更新时间:2023-05-23 01:44:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPH
PROPERTIES
´´´ANDDAVIDWEINREICHJOZSEFBALOGH,BELABOLLOBAS,
Abstract.GivenapropertyPofgraphs,writePnforthesetofgraphswith
vertexset[n]havingpropertyP.Wecall|Pn|thespeedofP.Recentresearch
hasshownthatthespeedofamonotoneorhereditarypropertyPcanbea
constant,polynomial,orexponentialfunctionofn,andthestructureofthe
graphsinPcanthenbewelldescribed.Similarly,|Pn|canbeoftheform2(1 1/k+o(1))n(1 1/k+o(1))n/2or2forsomek>1andthepropertiescanben
describedandhavewellbehavedspeeds.Inthispaper,wediscussthebehavior
ofpropertieswithspeedsbetweentheselatterbounds,i.e.betweenn(1+o(1))n
2and2(1/2+o(1))n/2.
1.Introduction
Agraphpropertyisa(in nite)collectionof(labeled)graphsclosedunderiso-morphism.Thepropertyconsistingofall nitegraphsiscalledthetrivialproperty.Apropertyishereditaryifitisclosedundertakinginducedsubgraphs,anditismonotoneifitisclosedundertakingsubgraphs.Forexample,beingacyclic,planar,orperfectarehereditaryproperties,whileonlythe rsttwoaremonotone.Rathertrivially,everyhereditarypropertycanbede nedintermsofforbiddeninducedsubgraphs,andeverymonotonepropertycanbede nedintermsofforbiddensub-graphs.
GivenapropertyP,writePnforthesetofallgraphsinPwithnvertices.Wecallthisthen-levelofP.Thenumberofgraphsinthen-level,|Pn|,iscalledthespeedofaproperty.Inrecentyears,therehasbeenmuchresearchintothesequence(|Pn|)∞n=1forhereditaryproperties(see,forexample,[13],[5],[1])andformonotoneproperties(see,forexample,[2],[6]).Themostnaturalquestionsaboutthespeedofahereditaryproperty,which rstappearedin[13],areasfollows.
1.Doeslimn→∞
2.Doeslimn→∞
3.Doeslog|Pn|nexistforallhereditarypropertiesP?log|P|existforallhereditarypropertiesP?
log|Pn|limn→∞log
existforallhereditarypropertiesP?n|P|limn→∞log
existforallhereditarypropertiesP?4.Does
The rstquestionwasanswereda rmativelybyScheinermanandZitoin[13],andtheotherswereleftbythemasopenquestions.Thefourthquestionwasanswereda rmativelybyBollob´asandThomasonin[5].However,thesecondandthirdquestionsremainedopen.Inthispaperweanswerbothnegatively,evenunderastrongconditiononthestructureoftheproperty.Indoingso,weshedsomelightonagapintheexistingresearchonspeeds.
Whileinvestigatingthequestionsabove,ScheinermanandZito[13]discoveredthatthespeedsequenceoftenhasawell-de nedbehavior.Theypresentedaroughhierarchyofspeedsforhereditaryproperties,showingthatthespeedofapropertymustfallintocertainrangesofgrowth.EarlierresultsbyBollob´asandThomasonResearchpartiallysupportedbyOTKAgrantF026049.
ResearchpartiallysupportedbyNSFGrantDMS9971788.
1
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
2´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
[5]hadshownthatthehighestspeedofgrowthishighlyconstrainedaswell.Thepresentauthorsprovidedamoredetailedpictureofthehierarchyofspeedsforhereditarypropertiesin[1]andfurthermoredescribedthestructureofpropertiesfallingintoeachrangeofspeed.Similarresultsformonotonepropertieswereshownin[2].
Theseresultscanbebrie ysummarizedinthefollowingtheorem,whichpresentsfourfunctionalrangesintowhichthespeedofahereditarypropertymayfall.The rstlevelofgrowthcanbedividedintothreepartsdependingonwhetheri=0,i=1,ori>1.
Theorem1.LetPbeahereditarypropertyofgraphs.Thenoneofthefollowingistrue:
1.thereexistsN,k∈Nandacollection{pi(n)}ki=0ofpolynomialssuchthatfor kalln>N,|Pn|=i=0pi(n)in,
2.thereexistsk∈N,k>1suchthat|Pn|=n(1 1/k+o(1))n,
23.n(1+o(1))n≤|Pn|≤no(n),
24.thereexistsk∈N,k>1suchthat|Pn|=2(1 1/k+o(1))n/2.
The rsttwocasesandajumptothethirdaredescribedandprovenbytheauthorsin[1,3].Thelastcaseandthegapbetweencase3and4areshownbyBollob´asandThomassonin[5,6].Speci cally,Theorem1andtheresultsof[1]implythatifthespeedofapropertyfallsintoeitherthe rsttwoorthe nalrange,thespeedactuallyapproachesalimitingfunctionandthestructureofgraphsinthepropertycanbedescribed.EvenfromtheformofthestatementofTheorem1,however,itisclearthattheexactbehaviorofpropertieswithspeedsfallingintothethirdrangeisnotwellunderstood.
Forthisrange,eventheboundshavenotbeenfullydescribed,althoughthelowerboundisunderstoodandcanbeapproximatedusingresultsfrom[2].InSection2ofthispaper,weexploretheupperboundofthisrangeandshow,asintheotherranges(includingwithinthe rstrange),thatthereisadiscontinuousjumpintherangesofspeedsallowed.
InSection3wedescribeatypeofproperty,aselectivelyrestrictedproperty,whichexistsinthepenultimaterangeofgrowth.Weshowthatsomeselectivelyrestrictedpropertieshavespeedstowardsthebottomofthethirdrangeofgrowth,whileothershavehighspeeds.
InSection4,wedemonstrateparticularselectivelyrestrictedpropertieswhichprovideanin nitecollectionofnegativeexamplesforthesecondandthirdquestionsofScheinermanandZito.Speci cally,wedescribeamonotone(andhenceheredi-tary)propertywithspeedthatoscillatesin nitelyoftenbetweentwofunctionsneartheupperandlowerboundsonthepenultimaterange.
Inthetwosubsequentsections,wediscussimprovementsontheconstructiongiveninSection4.Weclosewithaconjecturethattheresultspresentedherearenearlythebestonecouldobtain.
2.Boundsonthefactorialrange
Whataretheactualupperandlowerlimitsonthepenultimaterangeofgrowth?Theorem1impliesthatifPishereditaryandforsome >0wehave|Pn|<n(1 )nforin nitelymanyvaluesofn,thenthepropertywillfallintoranges1or2.Thesameistrueformonotoneproperties,asisshownin[2].Thetheoremalsosuggests
2thatifthereisacsuchthat|Pn|>2cnforin nitelymanyvaluesofn,thenthe
speedofthepropertyfallsintorange4.
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES3
Infact,itisshownin[3]thatthesmallestpropertyinthepenultimaterangeisthepropertyPclique={G:everycomponentofGiscomplete}orthecom-
nplementaryproperty.Thesepropertieshavespeed|Pclique|=b(n),whereb(n)
isthenthBellnumber.Hencethelowerboundonthisspeedrangeisb(n)~ 1 1/lognnnn(logn) n.
Withthelowerboundknown,webeginourinvestigationofthepenultimate2rangeatitsupperbound.Whatspeedsofthetype2o(n)arepossibleforgraphproperties?Thisquestionmaybeansweredmoreeasilyformonotonethanforhereditaryproperties;infactthequestionisopenforthelatterclass.Weshallshow2 thatgivenanymonotonepropertyP,eitherthereisan suchthat|Pn|<2nor
(1/4+o(1))n2elsethespeedisatleast2.
Notationandde nitions:ForagraphG,wewritev(G)=|V(G)|ande(G)=|E(G)|.Further,wecallagraphGann-graphifv(G)=n,andH Gak-subgraphifv(H)=k.Thecollectionoflabeledn-graphs(on[n])isdenotedGn.
Thefollowinglemmaisasimpleobservationwhichnonethelessprovidesstronginformationaboutlargegraphproperties.
Lemma2.Let >0and0<c≤2.ThereisanNsuchthatforalln>N,ifS2 c+ isasetofgraphsonnverticesand|S|>2n,thenthereisagraphG∈Swithe(G)>n2 c.
Proof.Letfc(n)bethenumberofgraphsonnverticeswithatmostn2 cedges.Then,
fc(n)≤2 cn n
j
=2 ≤n2 cj=0en22n2 c2 c n2 c e n2 c
n2 cncn=2n2 c(lg(e/2)+clgn)+(2 c)lgn=2n2 c+o(1).
Henceforall thereisanNsuchthatforalln>N,fc(n)<2n.Thusif
2 c+ n>NandthereisacollectionSofn-graphswith|S|>2n,thenthereisa
2 cgraphG∈Swithe(G)>n.
Wearenowreadytoprovethemainresultofthissection.NotethatapropertyPismonotoneifandonlyifthereisa(possiblyin nite)collectionHofgraphssuchthatP=Mon(H),whereMon(H)isthesetofallgraphsGsuchthatnosubgraphofGisisomorphictoanyH∈H.Wealsode neHer(H)asthesetofallgraphsGsuchthatnoinducedsubgraphofGisisomorphictoanyH∈H.
Theorem3.LetPbeamonotoneproperty.If|Pn|=2o(n),thenthereisat≥1
2 1/t+o(1)suchthat|Pn|≤2n.
Proof.LetP=Mon(H)beamonotonepropertywithspeed|Pn|=2o(n).IfeverygraphH∈Hhaschromaticnumberatleast3,then{G:Gisbipartite}
1nMon(H)=P,inwhichcase|Pn|≥2(2).HenceHcontainsabipartitegraph
H.LettbetheorderofthelargersetinthebipartitionofH.Assumeforthe
2 1/t+o(1)sakeofcontradictionthat|Pn|>2n.ByLemma2,thereisthenaG∈P
ov´ari,S´os,andTur´an[8]saysthatGsuchthate(G)>n2 1/t.AresultofK
containsthegraphKt,tasasubgraph.ThusGcontainsHasasubgraph,whichisacontradiction.222 c+
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
4´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
2Theresultaboveisnearlythebestresultpossibleaboutthegapbelow2cn.In
theproof,weshowedthatlargepropertiesmustcontainlargecompletebipartitegraphs.Ontheotherhand,wecanconstructpropertiesthatnearlyreachtheupperboundgivenforwhichalargecompletebipartitegraphisforbidden.Todoso,weusethewell-knownfactthatforanytthereexistsabipartitegraphwithatleastn2 2/tedgesthatcontainsnosubgraphisomorphictoKt,t(see,i.e.,[4],p.316,
2Thm.VI.2.10).Hence,forexample,ifP=Mon({Kt,t,K3}),then|Pn|=2o(n)
2 2/t2 2/tand|Pn|≥2n.ThusTheorem3infactguaranteesatsuchthat2n≤2 1/t|Pn|<2n.Weconjecturethatthesameistrueforhereditaryproperties,and
2 2/tagainthiswouldbethebestpossible,as|Pn|≥2nforP=Her({Kt,t,K3}).Theconjecturebelowdi ersfromTheorem3onlyinconsideringhereditaryrather
thanmonotoneproperties.
Conjecture4.LetPbeahereditaryproperty.If|Pn|=2o(n),thenthereisa
2 1/tt≥1suchthat|Pn|≤2n.
Thisconjectureisfarfromproven,however.Whileitwouldbesurprising,itisnotinconceivablethattherecouldbepropertieswithotherspeeds.AresultofRuzsaandSzemer´ediabouthypergraphssuggeststhatpropertiesofhypergraphsdonotbehavesonicely,butthecalculationsandconsiderationsarecompletelydi erent.
3.Somespecialpropertiesandtheirgrowth
TheresultsoftheprevioussectionimplythatifthespeedofPisinthepenul-
2 1/ttimaterange,thereisanintegert≥1suchthatn(1+o(1))n<|Pn|<2n.This
isprovenformonotonePbutonlyconjecturedforhereditaryP.Wenowturnourattentiontothequestionofwhatspeedsareactuallyachievedinthisrangeforgraphproperties,eithermonotoneorhereditary.Wepresentacollectionofpropertieswithspeedslyingintherange.
Our rstpropertyisde nedintermsofthedensityofsubgraphs.Wede nethec-densepropertyQcbyQc={G:e(H)≤cv(H)forallH G}.ThefollowingassertionwasprovedbyScheinermanandZito[13].
(c+o(1))nTheorem5.Foranyc>1,|Qn.c|=n2
ThepropertyQcisamonotoneproperty,andthisresultshowsthatanyspeedofthetypencn,c>1isachievable.Thenextpropertywedescribeisnotmonotoneorhereditary,butitsn-levelcontainsthen-levelofQc.Itwillbeusefulinfurther
n={G∈Gn:e(G)≤cn}.proofsinthissection.Thec-densen-levelissimplyScThefollowinglemmagivesaboundonitssize.
nLemma6.Ifc>1,then|Sc|<f(n)ncn,withf(n)=O(1.5n).
Proof.Notesimplythat
cn n cn j 2n2|Sc|≤≤en/2jjj=0j=0
where,easily,f(n)=O(1.5n). cncn<cnen2/2cn=cn(en/2)=f(n)ncn,
Weshowedintheprevioussectionthattherearepropertieswithspeedsatthe
2 2/t2 1/t≤|Pn|<2n.Hence,therearetopofthethirdrange,thatis,with2n
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES5
propertieswithspeedsthroughouttherangeofthethirdcaseofTheorem1.Thisdoesnotnecessarilymeanthatanyspeedcanbeachieved,however.Weexamineconstraintsondemonstrablyachievablefunctionslaterinthispaper.
Asmentionedintheintroduction,ifthespeedofapropertyfallsintoanybutthethirdrange,|Pn|canbedescribedwitha“nice”function.However,weshallshowthatthisisnotthecaseforthethirdrange.Inthisrange,itispossibleforthespeedtooscillatebetweentwodi erentfunctionsin nitelyoften.
Moreprecisely,thequestionweexamineisasfollows.IsthereapropertyPsothatforfunctionsf(n)<g(n),|Pn|oscillatesin nitelyoftenbetweenthem?Clearlytherearechoicesoff(n)andg(n)forwhichitisnotpossibletocon-structsuchahereditaryproperty.Inparticular,Theorem1impliesthatifg(n)≤
2n(1 1/k+o(1))nforsomekorf(n)≥n(1 1/k+o(1))n/2forsomek,then|Pn|cannotoscillate.
However,weshallshowthatformanychoicesoff(n)andg(n)inasubrangeofthethirdrangeofTheorem1,wecanconstructsuchaproperty.Furthermore,thispropertyismonotone(andthereforealsohereditary).Ourmethodsareprobabilisticinnature,andweproceedinsteps, rstdemonstratingapropertywith xedupperandlowerboundsontheoscillationofitsspeed,andthenbyadjustingtheupperandlowerbounds.
WebeginwithatechnicalprobabilisticlemmaregardingsetsofgraphsandGn,p(i.e.arandomgraphoforderninwhichedgesareselectedindependentlyatrandomwithprobabilityp).
Lemma7.Let >0be xedandletp=p(n)≤1/2.Ifnissu cientlylargeandN √nasetofgraphsT Gsatis esP(Gn,p∈T)≥1/2+2 ,then|T|≥ pN, whereN=n
2andq=1 p.
Proof.Ifnissu cientlylarge,P(e(Gn,p)≤pN)≤1/2+ .HenceP(Gn,p∈Tande(Gn,p)>pN)≥1/2+2 (1/2+ )= .NotethatforanyH∈GntheprobabilityP(Gn,p=H)dependsonlyonthenumberofedgesinH.Hence,ifH0,H1∈Gnwithe(H0)<e(H1),thenP(Gn,p=H0)≥P(Gn,p=H1).Thus,ife(H)>pN,thenforanyH withe(H )=pN,wehave 1 N P(Gn,p=H)<P(Gn,p=H)<pqN.pN
Then
P(Gn,p∈Tande(Gn,p)>pN)≤|{H∈T,e(H)>pN}|
N √so|T|≥ pN. NpqNpN 1,
Wewillbeapplyingthislemmainaspeci cform,expressedinthefollowingcorollary. Corollary8.Supposep=p(n)<1/2,pn
2→∞.Ifnissu cientlylargeandnthesetT Gsatis esP(Gn,p∈T)≥2/3,then n
p(n2 2). |T|≥(1)≥(1/p)np2
Thiscorollarywillbeappliedtoshowthattheoscillatingpropertiesweconstructgrowasdesired.Thefollowingbasicconstructionwillbeusedasastartingpointineachofthetheoremsthataretocome.Letc>1andν=(ν1,ν2,...)bean
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
6´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
increasing(possibly nite)sequenceofnaturalnumbers.Wede neaselectivelyrestrictedpropertyPν,cas{G:ifH Gandv(H)=νiforsomei,thene(H)≤cνi}.NotethatPν,cismonotoneandthereforealsohereditary.
ThepropertyPν,chasaspeedwhichgrowsinapredictableway.
Lemma9.Letc>1, <1/c,ν=(νi)∞i=1beasequenceofnaturalnumbersandk=sup{νi∈ν}.Then
nn1.|Pν,c|≥n(c+o(1))nand|Pν,c|=n(c+o(1))nwhenevern=νi,
2 n2.ifk<∞andnissu cientlylarge,|Pν,c|≥2n.
Proof.Foranysequenceνandc>1,wehaveQc Pν,cand,foranyi,theνi-
νiνinνi Sc.Hencewehave|Pν,c|≥n(c+o(1))nforallnand|Pνi|≤|Sc|≤levelPν,c
iνiontheset{νi}ingTheorem5foralowerbound,wenobtain|Pν,c|=n(c+o(1))nwhenevern=νi.
Forthesecondpart,assumek<∞.ConsiderthepropertyP(k),c,where(k)is
nnthesequence(1,...,k).Wehave|P(k),c|≤|Pν,c|foralln.Hencewewouldhave(c+o(1))ν
nn.theresultif,forsu cientlylargen,|P(k),c|≥n
Chooseδsothat >δ>1/c.Letp=n δandconsiderGn,p.Weconsider
ntheprobabilitythatGn,p∈/P(k),c.ThisistheprobabilitythatGn,phasa“bad”
subgraph,thatis, nPGn,p∈/P(k),c=P(G∈Gn,p:thereisH Gwithv(H)≤kande(H)>cv(H))2
≤
≤
≤k j=1E(numberofj-subgraphsofGn,pwithmorethancjedges) j cj2k nj=1jpcj≤ j 2 cjk enej jj=1k
j=1Cjn 1 δcjn δcj ck eejj=1j2cn1 δc=,
whereCj(~jc 1)isaconstantdependingonjandc.Sinceδc>1,wehave1 δc<0,sothisprobabilitygoestozeroasngoestoin nity.Choosen0minimalsothattheprobabilitythatGn0,nδhasa“bad”subgraphislessthan1/3.Note0:Ghasthatthisprobabilityismonotonedecreasinginn.Thatis,ifP(G∈Gn0,nδ0abadsubgraph)<1/3,thenP(G∈Gn,nδ:Ghasabadsubgraph)<1/3foralln>n0.
NowwecanapplyCorollary8tothesetT=P(k),ctoobtaintheresult δn02 δ n0 δ n 0(2)>2n0/2. P(k),c ≥n0
nAlloftheinequalitiesaboveholdwheneverP(Gn,p∈T)≥2/3,sowehave|P(k),c|>
2n/2foralln>n0.Thuswecanchoosenlargeenoughtoensure2n
andobtainourresult.2 δ2 δ/2>2n2
4.Oscillatingproperties:Thesecondandthirdquestions
HavingdonethepreliminarycalculationsinSection3,wearenowreadytoprovethe rstofthreetheoremsregardingpropertiesthatoscillate.We rstconstructapropertywithalargerangeofoscillation.TheoscillationofthisspeedprovidesanegativeanswertothethirdquestionofScheinermanandZito;weshallanswerthesecondquestionwithTheorem11.
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES7
Lemma9givesapropertywiththeproperboundsonitsspeed,soallthatremainsistochooseasequencesothatthepropertygrowsasdesired.Weshallbeusingsequencesandtheirelementssigni cantlyintherestofthepaperandshallabusenotationslightly.ForasequenceN,weshallsayn∈Nifthevaluenappearssomewhereinthesequence.IfNisasubsequenceofsequenceM,weshallwriteN M.Inotherwords,weshallusesetnotationwithsequencestomeanthattherelationsholdforthesetofelementsinthesequence.
Theorem10.Letc>1and >1/c.Thereexistsequencesν=(νi)∞i=1and∞µ=(µi)i=1,whereµi=νi 1foralli,suchthat
n1.|Pν,c|=n(c+o(1))nwhenevern=νi,
2 n2.|Pν,c|≥2nwhenevern=µi,
2 n3.n(c+o(1))n≤|Pν,c|<2nifn=µi.
Proof.Wechooseν1,ν2,...,onebyone,startingwithν1=3.Havingchosen2 nν1,...,νk,wesetν=(ν1,...,νk)andnotethatbyLemma9,|Pν,c|≥2nfor
2 µk+1su cientlylargen.Chooseµk+1>νkminimalsuchthat|Pν,c|≥µk+1µk+1.
Setνk+1=µk+1+1.
Continuinginthisway,weobtainanin nitesequenceandtherequiredproperty.TheresultsinTheorems3and10suggestthatncn 2nisanaturalrangeofoscillationthatmayoccurinthepenultimaterange.However,therearemanyothertypesofoscillationpossible.We rstshowthattheupperboundoftheoscillationcanbeanyfunctionintherangethatwechoose,and,further,thattheoscillationcanbeconstrainedtoremainveryclosetotheupperbound.Choosingf(n)=n(d+o(1))nforsomed>cthengivesanegativeanswertothesecondquestionofScheinermanandZito.
WithTheorem12,weshallshowasimilar,thoughslightlyweaker,resultforthelowerbound.2 Givenafunctionf(n)≤2n,Theorem10givesasequenceνwhichguarantees
nthat|Pν,c|oscillatesbetweenn(c+o(1))nandsomevalueabovef(n)in nitelyoften.Clearly,wecanchooseνsothatthespeedonlygoesabovef(n)whenn=νi 1forsomei.However,wecandobetterthanthisbycarefullytruncatingourpropertiesatlevelµi=νi 1andshowingthatthiswillnota ectanyaspectoftheconstructionweperformsubsequently.Thisispreciselythemethodofthefollowingtheorem. Notethatweconstrainf(n)>ncn>n(c+o(1))nsothatoscillationwillactuallyoccur.
Theorem11.Letc>1,c >c,and >1/c.Letf(n)beafunctionsuchthat 2 ∞ncn<f(n)≤2nforalln.Thereexistsequencesν=(νi)∞n=1andµ=(µi)n=1andamonotonepropertyPsuchthat
1.|Pn|=n(c+o(1))nwhenevern=νi,
2.|Pn|>f(n) n!whenevern=µi,
3.|Pn|≤f(n)foralln,
4.|Pn|≥n(c+o(1))n.
Proof.ChoosesequencesνandµasinTheorem10,selectingvaluesofµiaccording2 nnto|Pν,c|≥f(n)ratherthan|Pν,c|≥2n.
µinThenthepropertyPν,chasspeed|Pν,c|≥f(µi)and|Pν,c|<f(n)forallsu -
cientlylargen=µi,sincen(c+o(1))n<f(n).
WewillusethefactthatifPismonotoneandGisann-graphinPsuchthatG HforanyothergraphonnormoreverticesinP,thenP\{H:H~=G}is2 1/c
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
8´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
stillamonotoneproperty.Thatis,removinggraphsfromPkhasnoe ectonPnanddoesnotdependonthegraphsinPnforanyn<k.Furthermore,removingagraphandallgraphsisomorphictoitfromapropertyreduces|Pn|byatmostn!.Ifwechoosegraphstoremovecarefully,thispropertywillremainmonotone.(N.B.:thesameistrueforhereditaryproperties.)
WeshallcallagraphG∈PeligibleinPife(G)>cv(G)andtherearenographsH∈PwithG H.ForthepropertyPν,c,ifνi 1≤v(G)<νi 1(=µi),Giseligibleifandonlyiftherearenoµi-graphsHwithG H.Ifv(G)=µi,thenweneedthefurtherconditionthatnoνi-graphscontainGasasubgraph.
Toconstructapropertysatisfyingthetheorem,weremoveµi-graphsfromPν,ctoobtainP.WeonlyneedtoshowthatthereisasetF,closedunderisomorphism,
µiµiconsistingofeligibleµi-graphsinPν,csuchthatf(n) n!<|Pν,c F|≤f(n).Bythecommentinthepreviousparagraph,changingapropertyattheµi-levela ects
otherlevelsifandonlyifita ectstheνi-level.
µiνiaresubgraphsofgraphsinPν,c?ForanymonotoneHowmanygraphsinPν,ckpropertyP,ifD={G:v(G)=k 1andthereisanH∈PksuchthatG H},
thenDk={G:G~=H v,H∈Pk,v∈V(H)}.SincePismonotonethefactthatPkisclosedundertakingsubgraphsensuresthatwegetallpossiblesubgraphs.(c+o(1))νiµiHence|Dk|≤k·|Pk|.Thus,thereareatmostνi·νigraphsinPν,cthat
iνiaresubgraphsofthoseinPν,c.Hence|Dνi|≤µiforsu cientlylargei.
Givenacollectionofgraphs{Gj}j∈A,letF({Gj}j∈A)bethesetofallgraphs
iνi 1isomorphictoGjforsomej∈AandletPk=Pν,c\F({Gj}j∈A).Wewishto
iibuildacollectionofeligiblegraphssothatPkwillbemonotoneandf(µi)≥|Pk|>f(µi) µi!.
(c+o(1))µiµiµiAs|Dνi|≤µi<f(µi)≤|Pν,c|,thereareeligiblegraphsinPν,c.LetG1
µiibeaneligiblegraphinPν,c.ThepropertyP1ismonotonesinceG1eligibleimplies
µiiiG1 HforanyH∈Pν,c G1.Further|Pν,c| |P1|≤µi!,so|P1|>f(µi) µi!.
Weproceedbypickingeligiblegraphsinorder,stoppingatthe rstpointwhen
ii|Pk|≤f(µi).Clearly,ifwehavepicked{Gi}ki=1and|Pk|>f(µi),thecounting
iargumentaboveguaranteesthatPkstillhasaneligiblegraphGk+1,sothisprocess
iicancontinue,and|Pk| |Pk+1|≤µi!.Thus,ifwhenconsideringµiwestopwitha
isetofligraphs,|Pli|≥f(µi).
nLetPn=Pν,cforalln∈/µandPµi=Pli
iforalli.Asnotedabove,Pisa
imonotoneproperty.Clearly|Pνi|=νiandf(µi)≥|Pµi|>f(µi) µi!.
/µ.Also,byourchoiceofνi,|Pn|<f(n)foralln∈(c+o(1))µ(c+o(1))ν
5.Oscillationfrombelow
CanweproduceoscillationsimilartothatinSection4,butwhichhasafunctionotherthanncnasitslowerbound?Thatis,givenafunctionf(n),isthereaproperty
2 withspeedthatoscillatesfromjustbelowf(n)tojustabove2nin nitelyoften?
Amodi cationofthepropertyinTheorem10againprovidesacandidatefortheoscillation.However,wemustrelaxtheconditionthattheoscillationstayclosetotheupperboundinordertomaketheproofworkeasily.Inparticular,thereisa2 rangeoflevelsforwhichwecannotsaywhether|Pn|<2n.
Theorem12.Letc>1and >1/c.Letf(n)beafunctionsuchthatn(c+o(1))n≤2 f(n)<2nforalln.ThereexistsapairofsequencesR=(ρi)∞i=1andM=(µi)∞i=1andamonotonepropertyPsuchthat
1.f(ρi) ρi!<|Pρi|≤f(ρi)foralli,
2 2.|Pµi|>2µiforalli,
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES9
3.|Pn|≥f(n)foralln∈/R, 2 4.|Pn|<2nforn∈i[ρi,µi+1 1].
Proof.TheprooffollowsalongthesamelinesastheproofsofTheorems10and11,onlythistimeweconstructtwosequences,Randν.We rstbuildasequenceν=(νi)∞i=1asinTheorem10.Againletµi=νi 1foralli,andconsiderPν,c.Thissatis esconditions2and4ofthetheorem(foranysequenceRwhichdoesnotintersectM=(µi)).HenceweneedtomodifyPν,ctoobtainconditions1and3.However,indoingso,weneedtobesurewedonotcreateapropertycontradictingconditions2or4.
WechoosethesequenceRasfollows.Foralli,letρibethemaximalnsuch
2 νi+1(c+o(1))νinνithatνi≤n<νi+1andPν,c≤f(n).Since|Pν,c|=νi,|Pν,c|>2n,and
2 n(c+o(1))n≤f(n)<2n,therealwayswillbesuchann.
ρisothatitsspeedisclosetof(n).WeknowthatthisWeshalladdgraphstoPν,cwillnota ectthen-levelsofourpropertyforn>ρi.Ifwecanpickthesegraphs
µisothateveryµi-subgraphisinPν,c,wewillnota ectanyn-levelforn≤σieither.
ρiwillenlargethen-levelsforµi<n<ρi.However,addingsuchagraphtoPν,cρiρiIf|Pν,c|>f(ρi) ρi!,weneednotmodify|Pν,c|.Otherwise,considerthesequenceρi ρiρiN=(ν1,...,νi).ThenPν,c PN ,c.Inparticular,Pν,c PN ,c.Since|Pν,c|<
f(ρi)<2n2 ρiρiρi<|PN ,c|,thereisagraphG∈(PN ,c Pν,c)suchthateveryH G
v(H)withv(H)≤µiisinPν,c.Wecallsuchagraphinsertable.LetG1beaninsertable
graphwithaminimalnumberofedges.Theneveryproperρi-subgraphofGisinρiρiρi,so|Pν,c∪F({G1})|≤|Pν,c|+(ρi)!.Also,ifP1isaminimalpropertycontainingPν,cρinnPν,c∪F({G1}),then|P1|=|Pν,c|forn>ρiandn<νi.Forνi≤n≤ρi,the ρi nnspeed|P1|≤|Pν,c|+(ρi)!n.Wecontinuechoosingρi-graphsinthiswayuntil
iwehaveacollection{G1,...,Gli}sothatf(ρi) ρi!<|Plρ|≤f(ρi).Astheonlyiconditionweneededtoguaranteeaninsertablegraphwasthatthepropertyhad
speedbelowf(n),itisclearthatwecanalways ndaninsertablegraphifthepropertyhasspeedbelowf(n).IfweconsidereachiinturnandconstructthepropertyP =P{lj}intheobviousway,weobtainamonotonepropertysatisfyingconditions1and2.
However,conditions3and4donotnecessarilyholdforP ontheintervals{[νi,ρi)}.Considereachvalueofiinturnandexaminetheinterval[νi,ρi)fromtheright.If,fort=ρi 1,thespeed|(P )t|<f(t),wecanproceedaswedidρifor(Pν,c):adda nitecollectiongraphsto(P )ttoobtainanewpropertywith
2 speedabovef(t).If|(P )t|>2t,wecaninsteadremovegraphs,aswedidin
2 Theorem11,untilthepropertyhasfewerthan2tt-graphs.Ineithercase,we
onlya ectthen-levelsforn∈[νi,t].Socontinuingforeachsmallervalueintheinterval,weobtainapropertyPsatisfyingalloftheconditionsofthetheorem.
Ideally,givenanytwofunctionsintheproperrangewithpositivedi erence(=o(1)),wewouldliketoconstructapropertywithspeedthatoscillatesin nitelyoftenbetweenthetwofunctions.However,thisisclearlynotpossible,asforanymonotoneorhereditaryproperty,|Pn+1|/|Pn|≤2n.Thus,forexample,choosingfunctionsthatincreasetogetherbymorethanafactorof2nwouldmakeitimpossi-bletokeepthespeedbetweenthebounds.Witharestrictionto“smooth”functionsavoidingthisproblem,itseemsthatoscillationispossible.However,aswehaveseenintheproofofTheorem12,evenwitha“smooth”functiontheproofwouldbecumbersome.Infact,evenaproperde nitionof“smooth”wouldbeunappealing.
However,anoutlineoftheapproachwewouldtaketoprovethedesiredstatementisasfollows.Giventwosuchfunctionsf(n)<g(n),wewishtoobtainaproperty
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
10´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
whichachievesspeedsclosef(n)forin nitelymanynandclosetog(n)forin nitelymanyn.Ratherthan ndingthesequenceνfromTheorem10,wewouldusethesequencefromTheorem11.Inthe nalstep,whenweaddorremovegraphsaccordingtowhetherthepropertyhastoohighorlowaspeed,weneedtotakecarethatinremovinggraphswedonotalterlaterproperties.Thismayrequireadjustingoursequencesothatthelevelforwhichthespeedisaboveg(n)isinthe intervalbetweenµiandρiratherthanatµi.Theconditionn(c c)nf(n)<g(n)wouldensuretheconditionsofTheorem11andthepositivedi erencebetweenthefunctions.
This,however,doesnotsolvetheproblemwehavediscussedregardingcondition4ofTheorem12.Webelievethatitisnotworththee orttodescribeinmoredetailwhatneedstobedone.Nevertheless,webelievethefollowingstatementtobetrue,andwouldbehappytoseeanelegantproof.
Letc>1,c >c,and >1/c.Letf(n),g(n)be“smooth”functionssuchthat
n(c+o(1))n≤f(n)<n(c c)nf(n)≤g(n)≤2n 2
∞foralln.ThereexistsapairofsequencesR=(ρi)∞i=1andS=(σi)i=1anda
monotonepropertyPsuchthat
1.|Pn|≥f(n)and|Pn|≤g(n)foralln∈/R∪S,ρi2.f(ρi)>|P|>f(ρi) ρi!forallρi∈R,3.g(σi)<|Pσi|<g(σi)+σi!forallσi∈S.
6.Amorenaturaloscillatingproperty
Theaimofthissectionisto“sharpen”ourresultsfromadi erentpointofview.ThepropertiesgiveninTheorems10and11areusefulforourpurposes.Inparticulartheyneatlyanswerthequestionsof[13]mentionedintheintroduction.However,thepropertieswedescribeareextremelyarti cial,theiroscillationcom-ing,toalargedegree,from“unnecessary”graphs.Inparticular,therearemany(isomorphismclassesof)graphsinPν,cthatmayberemovedwithouta ectingthehereditarynatureoftheproperty.Infact,wehaveusedthisfactratherheavilyintheproofsofTheorems11and12.However,whiletheremovalofthegraphswouldnota ectthehereditarynatureofthepropertiesinquestion,itwoulda ecttheirspeed.Itwouldbenice,therefore,toknowifthereisapropertyforwhicheachisomorphismclassisnecessaryandforwhichthespeedstilloscillates.
GivenapropertyP,wede nethelimitofPasP ={G:foralln>v(G)thereisann-graphH∈PwithG≤H}.TheneverygraphinPisnecessaryifandonlyifP=P .Inthiscase,wesaythatPisalimitproperty.Notethatthelimitofapropertyisalimitproperty,thatis(P ) =P .
nIn[7],Bollob´asandThomasonshowthatif|Pn|=2(c+o(1))(2)and|P n|=n 2(c+o(1))(2),thenc=c .Henceforpropertiesinthehighestrangeofspeeds,where
c>0,apropertyanditslimithavethesamespeed.However,thisisclearlynottrue nforallproperties,asPν,c=Qcforallin niteincreasingsequencesν,while|Pν,c|nmayoscillatebut|Qc|doesnot.Hencewewouldliketodemonstrateapropertythathasalimitwhosespeedoscillates.ThefollowingtheoremprovidesalimitpropertywiththesametypeofoscillationasthatinTheorem10.
Theorem13.Letc>1, >1/c.ThereisamonotonelimitpropertyPandtwo∞sequencesR=(ρi)∞i=1andS=(σi)i=1withσi<ρi<σi+1suchthat
1.|Pn|=n(c+o(1))nwhenevern=ρiforsomei,
2 2.|Pn|=2(1+o(1))nwhenevern=σiforsomei,
2 3.n(c+o(1))n≤|Pn|≤2(1+o(1))nforalln.
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES11
Proof.FortwosequencesR,SandapropertyP,considerthepropertiesAR,SandBR,Sde nedbylevelsasfollows.AnR,S={G:v(G)=nandforalliandforall
nσi<l≤ρi,everyl-subgraphH Ghase(H)≤cl},andBR,S={G:v(G)=n
andG=H∪lwhereH∈Pσiandl=n σiforσi=max{s:n>s∈S}}.NotethatAR,SisapropertyofthetypePν,cforsomeν R.WewillconstructapropertyP AR,S∪BR,Swhichismonotone,limit,andhastheproperspeeds.
Asintheproofoftheprevioustheorems,weproceedbyconstructingsequencesRandSsothatPisasdescribed.Weshallcalculatevaluesofρi,σibasedonthoseofρi 1,σi 1,anddescribePincrementallybylevels.
2 Letρ0=2andletσ1>ρ0bethesmallestvaluesuchthat|Tσi|>2σ1,where
Tisthetrivialproperty.AsintheproofofTheorem11,wecanremovegraphsfrom2 Tσisothat|Tσi|≤2σ1+n!.LetPσibethecollectionofgraphswhichremain,andforn<σ1,letPn={G:v(G)=nandthereisH∈PσiwithG H}.
AssumewehavechosensequencesRi 1,SiwhereRi=(ρ1,...,ρi 1),Si=(σ1,...,σi)andwehavede nedthen-levelofPforn≤σi.Wewishto ndρi(c+o(1))ρiρiisothat|Aρ.ByLemma6,weknowthatforanyRi 1,Si∪BRi 1,Si|=ρi
iichoiceofρi,thespeed|Aρ.Soifwechooseρi(minimal)sothatRi 1,Si|=ρiρicρi|BRi 1,Si|<ρithedesiredrelationwillhold.Thereissuchanρi,sinceforall n σi2nσiσin>σi,|BR|P|≤|≤n2,wherethelastestimatecomesfromRi 1,Siσii 1,Siallgraphsbeingintheσi-levelofP.Henceρi=2σiwouldbemorethansu cient.
nForσi<n≤ρi,letPn=AnRi,Si∪BRi,Si.
i+1σi+1Givenρi,letσi+1>ρibethesmallestnumbersuchthat|ARi
i+1.,Si∪BRi,Si|>2TheexistenceofsuchanumberisguaranteedbyLemma9.Asintheproofof
Theorem11,wecanremoveeligiblegraphs,oneisomorphismclassatatime,from2 σσi+1σi+1ARi
i+1with|Pσi+1|<2σi+1+σi+1!.Aswewantto,Si∪BRi,SitoobtainPcreatealimitproperty,wewillthenremovegraphsfromPnforn<σi+1,keepingonlythosegraphswhichappearassubgraphsofthoseinPσi+1.However,wewanttobesurethatPremainsattheproperspeed.Inparticular,wewillremovenoσσi+1ngraphsfromBRi
i+1(notingthatQnc AR,Sforalln,SiandnographsinQc
andanysequencesR,S).Clearlythereareenougheligiblegraphsavoidingthese
σσi+1(c+o(1))σi+1collections,as|BRi
i+1|<σi+1.Notethatwiththisrestriction,we,Si|+|Qc
willnotremoveanygraphsfromPnforn≤ρi.
Inthiswayweconstructin nitesequencesRandS.ItisclearthatPisamonotoneproperty,andtheconstructionguaranteesthatPislimitproperty,sinceweremoveallgraphsthatarenotcontainedinarbitrarilylargegraphs.Thespeedsgiveninconditions1and2arecorrectontheelementsofRandS,respectively,bytheconstruction.Furthermore,Qc P,sothelowerboundgivenincondition3iscorrect.
Fortheupperbound,wesplittheinterval(σi,σi+1)intotwoparts.Ourchoiceof
2 thesequenceSguaranteesthatforρi<n<σi+1,|Pn|<2n. Forσi,we i<n≤ρ 2 σi σin + Bn .Hence|Pn|<n(c+o(1))n+n <nnote|Pn|≤ An2<P R,SR,SR.SR,Sσi(c+o(1))ρσσ2
2(1+o(1))n2 .
Thuswehavepresenteda“sensible”propertyforwhichthespeedoscillatesover2 nearlythewholeintervalfromn(1+o(1))nto2n.Thisproperty,asistrueofallofthepropertiespresentedinthepaper,hasanin niteclassofforbiddensubgraphscorrespondingtothein nitesequencesconstructed.Thatis,ifPisoneofouroscillatingpropertiesandFisaminimalclassofgraphssuchthatP=Mon(F),thenFisin nite.Isthisanecessaryconditionforoscillationtooccur?Webelieve
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
12´´´JOZSEFBALOGH,BELABOLLOBAS,ANDDAVIDWEINREICH
thatitis:ifamonotonepropertyhasa niteclassofforbiddensubgraphs,thenallofthelimitspresentedintheintroductionshouldexist.Sofar,however,aproofofsucharesultiselusive.
7.Tightboundsonthepenultimaterange
TheresultsofSections4–6demonstratethatthepenultimaterangedi erssigni cantlyfromtheotherrangesofspeed.Infact,itisunclearthatpropertiesinthisrangeneedtosatisfyanywell-de nedbehaviorbesidesthebroadboundsgiveninSection2.Nevertheless,basedonresultsinvolvingadi erentmeasureofpropertiesin[2],webelievethattherangeofoscillationdemonstratedinthepropertiespresentedhereisthemaximumpossible.Theconverseoftheconjectureistrueformonotoneproperties,asshownbyTheorem3andin[2].However,the rstpartoftheconjectureisopenevenformonotoneproperties.
Conjecture14.Forallc>1,thereexistsan >0suchthatifPisahereditary2 propertyand|Pn|≥2nholdsin nitelyoften,then|Pn|≥n(c+o(1))n.Conversely,foralld>1thereexistsaδ>0suchthatif|Pn|≤n(d+o(1))nin nitelyoften,then
2 δ+o(1)|Pn|≤2n.
ItisclearfromLemma9that,ifConjecture14istrue,δ≤1/d.PerhapsConjecture14evenholdswith =1/candδ=1/d.However,therearenoresultsofthistypeknown.Thusthepenultimateregionofspeedsremainsafertileareaforfurtherresearch.
References
[1]J.Balogh,B.Bollob´as,andD.Weinreich,Thesizeofhereditarypropertiesofgraphs,J.
Combin.TheorySer.’B’792(2000),131–156.1,2
[2]J.Balogh,B.Bollob´as,andD.Weinreich,Thesizeandspeedofmonotonepropertiesof
graphs,submittedtoDisc.Appl.Math.1,2,12
[3]J.Balogh,B.Bollob´as,andD.Weinreich,Thestructureofposetsandanapplicationto
hereditaryproperties,preprint.2,3
[4]B.Bollob´as,ExtremalGraphTheory,AcademicPress,London(1978).4
[5]B.Bollob´asandA.Thomason,Projectionsofbodiesandhereditarypropertiesofhypergraphs,
J.LondonMath.Soc.27(1995),417–424.1,2
[6]B.Bollob´asandA.Thomason,Hereditaryandmonotonepropertiesofgraphs,in“TheMath-
ematicsofPaulErd osII”(R.L.GrahamandJ.Neˇsetˇril,eds.)AlgorithmsandCombinatorics,Vol.14,Springer-Verlag(1997),70–78.1,2
[7]B.Bollob´asandA.Thomason,Thestructureofhereditarypropertiesandcolouringsof
randomgraphs,Combinatorica,toappear.10
[8]T.K ov´ari,V.T.S´os,andP.Tur´an,OnaproblemofK.Zarankiewicz.Colloq.Math.3(1954),
50-57.3
[9]H.J.Pr¨omelandA.Steger,Excludinginducedsubgraphs:quadrilaterals,RandomStructures
andAlgorithms2(1991),55–71.
[10]H.J.Pr¨omelandA.Steger,ExcludinginducedsubgraphsII:extremalgraphs,DiscreteAp-
pliedMathematics44(1993),283–294.
[11]H.J.Pr¨omelandA.Steger,ExcludinginducedsubgraphsIII:ageneralasymptotic,Random
StructuresandAlgorithms3(1992),19–31.
[12]H.J.Pr¨omelandA.Steger,TheasymptoticstructureofH-freegraphs,inGraphStructure
Theory(N.RobertsonandP.Seymour,eds),ContemporaryMathematics147,Amer.Math.Soc.,Providence,1993,pp.167-178.
[13]E.R.ScheinermanandJ.Zito,Onthesizeofhereditaryclassesofgraphs,binat.
Theory(B)61(1994),16–39.1,4,10
Abstract. Given a property P ofgraphs, write P n for the set of graphs with vertex set [n] having property P. We call |P n | the speed of P. Recent research has shown that the speed ofa monotone or hereditary property P can be a constant, polynomial, or ex
THEPENULTIMATERATEOFGROWTHFORGRAPHPROPERTIES13DepartmentofMathematicalSciences,TheUniversityofMemphis,Memphis,TN38152
E-mailaddress:balogj@msci.memphis.edu
DepartmentofMathematicalSciences,TheUniversityofMemphis,Memphis,TN38152,and,TrinityCollege,CambridgeCB21TQ,England
E-mailaddress:bollobas@msci.memphis.edu
DepartmentofMathematics,UniversityofWisconsin–LaCrosse,LaCrosse,Wis-consin54601
E-mailaddress:weinreic@math.uwlax.edu
正在阅读:
The penultimate rate of growth for graph properties05-23
县委书记在2023年全县河道集中清理整治专项行动会议上的讲话范文03-22
水力学第四版绪论思考题答案11-30
汽车通道防护棚施工方案 - 图文10-25
五年级品德与社会01-23
感恩励志教育活动方案04-28
2017年人教版九年级英语知识点总结07-07
OD、TD、LD区别与岗位职责04-27
图书管理系统设计说明书--熊犇05-23
我爱校园的樱花树作文500字07-16
- 1Signal transduction via the growth hormone receptor
- 2Growth opportunities for financial services in China_原文
- 3Microstructures and properties of high-entropy alloys
- 4Isolation and functional identification of a novel human hepatic growth factorhepatopoietin Cn
- 5Titanium Dioxide Nanomaterials Synthesis, Properties, Modifications
- 6Formally Verifying Dynamic Properties of Knowledge Based Systems
- 7Abstract Attribute-Based Prediction of File Properties
- 8Abstract Attribute-Based Prediction of File Properties
- 9Formally Verifying Dynamic Properties of Knowledge Based Systems
- 10Properties of Strange Hadronic Matter in Bulk and in Finite Systems
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- penultimate
- properties
- growth
- graph
- rate
- 16、3《比热容》导学案
- 中国_07129050_干大蒜(2003-2013)进出口数据报告
- 核磁共振波谱分析法习题
- 工业企业管理论文
- 用心做好一款卫生巾
- 选修 艺术鉴赏 论文 期末
- 浅析《西游记》中唐三藏人物形象
- 乙型肝炎病毒母婴传播及其阻断
- 2021新苏教版四年级下册科学15.生物与非生物 知识点整理
- 浓缩机跑到修复安全技术措施
- 在高职旅游专业开设的茶艺课程实施效果分析
- 新建某某市北侧管理用房工程可行性研究报告
- 班组长竞聘演讲稿范文优秀3篇
- 【一年级期末复习】20以内加减法口算题1000道
- 人教版六年级第二学期数学教学质量监测试卷(附:试卷命题意图、参考答案及评分标准)
- 2015年山东省东营市初中学生学业考试中考生物试卷及答案(word版)
- 3.1 生物群落的基本单位-种群
- 矿产资源开发利用年度报告书
- 2017北国会MPAcc考研心态调整
- 二年级升旗演讲稿 做出最好的自己