随机过程英语讲义-8
更新时间:2023-06-02 11:13:01 阅读量: 实用文档 文档下载
2.2 Properties of Poisson processesExample Suppose that people immigrate into a territory at a Poisson rateλ=1 per day. (a) What is the expected time until the tenth immigrant arrives? (b) What is the probability that the elapsed time between the tenth and the eleventh arrival exceeds two days? Solution: (a) E[S10]=10/λ= 10 days (b) P{X11>2}= e -2λ= e-2≈ 0.1333
2.2 Properties of Poisson processesArrival time distribution Proposition 2.2.2: The arrival time of the nth event Sn follows aΓ distribution with parameter (n,λ). (λt ) n 1 f (t )=λe λ t Proof: (n 1)!{Sn≤ t} {N(t)≥n} P{Sn≤ t}= P{N(t)≥n}=
∑k=n
∞
e λ t
(λ t ) k k!
differentiating the two sides of equation with respect to t:
2.2 Properties of Poisson processes
2.2 Properties of Poisson processesSuppose we are told that exactly one event of a Poisson process has taken place by time t, and we are asked to determine the distribution of the time at which the event occurred. Since a Poisson process possesses stationary and independent increments, it seems reasonable that each interval in[0,t] of equal length should have the same probability of containing the event. In other words, the time of the event should be uniformly distributed over[0,t].
2.2 Properties of Poisson processes
This result may be generalized, but before doing so we need to introduce the concept of order statistics.5
2.2 Properties of Poisson processesOrder statistics Order statistics Let Y1, Y2……Yn are n random variables, if we arrange these random variables from small to big, note Y(1)= y1 is the smallest in the sequence, Y(2)= y2 is the second smallest,…. Y(n)= yn is the biggest in the sequence. Y(1)< Y(2)……< Y(n), Y(1)……Y(n) or y1……yn are the order statistics of Y1…Yn.
2.2 Properties of Poisson processes,
Let,
f is density of distribution of Yi, if f follows the uniform density over (0,t), the joint density of{Y(i)} is:Y(1) .....Y( n )
f
( y1,..., yn )= n !Ci=1
n
n! f ( yi )= n, t
0< y1< ...< yn< t
2.2 Properties of Poisson processesPast arrival times given– Joint density of past arrival times Proposition 2.2.3: Given that N(t)=n, the n arrival times S1… Sn have the same distribution as the order statistics corresponding to the n i.i.d. samples from U(0,t). that is,
n! f S1 .....S n N ( t )(t1,..., t n n)= n, tProof:
0< t1< ...< t n< t
2.2 Properties of Poisson processesP{ti≤ Si≤ t+hi, i=1,…n|N(t)= n}P{one event in[ti, ti+ hi], 1≤ i≤ n, no events elsewhere in[0,t]}= P{N (t )= n}
=
λh1e
λh1
n!= n h1 ...hn t
...λhn e e e λt (λ t ) n n!
λhn1
λ ( t h1 ...hn )
P{N (t )= n}= e
λt
(λ t ) n, n= 0,1, 2,...... n!
2.2 Properties of Poisson processesn! P{ti≤ Si≤ t+hi, i=1,…n|N(t)= n}= n h1 ...hn t P{ti≤ S i≤ ti+ hi, i= 1...n N (t )= n} n!= n h1....hn ttaking the limit
s as hi→ 0 for all i, we obtain n! f S1 ..... S n N ( t )(t1,..., t n n)= n t
2.2 Properties of Poisson processesExample: A cable TV company collects$1/unit time from each subscriber. Subscribers sign up in accordance with a Poisson process with rateλ. What is the expected total revenue received in (0,t]? Solution: (Depends on the total number of subscribers and their arriving time)
2.2 Properties of Poisson processesLet N(t) denote the number of subscribers, and Si denote the收益 arrival time of the ith customer. The revenue generated by this customer in (0,t] is t-Si. Adding the revenues generated by all arrivals in (0,t]
N (t ) ∑ (t Si ), E ∑ (t S i ) i=1 i=1 find the previous expectation by conditioning on N(t)N (t )
N (t ) n n E ∑ (t S i ) N (t )= n = E ∑ (t S i ) N (t )= n = nt E ∑ S i N (t )= n i=1 i=1 i=1
2.2 Properties of Poisson processesLet U1,…Un be iid random variables which follow U(0,t). sot n n n n E ∑ Si N (t )= n = E ∑ U (i ) = E ∑ U i =∑ E[U i]= n 2 i=1 i=1 i=1 i=1
so
N (t ) t t E ∑ (t Si ) N (t )= n = nt n= n 2 2 i=1
Calculate the expectation by conditional expectation: N (t ) E[ N (t )]t 1 2=λt E ∑ (t S i ) = 2 2 i=1
2.2 Properties of Poisson processesDecomposition of Poisson process (an important application of Proposition 2.2.3) A Poisson process N={N(t),t≥0} with rateλ. We consider the case in which if an arrival occurs at time s, it is a type-1 arrival with probability P(s) and a type-2 arrival with probability 1-P(s). The type of arrival depends on the epoch of arrival. By using Proposition 2.2.3 we can prove the following propositon.
2.2 Properties of Poisson processesProposition 2.2.4 Let Ni={Ni(t), t≥0}, i=1 and 2, where Ni(t) denotes the number of type-i arrivals in (0,t]. N1(t) and N2(t) are two independent Poisson random variables with meansλpt andλqt, where1 t p=∫ P ( s )ds and q= 1 p t 0 λ pt (λpt ) n λ qt (λqt ) m P{N1 (t )= n, N 2 (t )= m}= e e n! m!
2.2 Properties of Poisson processes
2.2 Properties of Poisson processes
The importance of the above proposition is illustrated by the following example.17






正在阅读:
随机过程英语讲义-806-02
2016年吉林大学经济学院法理学、民法复试笔试最后押题五套卷05-07
《新安全生产法》生产经营单位违法处罚金额一览表 - 图文09-12
丙二醇甲醚行业规模调研及市场前景分析报告2018年目录07-08
李镇西《爱心与教育》读后感03-11
幼儿园小班第二学期教学工作总结03-08
六年级数学空间与图形综合练习苏教版12-07
高中生活随笔300字02-20
重庆文理学院继续教育学院:jj.cqwu.net/index.asp02-08
综合课主观题01-30
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 英语
- 讲义
- 随机
- 过程
- 猪群免疫失败的原因及对策-论文
- 重庆一中初三数学10—11学年度下期期中考试试卷
- 《赤壁赋》的叙述模式与中国传统文化思维的关系
- 初识家用电器和电路(苏科版)
- The Why and Why not of User Participation in IOS Development
- 微型智能关窗系统的设计研究
- 《对联赏析》教学设计
- 未来版五年级下册品德与社会教案
- GIGA NVIDIA芯片组主板
- 荧光灯电极寿命讨论及其检测和使用要点
- 线上推广方案2021年学校线上线下教学衔接方案
- 2013英语教研组工作计划
- 白簕体外清除亚硝酸盐及阻断亚硝胺合成的研究
- 通信技术学习总结
- 软件测试参考文献
- 未来餐饮业发展趋势探究分析
- 中外城建史——中国古代城市建设史4
- 英美国家概况之饮食文化
- 工程送审结算模板
- 央美考研--2015年中央美术学院人文学院中国美术史专业考研重点