武汉大学生科院张楚富教授--学习指导及习题解答

更新时间:2024-01-24 19:06:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

武汉大学生科院武汉大学生科院张楚富教授等原作!非常感谢!

第二章 氨基酸和蛋白质的一级结构 基本内容

蛋白质含有20种标准氨基酸,这些氨基酸在它们的α碳原子上分别含有一个氨基、一个羧基和一个侧链基团(或称R基团)。除甘氨酸外,所有其它氨基酸的α碳原子都是一个不对称的碳原子,即手性碳原子。蛋白质中的所有氨基酸都是L-型的。

20种标准氨基酸可以根据它们侧链的结构分为含脂肪烃基的氨基酸、含芳香基的氨基酸、含硫的(或含羟基的、或含酰胺基的)氨基酸。如果根据它们的侧链极性(或在生理pH下的解离),可分为侧链非极性氨基酸、侧链不带电荷的极性氨基酸和侧链解离带正电荷或负电荷的氨基酸。氨基酸侧链的性质对于决定蛋白质的性质、结构和功能来说是很重要的。

氨基酸的α-氨基和α-羧基都是可解离的基团,它们的解离取决于介质的pH。在生理pH下,α-氨基解离带正电荷(–NH3+),α-羧基解离带负电荷(–COO–);侧链可解离基团的解离取决于它们的pK值和介质的pH。氨基酸的解离性质是建立分离和分析氨基酸的方法的基础,它们的解离也影响蛋白质的性质、结构和功能。分离分析氨基酸的主要方法是离子交换法以及电泳法。

蛋白质是由氨基酸借肽键连接而成多聚物。在蛋白质多肽链中,肽键是唯一的共价键,由一个氨基酸的α-羧基和相邻氨基酸的α-氨基脱水缩合而成。在多肽链中,氨基酸残基的顺序称为蛋白质的一级结构。

蛋白质是生物大分子,虽然它们具有与氨基酸相似的解离性质,但这一性质却比氨基酸复杂。蛋白质的许多重要的性质,例如,溶解性、极性、带电性质、分子大小以及配体亲和性等,是构成分离分析它们的方法的基础。离子交换法、凝胶过滤法、亲和层析法、超速离心法以及各种电泳法是常用的方法。

蛋白质一级结构的测定通常采用这样的程序,即纯净样品的末端分析、氨基酸组成分析、专一性酶或化学试剂进行部分水解、Edman降解法测定肽碎片的氨基酸残基的顺序以及片段重叠。末端分析常有丹磺酰氯法和二硝基氟苯法;肽链的部分水解一般是有胰蛋白酶法、胰凝乳蛋白酶法以及溴化氰法。

氨基酸顺序的分析能揭示不同来源的蛋白质彼此之间的进化关系,亦为分子病的诊断提供可靠的依据。

第二章 氨基酸和蛋白质的一级结构 习题

2–1.图2—1的滴定曲线描述了谷氨酸的电离。请回答下列问题:①指出三个pK’a的位置;②指出Glu-和Giu=各一半时的pH;③指出谷氨酸总是带净正电荷的pH范围;④指出Glu±和Glu-能作为一种缓冲液的共轭酸碱对的pH范围.

图2-1 谷氨酸的酸-碱滴定曲线

2–2.为什么甘氨酸处在等电点时是以偶极离子的形式存在,而不是以完全不带电荷的形式存在?处在等电点时,其完全不带电荷的形式是多少?

2–3.甘氨酸是乙酸甲基上的氢被氨基取代生成的,但是,甘氨酸羧基的pK’a值比乙酸羧基 pK’a低。为什么?

2–4.在pH9.0时,计算赖氨酸的两性离子、阳离子以及阴离子所占的比例。已知赖氨酸三个可电离基团α-COOH,α–NH3+和ε- NH3+的pK’a值分别为2.18、8.95和10.53。

2–5.用强酸型阳离子交换树脂分离下述每对氨基酸,当用pH7.0的缓冲液洗脱时,下述每对中先从柱上洗脱下来的是哪种氨基酸?

①天冬氨酸和赖氨酸;②精氨酸和甲硫氨酸;⑧谷氨酸和缬氨酸;④甘氨酸和亮氨酸;⑤丝氨酸和丙氨酸。

2–6.计算出由Ala、Gly、His、Lys和Val所构成的可能的五肽数目。 2–7.在大多数氨基酸中,α–COOH的pK’a值都接近2.0,α–NH3+的pK’a值都接近9.0。但是,在肽中,α–COOH的pK’a值为3.8,而α–NH3+的pK’a比值为7.8。你能解释这种差别吗?

2–8.某蛋白质用凝胶过滤法测定的表观分子量是90kD;用SDS-PAGE测定时,它的表观分子量是60kD,无论2-巯基乙醇是否存在。哪种测定方法更准确?为什么?

2–9.一种分子量为24,000、pI为5.5的酶被一种分子量类似、但pI为7.0的蛋白质和另外一种分子量为100,000、pI为5.4的蛋白质污染。提出一种纯化该酶的方案。

2–10.下面的数据是从一个八肽降解和分析得到的,其组成是:Ala、Gly2、Lys、Met、Ser,Thr、Tyr。该八肽

用CNBr处理,得到:①Ala、Gly、Lys、Thr; ②Gly、Met、Ser、Tyr 用胰蛋白酶处理,得到:①Ala、Gly; ②Gly、Lys、Met、Ser、Thr、Tyr 用糜蛋白酶处理,得到:①Gly、Tyr; ②Ala、Gly、Lys、Met、Ser、Thr 经分析,N–末端残基是:Gly C–末端残基是:Gly 请确定该肽的氨基酸顺序。

第二章 氨基酸和蛋白质的一级结构 解答:

2–1解答: ①三个pK’a的位置如图2—4所示

图2–4 谷氨酸的酸-碱滴定曲线显示出它的三个 pK’a的位置以及它在不同pH下的电离状态 ②Glu-和Glu=各一半的pH值为9.67。 ③当pH小于3.22时,谷氨酸总是带净正电荷。

④Glu±和Glu-作为一种缓冲液的共轭酸碱对的pH范围是pH4.25左右 2–2解答:因为羧基的酸性(pK’a=2.36)比质子化的氨基的酸性强得多(pK’a=9.60)。因此,羧基将倾向于供出质子使氨基质子化,并且其平衡常数是107。这表明平衡状态非常强烈地偏向右边:

因甘氨酸的等电点是5.97,首先我们需要测定甘氨酸处在等电点时〔–COO-〕/〔–COOH〕和〔H3+N–〕/〔–NH2〕的比例。如果我们单独处理每个功能基团,并利用Henderson—Hass- elbalch方程,就会得到:

两者合并起来考虑时,两性离子与完全不带电荷的比例是:

因此,甘氨酸处在等电点时,大约1/107以不带电荷的形式存在的。 2–3解答:甘氨酸羧基的pK’a值为2.34,乙酸羧基的pK’a值是4.7。当甘氨酸溶液的pH值低于6.0时,氨基以正电荷的形式存在。这种正电荷通过静电相互作用使带负电荷的羧基离子稳定。这就意味着甘氨酸的羧基将比较容易失去它的质子,因而它是一种更强的酸(具有更低的 pK’a值)。 2–4解答:赖氨酸有三个可电离的质子:

[Lys±]=1.12[Lys+]=1.12346.45=52

由此可见,在pH9.0时,〔Lys++〕含量甚微,可以忽略不计,〔Lys+〕占46.45%,〔Lys+-〕为52%,〔Lys-〕为1.53%,整个分子带部分正电荷。

2–5解答:氨基酸从离子交换柱上被洗脱下来的速度主要受两种因素的影响:①带负电荷的树脂磺酸基和氨基酸带?绾傻墓δ芑胖涞睦胱游剑搅Υ蟮脑谑髦贤V偷氖奔涑ぃ又舷赐严吕吹乃俣嚷虎诎被岬牟嗔椿庞胧髦糠羌缘墓羌苤涞氖杷嗷プ饔谩7羌源蟮牟嗔碦基氨基酸与树脂骨架间的疏水作用力强,从树脂柱上洗脱下来的速度慢。

根据氨基酸可电离基团的pK’a值,我们可以确定题中每组氨基酸的结构以及在pH7时它们的平均净电荷。如果平均净电荷相同,则取决于它们侧链基团的疏水性。

①天冬氨酸净电荷为–l,赖氨酸净电荷为+1;赖氨酸与树脂磺酸基相反离子吸附力大。因此,天冬氨酸先被洗脱下来。

②精氨酸净电荷为+1,甲硫氨酸净电荷接近零。因此,甲硫氨酸先被洗脱下来。

③谷氨酸净电荷为–1,缬氨酸净电荷接近零,谷氨酸的负电荷与树脂荷负电

的磺酸基之间相互排斥,减小了谷氨酸与树脂的附着力,故先被洗脱下来。 ④甘氨酸和亮氨酸的净电荷都接近零,但亮氨酸庞大的非极性侧链与树脂骨架之间的非极性相互作用力大。故甘氨酸先被洗脱下来。

⑤丝氨酸和丙氨酸的净电荷都接近零,但丝氨酸的侧链非极性小,故先被洗脱下来。

2–6解答:五肽的第一个残基是五个残基中的一个,第二个残基是余下四个残基中的一个,余此类推。因此,可能形成的五肽数目是:534333231=120

2–7解答:在游离的氨基酸中,邻近的电荷影响每个基团的pK’a值。带正电荷的–NH3+的存在,使带负电荷的–COO-稳定,使羧基成为一种更强的酸.相反地,带负电荷的羧酸使–NH3+稳定,使它成为一种更弱的酸,因而使它的pK’a升高.当肽形成时,游离的α-氨基和α-羧基分开的距离增大,相互影响降低,从而使它们的pK’a值发生变化.

2–8解答:蛋白质的分子形状影响它在凝胶过滤时的行为。分子形状较长的蛋白质在凝胶过滤时具有类似于分子较大的蛋白的行为。用SDS-PAGE测定的蛋白质分子量应该是比较准确的,因为变形后的蛋白质的迁移速度只取决于它的分子大小。

2–9解答:用凝胶过滤(即分子排阻层析)法先除去分子量为100,000、pI为5.4的蛋白质,余留下来的低分子量的含酶的混合物再用离子交换层析法分离,于是就能获得所需要的纯酶。

2–10解答: 根据CNBr、胰蛋白酶、糜蛋白酶水解该肽的结果,并结合组成及末端分析

CNBr: Gly-(Tyr、Ser)-Met (Thr、Lys、Ala)-Gly 胰蛋白酶: Gly-(Tyr、Ser、Met、Thr)-Lys Ala-Gly 糜蛋白酶: Gly-Tyr (Ser、Met、Thr、Lys、Ala)-Gly

根据片段重叠,推测该肽的顺序是:Gly-Tyr-Ser-Met-Thr-Lys-Ala-Gly 第三章 蛋白质的空间结构和功能 内容提要

蛋白质在一级结构的基础上可以形成二级、三级或四级结构。不同的蛋白质有不同的空间结构。一级结构是蛋白质空间结构形成的基础。X-射线晶体衍射和核磁共振是测定蛋白质以及其它生物大分子结构的有效方法。

肽基或肽单元是有极性的,也是一种具刚性的平面。N―Cα和Cα―C单键旋转的角度分别用φ和ψ描述。这两个角旋转的角度决定两个相邻肽基的空间位置。如果这两个旋转角分别相等,则多肽链主链是有规律的构象。在α螺旋和β折叠中,这两个旋转角都是分别相等的。因此,α螺旋和β折叠是有规律的构象。在α螺旋中,每轮卷曲的螺旋包含3.6氨基酸残基,同一肽链上的每个残基的酰胺氢和位于它后面的第4个残基上的羰基氧彼此之间形成氢键。这种氢键大致与螺旋轴平行。β折叠可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。

蛋白质的二级结构是指多肽链主链在空间中的走向,包括α螺旋、β折叠,它们是构成蛋白质高级结构的基本要素。

蛋白质可分为纤维状蛋白和球状蛋白。纤维状蛋白通常是水不溶性的,在生物体内往往起着结构和支撑的作用;这类蛋白质的多肽链只是沿一维方向折叠。球状蛋白一般都是水溶性的,是生物活性蛋白;它们的结构比起纤维状蛋白来说要复杂得多。α螺旋和β折叠在不同的球状蛋白质中所占的比例是不同的。在球状蛋白质中,β转角、卷曲结构或环结构是它们形成复杂结构不可缺少的。 三级结构主要针对球状蛋白质而言的,是指主链和侧链在空间中的走向。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。

在大多数球状蛋白质中,往往可以观察到可明显区分的二级结构组合。这肿楹铣莆督峁够蚧;残砭哂薪峁购凸δ苌系淖饔谩@缍塑账峤岷喜课怀>哂谐莆猂ossmann折叠的βαβαβ组合形式。

分子较大的多肽常折叠成两个或多个球状簇,这种球状簇叫做结构域或域结构(d

omain)。大多数域结构由100~200个氨基酸残基构成,平均直径约2.5 nm 。一条多肽链在一个域范围内来回折叠,但相邻的域常被一个或两个多肽片段连结。因而域在结构上是独立的、具有小分子球状蛋白质的特性的单位。域结构往往有特殊的功能,例如结合小分子。

蛋白质的折叠是有序的、由疏水作用力推动的的协同过程。伴侣分子在蛋白质的折叠中起着辅助性的作用。蛋白质多肽链在生理条件下折叠成特定的构象是热力学上的一种有利的过程。折叠的天然蛋白质在变性因素影响下,变性失去活性。在某些条件下,变性的蛋白质可能会恢复活性。

寡聚蛋白质是由两个或多个多肽(称为亚基)链装配而成的。在寡聚蛋白质中,亚基在空间中的定位或相互间关系构成了四级结构研究的内容。维持寡聚蛋白质稳定的力同样涉及氢键、离子键、偶极与偶极间的相互作用、疏水作用。 每一种蛋白质都有着特有的生物学功能,这是由它们特定的空间构象决定的。因为它们的特定的结构允许它们结合特定的配体分子,例如,血红蛋白和肌红蛋白与氧的结合、酶和它的底物分子、激素与受体、以及抗体与抗原等。 第三章 蛋白质的空间结构和功能 习题:

3-1.构象(conformation)指的是,一个由多个碳原子组成的分子,因单键的旋转而形成的不同碳原子上各取代基或原子的空间排列,只需单键的旋转即可造成新的构象。多肽链主链在形式上都是单键。因此,可以设想一条多肽主链可能有无限多种构象。然而,一种蛋白质的多肽链在生物体正常的温度和pH下只有一种或很少几种构象,并为生物功能所必需。这种天然的构象是什么样的因素促成的?

3-2.假若一条多肽链完全由丙氨酸构成,什么样的环境促使它很可能形成α–螺旋,是疏水环境还是亲水环境?

3-3.以nm为单位计算α-角蛋白卷曲螺旋(coiled coil)的长度。假定肽链是由100个残基构成。

3-4.一种叫做Schistosoma mansoni 寄生虫的幼虫能感染侵入人的皮肤。这种幼虫分泌出能裂解的-Gly-Pro-X-Y-(X和Y可能是几种氨基酸中的任何一种)顺序中的X和Y之间肽键的酶。为什么该酶活性对这种寄生虫侵入是重要的。

3-5.①是Trp还是Gln更有可能出现在蛋白质分子表面?②是Ser还是Val更有可能出现在蛋白质分子的内部?③是Leu还是Ile更少可能出现在α-螺旋的中间?④是Cys还是Ser更有可能出现在β-折叠中?

3-6.下面的多肽哪种最有可能形成α-螺旋?哪种多肽最难以形成β-折叠? ①CRAGNRKIVLETY;②SEDNFGAPKSILW;③QKASVEMAVRNSG

3-7.胰岛素是由A、B两条链组成的,两条肽通过二硫键连接。在变性条件下使二硫

键还原,胰岛索的活性完全丧失。当巯基被重新氧化后,胰岛素恢复的活性不到天然活性的10%请予以解释。

3-8.对于密度均一的球状蛋白质来说,①随着蛋白质分子增大,其表面积/体积(A/V)的比例是增大还是减小?②随着蛋白质分子增大,其亲水侧链氨基酸残基与疏水侧链氨基酸残基的比例是增大还是减小?

3-9.胎儿血红蛋白(Hb F)在相当于成年人血红蛋白(Hb A)β链143残基位置含有Ser,而成年人β链的这个位置是具阳离子的His残基。残基143面向β亚基之间的中央空隙。①为什么2,3-二磷酸甘油酸(2,3-BPG)同脱氧Hb A的结合比同脱氧Hb F更紧?②Hb F对2,3-BPG的低亲和力如何影响到Hb F对氧的亲和力?③Hb F的P50是18托(torr),Hb A的P50是26托。基于这两个数值如何解释氧从母亲血液有效转运到胎儿。

3-10.在生理条件下,多聚赖氨酸呈随机卷曲的构象。在什么条件下它可以形成α-螺旋?

3-11.某蛋白质用凝胶过滤法测定的表观分子量是90kD;用SDS-PAGE测定时,它的表观分子量是60kD,无论2-巯基乙醇是否存在。哪种测定方法更准确?为什么?

3-12.请根据下面的信息确定蛋白质的亚基组成:① 用凝胶过滤测定,分子量是200kD;②用SDS-PAGE测定,分子量是100kD;③在2-巯基乙醇存在下用SDS-PAGE测定,分子量是40kD和60kD。

3-13.每分子人细胞色素c含有18分子的赖氨酸。100克细胞色素c完全水解得到18.7

克的赖氨酸。求细胞色c的分子量。

3-14.有一种混合液含有五种多肽(P1、P2、P3、P4和P5),在pH8.5的条件下进行电泳分离,染色后揭示出如图2–6a的迁移图谱。已知这五种多肽的 pI是:P1为9.0,P2为5.5,P3为10.2,P4为8.2, P5为7.2。并且已知它们的分子量都接近1200。①请在图上鉴定出每条带相应的多肽;②现有一种pI为10.2的多肽(P6),它的分子量大约为600。该肽若与上述五肽一起在pH8.5下电泳,请你指出它的位置。

图2–6 几种蛋白质的电泳迁移图(a)和它们迁移的相对位置(b)

3-15.一种纯净的蛋白质样品用普通的聚丙烯酰胺凝胶电泳(PAGE)在pH8.2条件下进行分析鉴定,得到如图2–7(A)的结果。该蛋白质样品在用SDS处理后,接着用SDS-PAGE进行分析,得到如图2–7(的结果。通过对上述两种电泳结果的比较,关于该蛋白质的结构你将得出什么样的结论?该蛋白质的等电点是低于pH8.2还是高于pH8.2?

-16.一个蛋白质混合物含有下面几种不同的组分: a Mr=12,000 pI=10; b Mr=62,000 pI=4 c Mr=28,000 pI=7; d Mr=9,000 pI=5 不考虑其他因素,分别指出在下述情况下被洗脱的顺序。

①该混合物用DEAE-纤维素柱层折时,以逐渐增高洗脱液的盐浓度方式进行洗脱。

②该混合物用SephadexG-50凝胶柱层析分析。

3-17.一种分子量为24,000、pI为5.5的酶被一种分子量类似、但pI为7.0的蛋白质和另外一种分子量为100,000、pI为5.4的蛋白质污染。提出一种纯化该酶的方案。

第三章 蛋白质的空间结构和功能 解答:

3-1解答:①由于肽键因共振结构而使C—N键具有部分双键的性质,不能自由旋转,因而使得一条多肽主链构象的数目受到了极大限制。②与位于相邻刚性平面交线上的Cα相连接的侧链基团的结构、大小和性质对于主链构象的形成及稳定有很大的影响,使多肽链主链构象数目又受到很大的限制。因为Cα与两个刚性平面连接的单键的旋转度不同程度受到侧链的限制。③各种侧链基团相互作用所形成的各种力使蛋白质在热力学上达到了一种最稳定的构象。。

3-2解答;一条多肽链呈α-螺旋构象的推动力是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成不能提供任何竞争,因此,更可能促进α-螺旋结构的形成。

3-3解答:α-角蛋白的每条肽链呈α-螺旋构象,而每个α-螺旋含3.6个残基。在α-角蛋白中,每轮螺旋的长度为0.51nm。因此, α-角蛋白卷曲螺旋(coiled coil)的长度是:

(100残基÷3.6个残基/轮)30.51/轮=14.2nm

3-4解答:-Gly-Pro-X-Y-顺序频繁出现在胶原蛋白分子中,在身体的各部位都存在,包括皮肤。由于该幼虫酶能催化胶原蛋白多肽链裂解,故该寄生虫能进入宿主皮肤而生存。

3-5解答:蛋白质氨基酸残基在蛋白质结构中出现的位置与这些氨基酸残基的亲水性或疏水性相关。亲水性残基(极性残基)通常位于蛋白质分子的表面,而疏水性残基(非极性残基)通常位于蛋白质分子疏水的内部。①Gln是亲水性残基,它比Trp更有可能出现在蛋白质分子表面。②Val是非极性残基,它比Ser更有

可能位于蛋白质分子的内部。③Ile在它的β碳位上有分支,不利于α-螺旋的形成,因此它通常不出现在α-螺旋中。④侧链小的氨基酸残基常出现在β-折叠中,因为这有利于片层的形成。所以Ser更有可能出现在β-折叠中。 3-6解答:多肽③最有可能形成α-螺旋,因为它的三个带电荷的残基(Lys,Glu,Arg)在该螺旋的一侧相间排成一行。一个有邻近碱性残基(Arg和Lys)的多肽会使螺旋去稳定。多肽②含有Gly和Pro,这两种氨基酸是螺旋的强破坏者。Gly和Pro的存在也会阻止β-折叠的形成。所以多肽②最难以形成β-折叠。 3-7解答:胰岛素是以前体的形式合成的。前体分于是一条单一的肽链。在前体合成及折叠后,切除前体分子的一部分(包括连接肽C肽),留下由二硫键连接的A和B两条肽链。这样,天然的胰岛素由于缺少C肽,因而也就缺乏指导肽链折叠的某些所必需的信息。所以当胰岛素变性和还原,随之复性,二硫键的形成是随机的。在这种情况下是不能完全恢复到天然活性的。这并不与氨基酸顺序指导蛋白质折叠的基本原则相矛盾。

3-8解答:①对于密度均一的球状蛋白质来说,随着分子量(即分子大小)增大,其半径(r)也增大。由于表面积=4πr2,体积=4/3πr3,因此

从这个表达式来看,随着蛋白质分子量的增大,它的表面积/体积的比例减小了。即随着蛋白质分子的增大,体积的增大比表面积增大更快。

②由于极性基团的亲水性,大多数分布在球状分子的表面,非极性侧链基团的疏水性,大多数聚集在球状分子的内部.由于随着分子量增大而体积增大,内部空间也增大。因此内部就可以容纳更多的具疏水侧链基团的氨基酸残基。所以随着球状蛋白质分子量的增大,亲水侧链氮基酸残基与疏水侧链氨基酸残基的比例将减小。

3-9解答:①由于2,3-BPG是同脱氧Hb A中心空隙带正电荷的侧链结合,而脱氧Hb F缺少带正电荷的侧链(β链143位的His残基),因此2,3-BPG是同脱氧Hb A的结合比同脱氧Hb F的结合更紧。②2,3-BPG稳定血红蛋白的脱氧形式,增高脱氧血红蛋白的份数。由于Hb F同2,3-BPG亲和力比Hb A低,Hb F受血液中2,3-BPG影响小,分子的氧合形式的份数较大,因此Hb F在任何氧分压下对氧的亲和力都比Hb A大。③在20―40氧分压下,Hb F对氧的亲和力比Hb A

大,亲和力的这种差别允许氧从母亲血向胎儿有效转移。

3-10解答:在生理条件下,赖氨酸残基的带增电荷的侧链彼此排斥,不能形成α-螺旋。当它所处环境的pH上升超过它的侧链可界离基团的pK(>10.5)时才能形成α-螺旋。

3-11解答:蛋白质的分子形状影响它在凝胶过滤时的行为。分子形状较长的蛋白质在凝胶过滤时具有类似于分子较大的蛋白的行为。用SDS-PAGE测定的蛋白质分子量应该是比较准确的,因为变形后的蛋白质的迁移速度只取决于它的分子大小。

3-12解答:凝胶过滤分离的蛋白质是处在未变性的状态,如果被测定的蛋白质的分子形状是相同的或者是相似的,所测定的分子量应该是较准确的。SDS-PAGE测定蛋白质的分子量只是根据它们的大小。但这种方法能破坏寡聚蛋白质亚基间的非共价作用力,使亚基解离。在这种情况下,所测定的是亚基的分子量。如果有2-巯基乙醇存在,则能破坏肽链内或肽链间的二硫键。在这种情况下进行SDS-PAGE,所测定的分子量是亚基的分子量(如果亚基间没有二硫键)或者是肽链的分子量(如果亚基是由二硫键连接的几个肽链组成)。根据题中给出的信息,该蛋白质的分子量是200kD,由两个大小相同的亚基(100kD)组成,每个亚基由两条肽链(40kD和60kD)借二硫键连接而成。

3-13解答: 根据组分的百分含量求蛋白质的最低分子量可按下式计算:

细胞色素c的真实分子量=最小分子量3某氨基酸数=684318=12300. 这一结果与用物理方法测定的结果很接近。

3-14解答:①根据它们的等电点以及它们在pH8.5条件下所带净电荷的多少,很容易鉴定出它们在电泳图谱上的位置(图2-6b)。

②P6与P3具有相同的pI,即是说,在pH8.5的条件下,它们带有等量的净电荷。但P6的分子量仅是P3的一半,它的迁移率是P3的2倍,电泳后它在支持物上位置应比P3更接近于负极(如图2-6b所示)。

(在一定粘度的介质中,在恒压下,带电颗粒的迁移率由电荷与颗粒大小的比例决定,即:μ(迁移率)∝(Q(电荷)/r(大小))。为了在Q/r基础上估计

出相对迁移率,可用物质的分子量去除pI-pH,pI-pH视为Q值的一种量度。)

3-15解答:普通聚丙烯酰胺凝胶电泳分离蛋白质时主要是根据各组分的pI的差别。图2-7(A)的结果只呈现单一的带,表明该蛋白质是纯净的。

由于SDS是一种带负电荷的阴离子去垢剂,并且具有长长的疏水性碳氢链。它的这种性质不仅使寡聚蛋白质的亚基拆离,而且还能拆开肽链的折叠结构,并且沿伸展的肽链吸附在上面。这样,吸附在肽链上的带负电荷的SDS分子使肽链带净负电荷,并且吸附的SDS的量与肽链的大小成正比。结果是,不同大小的肽链将含有相同或几乎相同的Q/r值。由于聚丙烯酰胺凝胶基质具有筛分效应,所以,分子较小的肽链将比较大的、但具有相同的Q/r值的肽链迁移得更快。若蛋白质是由单一肽链或共价交联的几条肽链构成,那么在用SDS处理后进行SDS-PAGE,其结果仍是单一的一条带。若蛋白质是由几条肽链非共价结合在一起,在用SDS处理后进行SDS-PAGE,则可能出现两种情况:一种仍是一条带,但其位置发生了变化(迁移得更快),表明该蛋白质是由几条相同的肽链构成,另一种可能出现几条带,则可以认为该蛋白质是由大小不同的几条肽链构成. 图2–7蛋白质的鉴定

图2-7(的结果表明该蛋白质是由两种大小不同的肽链借非共

价键结合在一起的寡聚体蛋白质。从图2–7的电泳结果我们可以断定该蛋白质的等电点低于pH8.2。

3-16解答:①DEAE-纤维素是一种常用于蛋白质分离的阴离子交换剂。在分离蛋白质

样品之前,DEAE-纤维素先用较低的离子强度和pH为8的缓冲液平衡,蛋白质样品也溶于同样的缓冲液中。在这样的条件下,DEAE-纤维素大部分解离,并且带固定的正电荷。在这种pH下,蛋白质样品中各组分带净正电荷(但有差异,或带相反性质的电荷),这些带不同电荷的组分与DEAE-纤维素的结合力不同。洗脱液的离子强度影响带电颗粒与交换剂间的结合力。当升高洗脱液的离子强度时,会降低交换剂与被分离组分的静电吸引力。由上所述,该蛋白质混合物各组

分被洗脱下来的先后顺序是:a>c>d>b。

②Sephadex是葡聚糖凝胶,它是具有不同交联度的网状结构,其颗粒内部的孔径大小可以通过控制交联剂与葡聚糖的比例来达到.因此它具有筛分效应.用它作为填充料制成层析柱,可以根据被分离物质的大小进行分离。已有不同型号的葡聚糖凝胶用于不同物质的分离。当蛋白质混合样品随洗脱液向下流动时,比凝胶颗粒孔径大的蛋白质分子不能进入凝胶网格内,被排阻在凝胶颗粒的外部;比凝胶颗粒孔径小的蛋白质分子则能进入到网格内部。其结果是,分子大的蛋白质则随着洗脱液直接从柱上流出,分子比较小的蛋白质则因走了许多‘弯路”而被后洗脱下来。分子愈小,“弯路”走得愈多,洗出的速度愈慢。根据这一原则,上述蛋白质混合物从SephadexG–50洗脱出的顺序是:b>c>a>d。

3-17解答:用凝胶过滤(即分子排阻层析)法先除去分子量为100,000、pI为5.4的蛋白质,余留下来的低分子量的含酶的混合物再用离子交换层析法分离,于是就能获得所需要的纯酶。 第四章 酶 内容提要

酶是生物催化剂,能显著提高生物体内的化学反应速度。酶对它所作用的底物具有高亲和性和高度的专一性。酶是蛋白质,或者是由蛋白质和辅助因子组成。虽然发现有其它生物催化剂,例如具有酶活性的RNA,但这并不改变酶的蛋白质本质。根据酶催化反应性质,可将在生物体内发现的酶分为六大类。

酶的动力学描述的是酶在不同条件下催化反应的速度。酶催化反应的速度受底物浓度、温度、pH等的影响。米氏方程描述的是底物浓度对酶促反应速度的影响,这种影响呈现双曲线的图象。当底物浓度饱和时,酶促反应速度达到最大(Vmax)。米氏常数(Km)是指当酶促反应速度达到最大反应速度一半时所对应的底物浓度。Km和Vmax可以通过双倒数作图法等方法获得。酶的催化常数或转换数(kcat)是指当酶被底物饱和时,每分子的酶(或酶的每个活性部位)在单位时间内催化底物转变成产物的底物分子数。当底物处在稀浓度或未饱和时,kcat / Km比是酶促反应的表观二级速度常数。kcat / Km为酶的催化效应和对底物的专一性提供了一种量度。

生物化学反应大多是多底物酶促反应。多底物酶促反应可分为有序顺次反应、随机顺次反应以及乒乓反应。多底物酶促反应动力学也是可以测定的。

对酶的抑制剂动力学研究具有重要的意义,可以帮助揭示酶活性部位的结构、分析和推测代谢反应途径以及为临床药物的设计提供依据。酶的抑制作用可分为可逆抑制和不可逆抑制两种类型。可逆抑制又可以分为竞争性、反竞争性和非竞争性抑制等不同类似类型。不同类型的抑制剂可以用动力学作图来区分。 酶对底物高度有效的催化源于酶和它的底物之间的多种弱的作用力的形成和相互作用所释放的自由能。这样的结合能既贡献于酶的专一性,又贡献于它的催化反应。在酶促反应的转换态中使这样的弱的相互作用处于最佳状态。酶活性部位本身与底物是不互补的,但与底物的转换态是互补的。酶与底物的邻近与定向以及转态的稳定是解释酶高效催化的主要因素。此外,广义的酸碱催化和共价催化对于解释酶促反应的高效性也是重要的。酶活性部位的氨基酸残基可以参与酸碱催化(质子的加入或移除)或共价催化。pH对酶促反应速度的影响可以提示什么样的残基参于了催化反应。

对溶菌酶和丝氨酸蛋白酶类作用机制的研究为洞察酶的作用机理提供了很好的范例。溶菌酶对细菌细胞壁的水解涉及底物的变形(由酶和底物之间多种弱的相互作用力所致)和中间物(转换态)的稳定。

许多丝氨酸蛋白酶以无活性的酶原形式合成,在适当的条件下通过选择性水解转变成有活性的酶。X-射线晶体衍射分析表明,蛋白质的三维结构能揭示出酶活性部位(包括专一性底物的结合部位)的信息。丝氨酸蛋白酶的活性部位含有一个由氢键结合网形成的Ser-His-Asp催化三联体。它的丝氨酸残基起着共价催化剂的作用,组氨酸残基起着酸碱催化剂的作用。带负电荷的四面体中间物由酶提供的氢键来稳定。

酶活性的调节是酶作为生物催化剂区别于非生物催化剂的重要标志,也是生物体内物质代谢的重要调节方式。酶活性调节包括酶原的激活、同工酶调节、别构调节和共价修饰调节。

别构酶是多亚基酶,除含有底物结合部位外,还含有调节物结合部位(别构部位)。当调节物结合到别构部位时,诱导酶的构象发生变化,从而增高或降低酶的催化活性,进而调节代谢途径运行的速度。酶的共价修饰调节通常涉及酶分子特定部

位的丝氨酸残基或苏氨酸残基的磷酸化和去磷酸化。处在代谢途径关键部位的酶既具有别构调节又具有共价修饰调节两种调节方式。 第四章 酶 习题:

1.延胡索酸酶催化延胡索酸水合形成苹果酸,其逆反应苹果酸脱水转变成延胡索酸也能被该酶催化吗?为什么?

2.△G0'和△G?两者与化学反应的关系是怎样的?

3.借助米-曼氏方程υ=Vmax[S]/(Km+[S])研究底物浓度对酶反应速度影响的一种有用的方法是,在规定的实验条件下检验这个方程。在下述条件下,方程呈什么形式?①当〔S〕=Km时;②当〔S〕>>Km时;③当〔S〕<

4.①为什么kcat / Km比值能用来测定一种酶对它不同底物的优先权?②什么是酶的kcat / Km上限?③ kcat / Km值接近上限的酶常被说成达到“完美催化”。请解释。

5.人类免疫缺于病毒Ⅰ(HIV-Ⅰ) 基因编码一种该病毒装配和成熟所必需的蛋白酶(Mr=21500)。该蛋白酶能催化七肽底物水解,其kcat=1000 s-1和Km=0.075mol2L-1。(a) 当HIV-Ⅰ蛋白酶的浓度为0.2mg mL-1时,计算底物水解的Vmax;(b)当七肽的–CO–NH–替换成–CH2–NH–时,所得到的衍生物不能被HIV-Ⅰ蛋白酶水解,而却可以作为该酶一种的抑制剂。在如(a)所示的条件下,该抑制剂浓度为2.5μmol2L-1时,Vmax是9.3310-3 mol2L-1 2s-1。该抑制作用属于哪种类型?

6.为了确定某酶的催化反应的初速度的底物依赖关系,制备了一系列的l00ml含有不同底物浓度的反应混合物。向每个混合物加入相同量的酶后便开始反应。

通过测定每单位时间(分钟)所形成的产物量而获得催化反应的初速度,其结果如下表所示。 表4—2

底物浓度 初速度 底物浓度 初速度 底物浓度 初速度 (mol/L) (μmol/min) (mol/L) (μmol/min) (mol/L) (μmol/min)

1310-6 0.08 5310-6 0.25 1310-5 0.33 1310-4 0.48 1310-3 0.50 1310-2 0.50

①把表中的数据绘制成图,在给出的酶量下的Vmax是多少?

②根据米-曼氏方程,用Vmax、υ和〔S〕推演出Km的代数表达式。计算每个反应混合物的Km。 Km值取决于底物浓度吗?

③当底物浓度为0.1mol2L-1和l3l0-7mol2L-1时,计算它们的初速度。 ④反应混合物保温2分钟后确定反应的初速度。当初始底物浓度为1310-2mol2L-1时,计算产物的生成量。在2分钟后底物总量的百分之几被转换?

7.许多酶都表现出类似钟罩形的pH-活性依赖曲线。但是,不同的酶具有不同的活性最高点,即不同的最适pH。请你举例说明pH对酶活性影响的原因。

8.研究某抑制剂对单底物酶催化反应的影响,获得如下表的结果。

①该抑制剂是竞争性还是非竞争性抑制剂?

②在无抑制剂存在时,该酶促反应的Vmax和Km是多少? ③在有抑制剂存在时,该酶促反应的Vmax和Km是多大? ④该反应的抑制常数(Ki)是多少?

9.十烷双胺((CH3)3+N—CH2—(CH2)8—CH2-N+(CH3)3),一种用于肌肉松弛的药物,是乙酰胆碱酯酶的可逆的竞争性抑制剂。通过增高乙酰胆碱的浓度可使抑制逆转或解除。十烷双胺共价地同酶结合吗?为什么这种抑制作用可通过增高乙

酰胆碱的浓度而被解除?

10.二异丙基氟磷酸(DIFP)可使乙酰胆碱酯酶不可逆失活。但是,当有可逆抑制剂十烷双胺存在时,能延缓该酶的失活。为什么?

11.在底物以及中间物转换态同酶活性部位的结合中涉及哪些作用力?解释为什么底物同酶的紧密结合是于酶的催化无益的,而转换态的紧密结合则是需要的?

12.当胰蛋白酶活性中心的Asp定点突变成Asn后,它的催化反应速度降低10 000倍。为什么?

第四章 酶 习题解答

1.解答:酶是生物催化剂,它通过降低进入转换态的活化能而增高反应速度,但不改变反应的平衡位置。由于正向和逆向过程都经相同的转换态,所以两者的速度均可被该酶促进。该反应总的自由能变化不会因有酶的存在而改变。但是,请注意,由于底物和产物所固有的自由能是不同的,因此由底物或产物进入到过渡态所需要的活化能的多少是不相同的。酶加快相反两个过程的速度也是不相同的。如果某过程进入的速度太 慢,实际上这个过程是不能进行的。

2.解答:△G0'是某一反应在标准条件的产物与反应物所固有的自由能之差。当△G0'是负值时,表明平衡有利于产物。但平衡不受任何催化剂的影响。有利的平衡并不意味着反应物转变成产物就能自动发生或能快速发生。△G?是反应物从基态达到转换态(活化态)所需的能量,即活化能。若反应所需的活化能越低,反应的速度就越快。酶的存在能大大降低反应所需的活化能。反应的平衡与△G0'有关,但反应的速度则与△G?有关。

3.解答:①当〔S〕=Km时,υ=Vmax[S]/(Km+[S])=Vmax/2。这个方程可作为Km的物理定义,即Km是初速度达到最大半反应速度所对应的底物浓度。 ②当〔S〕>>Km时,Km+〔S〕可以近似地等于〔S〕。那么此时υ=Vmax。因此,在底物浓度很高的情况下,初速度变成了零级反应,即初速度不依赖于底物浓度,并表现为最大反应速度。

③当〔S〕<

4.解答:① kcat / Km比值是酶专一性常数或对不同底物的优先权的一种衡量。当两种底物以相同浓度竞争同一种酶的活性部位时,它们转变成产物的速度比值是与它们的kcat / Km比值相等的。由于对每种底物来说,反应速度υ=(kcat / Km)[E][S],而[E]和[S]又是相同的,所以kcat / Km比值大者的底物是酶优先选择的对象。

υ(S1)/υ(S2)=(kcat / Km)1[E][S] /(kcat / Km)2[E][S]

② kcat / Km上限大约是108~109 s-1。这是两个不带电荷的分子在生理温度下通过扩散相遇的最快速度。

③一种酶的催化效率不能超过E和S形成ES复合物的速度,最有效率的酶的kcat / Km值接近它通过扩散与底物相遇的速度。在接近这个极限速度下,酶催化反应的速度是最快的,因而可以成为有效的催化剂。

5.解答:(a)先计算酶的摩尔浓度,再计算Vmax

[E]=0.2gL-1(1 mol/21500g)=9.3310-6 mol2L-1

Vmax=kcat[E]T=1000 s-1(9.3310-6M)=9.3310-3 mol2L-1 2s-1

(b)由于在抑制剂存在下Vmax不变,因此这是一种竞争性抑制。由于该抑制剂在结构上与底物相似,它与底物竞争同酶活性部位结合,因而降低酶的催化活性。

6.解答:①由题中给出的数据所作的图如下图所示。图解表明,当底物浓度升高到1310-3mol2L-1以上时,初速度不再升高。因此断定,底物浓度超过1310-3mol2L-1时,酶被底物饱和,已达到最大反应速度,即对于该酶量的Vmax是0.50μmol2min-1。认识到Vmax取决于酶量是重要的,即如果该酶浓度增加,Vmax亦增大。 ②米氏方程可以改写:

那么在不同的底物浓度下,我们可以得到如下表的数据。重要的结论是,Km是这个具有特定底物的酶的特征性常数,它不取决于底物浓度。我们也能从图4—3获得该Km的值。Km是酶半饱和所需要的底物浓度,并且在半饱和下,初速度是最大反应速度的一半(Vmax /2),这发生在5310-6 mol2L-1的浓度下。

④当〔S〕=1310-2mol2L-1时,反应初速度是0.50μmol2min-1(即Vmax)。那么在两分钟内产物的生成量是0.50μmol2min-132min=lμmol。由于100ml反应混合物含有:

由于在2分钟后只有0.1%的底物被转化,〔S〕仍然大大地大于Km,因此反应初速度仍是 0.50μmol2min-1。

7.解答:在酶促反应中,游离酶,底物以及酶底物复合物都可能受到环境pH的改变而影响它们的解离状态。在最适pH范围内,酶活性中心有关基团的解离与底物的解离可能处于最佳结合状态,酶活性中心有关基团的解离能最有效地发挥酸、碱催化效率或增强它们的亲核性或亲电性。

例如胰凝乳蛋白酶的活性中心的“电荷转接系统”,当环境处于中性时,16位的Ile的α-氨基质子化,有利于电荷转接系统的形成,使195位的Ser残基的侧链具有更大的亲核性,有利于对底物的攻击。而在碱性pH下,16位的Ile的α-氨基去质子化,破坏了电荷转接系统,降低了195位Ser残基的亲核性,

离成单链,然后冷却,使分开的链退火。请解释为什么大肠杆菌复性是均相过程而人的DNA的复性则是双相的(即较快的复性过程和较慢的复性过程)。

14.同源蛋白质的结构有什么特点?为什么你预期来自不同脊椎动物编码同源蛋白质的 DNA链彼此有杂交的内容?

15.现有两支试管,分别装有E.coli DNA和海胆DNA,但忘了给它们贴上标签。你将怎样进行鉴定?

已知:E.coli DNA:24.7%A; 25.7%C; 26%G; 23.6%T. 总A=T对:48.3%;总G≡C对:51.7%。 海胆:32.8%A;17.3%C;17.7%G;32.1%T. 总A=T对:64.9%;总G≡C对:35%.

16.虽然大多数RNA分子是单股的,但是它们对作用于双股RNA的核糖核酸酶的降解也是敏感的。为什么?

17.为什么没有一种核酸外切酶降解噬菌体φ3174 DNA?

习题解答:

1.解答:用离子交换树脂分离核苷酸主要是根据它们与树脂上相反电荷的静电结合力的 不同以及核苷酸疏水的碱基环与树脂骨架之间非极性吸附力的差异。本来,用阳离子交换树 脂分离这四种核苷酸时,按照它们解离的差异,应该是AMP在CMP之前被洗脱下来。但是,由于嘌岭环比嘧啶环同交换树脂的非极性吸附力大三倍,抵消了它们之间的电荷差异,故出现上面的冼脱顺序。

2.解答:在中性pH条件下,ApGpUpC应带负电荷。因为第一磷酸基在此pH条件

下完全解离而带负电荷,其净电荷数为-3。

3.解答:由于该DNA含有58%(G+C),它应含有42%(A+T)。根据碱基配对规则,每一个A都与相反链上的T配对,A与T的数目应该相等。因此,T的含量是21%,或者含有210个T。

4.解答:DNA分子的Watson-Crick模型是以两条多核苷酸链的糖-磷酸骨架呈有规律的螺旋结构为特征。这种螺旋结构有两个限制:①一条链上的碱基必须与另一条互补链的碱基形成氢键;②使碱基与糖-磷酸骨架相连接的糖苷键必须保持大约1.1nm的间隔。A与T、 G与C的配对符合这种限制。若A与G或G与T配对,其间隔太大,以至不适合这种螺旋(即糖苷键间的间隔大于1.1nm),产生不稳定的膨胀结构,若T与C配对,其间隔太小,若A与 C配对,在空间限制范围内不能形成氢键。只有A与T、G与C互补配对,才能保持其间隔约为 1.1nm,也才能在碱基对之间有效地形成氢键,Watson-Crick螺旋结构才稳定。

5.解答:由于这种酶只作用于双螺旋DNA的脱氧核糖C-2'—C-3'键,不能催化核苷酸间的磷酸二酯键的裂解,故对超螺旋DNA不产生影响。

6.解答:在由B-型向Z-型转换时,B-DNA每个右手螺旋10.5bp转变成Z-DNA的每个左手螺旋12bp。由于右手双螺旋是正向的,因此缠绕数的减少是△T=﹣(100/10.5)+(﹣100/12)=﹣17.9(轮)。它的连环数保持不变(△L=0)。由于没有共价键的断裂,因此它的超螺旋数的变化是△W=17.9轮

7.解答:一种可能的解释是E.coli K株含有识别该病毒DNA的特定的碱基顺序的限制性内切酶,这些酶能催化该病毒DNA降解。细菌本身的DNA则由于这些特定顺序被甲基化而受到保护,免于降解。由于该病毒在B菌株中很容易繁殖,因此B株可能缺少限制性内切酶,或者具有不同专一性的限制性内切酶,即它们不能识别这种病毒DNA。

8.解答:蛋白质中的氨基酸残基的平均分子量大约110。50 kD的蛋白质含有(50 000 D÷110)455个氨基酸。每个氨基酸是由三个连续的碱基编码,编码455

个氨基酸需要33455=1365个碱基(或核苷酸)。B-DNA的每个碱基对的长度是0.34nm,因此它的外形长度是0.34nm /bp31345bp=0.46μm。在A-DNA中,每个碱基对的长度是0.28nm,它的外形长度是0.28nm /bp31345bp=0.38μm。

9.解答: 胰核糖核酸酶含有124个氨基酸残基,因此编码它的基因的核苷酸对数至少应有 12433=372(bp)。这一大小仅仅是从(有活性的)核糖核酸酶的氨基酸残基数确定的。但是,该酶的基因也许含有前导顺序或信号顺序的密码子(这在新产生的蛋白质分子中常常发现有这样的顺序)、多个插入顺序以及其他可能的调节顺序。因此,372bp是一个最小的值,实际的大小可能是它的几倍。

10.答:增高pH会引起核酸某些碱基和所有的磷酸基电离,其净结果是带负电荷的基团 增加。由于同种电荷的相互排斥,使得DNA双螺旋失去稳定而解链。稳定双螺旋结构的作用力之一是碱基对间的氢键,即A=T和G≡C。A=T对只有两个氢键,而G≡C对却有三个氢键。克服G≡C对间的三个氢键比克服A=T对间的两个氢键所需要的力大。因此,富含A=T对的区域解链比富含G≡C对的区域要容易。这种情况与加热引起的DNA变性相似。

11.解答: 由于Tm是在标准条件下测定的,因此可以利用下面的公式计算A+T的百分含量:

浮力密度可用下式计算:

12.解答:在pH11.5时,DNA具有抗性,而RNA则很容易被碱水解。因为在碱性条件下,RNA核糖C’—2位上的﹣OH的诱导电子的效应,使磷原子带微弱的正电荷,有利于碱(OH-)的亲核攻击。因而RNA对碱是敏感的。但在DNA分子中C’—2位上没有羟基(﹣OH),不能产生邻近基团参与效应,不会形成有利于碱攻击的2’,3’-环状中间结构,因而对碱有抗性。

在pH2.5时,RNA具有较大的抗性。因为RNA分子中的C—N不易被酸水解。

而DNA在酸性条件下,易变成去嘌呤酸。这种差别是由于戊糖结构差别造成的。戊糖C’—2位上的羟基存在与否对酸性条件下C—N的稳定性有很大的影响。

13.解答:实际上大肠杆菌几乎全部基因都是以单拷贝存在的,所以每个片段与它的互补链的重新结合以一种较均相过程进行。相反,人的基因组含有许多重复的DNA顺序。许多含有这些顺序的DNA片段找到彼此形成双链区(复性)的速度比单拷贝DNA顺序要快得多。这种单拷贝顺序在人的基因组中也存在,故可以观察到两个不同的复性过程。

14.解答:同源蛋白质,即来自不同物种、但有相同功能的蛋白质,有相同或几乎相同的多 肽链。来自不同物种的这样的肽链的许多相应部位被相同的(不变的)氨基酸占据。显然,编码这样的多肽链的基因在它们的核苷酸顺序中有某些相似性,即在多肽链中不变氨基酸出现在什么位置,编码这些氨基酸的密码子在它们的基因中也出现在相应的部位。因此,也可以预期在它们的基因中有“同源”区。当从这样两种同源生物中分离出的双螺旋DNA被加热变性、混合,冷却后在两种DNA的同源部位将会形成杂交双螺旋。两种生物的关系越密切,在它们的DNA之间就会出现越多的杂交双螺旋区

15.解答:由于这两个样品的A=T和G≡C对的比例有显著的差别,若忘了给这两个样品贴标签,那么可以通过CsCl密度梯度离心鉴别它们。含G≡C对量高的样品的浮力密度比含A=T对量高的浮力密度大。当在有适当比重的CsCl溶液中离心时,将会给出两条不同位置的带。密度较大的(即距离心底近者)是E.coli DNA。

16.解答:虽然大多数RNA分于是单股的,但它们可通过自身的回折,在那些可以形成氢键的部位形成局部的双螺旋区。在这种双螺旋区内,碱基配对的规则是A与U、G与C。由于存在局部的双螺旋结构,因此,对专一于双股的核糖核酸酶的降解是敏感的。

17.解答:因为核酸外切酶需要作为底物的DNA或RNA具有游离的3’-末端和5’-末端,而φ3174 DNA是单股环状分子,没有游离的3’-末端和5’-末端。 第八章 生物能学 内容提要

生物细胞不断地做功,因此需要能量用于维持高度组织化的结构、细胞组分的合成、运动以及许多其他过程。生物能学研究生物系统的能量关系和能量的定量转化。生物能的转化遵循热力学定律。所有化学反应受到两种力的影响:达到最稳定结合态的趋向(用焓H表示)和达到最大混乱度的趋向(用熵S表示)。一个化学反应的净推动力是自由能的变化(△G),它代表了这两个因素的净效应:△G=△H-T△S。细胞需要自由能以完成做功。

标准自由能的变化(△G0')对某一给定反应来说是一个特征性常数,能从一反应的平衡常数计算得到:△G0'=-RTlnK'eq. 实际自由能变化(△G)是可变的,它取决于△G0'和反应物和产物的浓度:△G=△G0'+RTln([产物]/[反应物])。当△G是很大负值时,反应趋向正向方向进行;当△G是很大正值时,反应趋向逆向方向进行;当△G是零时,该系统处在平衡状态。一反应的自由能变化不取决发生反应的途径。自由能的变化是可以相加的。由几个连续反应所构成的总反应的自由能变化等于各分步反应的自由能变化之和。

生物氧化反应可根据两个半反应来描述,每个半反应都有它特有的标准还原(电)势(或称标准氧化还原电势),用E0'表示。当两个电化学半电池(每个含有两个半反应组分)被连接时,电子趋于流向具有较高还原势的半电池。这种趋势的强度与这两个还原势之间的差值(△E)成比例,它是氧化剂和还原剂浓度的函数。一个氧化-还原反应的标准自由能变化直接与两个半电池的标准还原势的差成比例:△G0'=-nF△E0'.

许多生物氧化反应是脱氢反应,来自底物的两个氢原子(电子和质子)被转移到氢受体上。细胞内的氧化-还原反应涉及专一性的电子载体。这些载体也是相应脱氢酶的辅酶。细胞内的许多脱氢酶的辅酶是NAD+和NADP+,这两种辅酶能接受两个电子和一个质子(即一个氢负离子)。两种黄素核苷酸FAD和FMN是能紧密同黄素蛋白(也是一类脱氢酶)结合的电子载体,它们或是接受一个电子或是接受两个电子。在许多生物中,一个主要的能量转化过程是葡萄糖逐步氧化成C

O2。当电子传递给氧时,氧化产生的能量以ATP的形式被保存着。

ATP是分解代谢和合成代谢之间的化学连系者。它的放能转变成ADP和Pi或AMP和PPi反应同许多需能的反应和过程相偶联。一般来说,这个过程不是ATP水解,而是磷酸基或者腺苷酰基从ATP转移到一种底物或酶分子上,并将ATP降解产生的能量与底物的需能转化相偶联。通过这些基团转移反应,ATP为合成反应(包括信息分子的合成)、分子和离子跨膜的逆浓度和电化学梯度转移提供能量。肌肉收缩是对这种一般化的例外,ATP水解推动肌球蛋白的构象变化,从而引起肌肉收缩。

细胞也含有其他大的、负的自由能的代谢物分子,它们水解时可释放大量的自由能。这些代谢物包括磷酸烯醇式丙酮酸、1,3-二磷酸甘油酸和磷酸肌酸。象ATP一样,这些高能化合物具有很高的磷酸基转移势,它们是很好的磷酸基供体。硫酯类化合物水解时也能释放很高的自由能。 习题:

1.卵白和卵黄含有蛋白质、糖和脂。如果卵被受精,它就会从单细胞转变成一个复杂的生物。从卵在孵化器中的生态系统考虑,根据该系统以及环境和宇宙的熵的变化,讨论这个不可逆的过程。确信你能十分清楚地界定系统和环境。你是怎样考虑的?

2. 一假想的反应(pH7、25℃、一个大气压): A ←→ B+C

若A的最初浓度是0.2mol/L,在反应达到平衡时,A的浓度只剩下1%,求:①该反应的K'平;②该反应的△G0';③逆反应的△G0'

3.考虑下面的相互转换(25°C), 果糖-6-磷酸 ←→ 葡萄糖-6-磷酸

该反应的K'平为1.97。 ①该反应的△G0'是多少?

②如果把果糖-6-磷酸的浓度调到1.5 mol2L-l,葡萄糖-6-磷酸的浓度调到0.5mol2L-1,△G是多少? ③△G0'和△G'为什么不同?

④在②给出的条件下,如果加入少量的酶加速这种转换,那么达到平衡时△G'将是多少?平衡时果糖-6-磷酸和葡萄糖-6-磷酸的浓度将是多少?

4.计算下面反应在生理条件下的自由能的变化: 磷酸肌酸 + ADP → 肌酸 + ATP

当该反应发生在神经元胞液中时,磷酸肌酸的浓度是4.7mM、肌酸的浓度是1.0mM、ADP浓度是0.20mM和ATP浓度是2.6mM。假定温度是25℃。已知磷酸肌酸水解时的△G0'=–43.0 kJ/mol;ATP合成需要输入30.5 kJ/mol。

5.如果把少量的、末端用放射性磷标记的ATP([γ-32P]-ATP)加入到酵母抽提液中,在几分钟时间内,大约一半的32P放射活性出现在Pi中,但是,ATP的浓度保持不变。请解释。如果用[β-32P]-ATP)代替[γ-32P]-ATP做同样的实验,在同样的时间内,32P的放射活性不出现在Pi中。为什么?

6.把ATP的水解与热力学不利的反应偶联起来,能显著改变该反应的平衡。①当△G0'=25000J2mol-1、温度为25℃时,计算能量上不利的生物合成反应A→B的Keq;②当把ATP的水解与反应A→B偶联时,计算该反应的Keq,并把该反应的Keq与①比较;③许多细胞把[ATP]/[ADP]的比例维持在400以上;当[ATP]︰[ADP]为400︰1以及在标准条件下Pi保持恒定时,计算与[A]的比例。并把这个比例与未偶联时的比例进行比较。

7.在标准条件下,在pH7.0,ATP水解的△G0'为–30.5kJ2mol-1。如果ATP是在标准条件下、但在pH5时水解,所释放的自由能是更多还是更少?为什么?

8.在标准条件下,写出下面每对分子自发反应的方向: ① Cyt.f/Cyt.b5

②延胡索/酸琥珀酸 和CoQ/CoQH2 ③α-酮戊二酸/异柠檬酸和NAD+/NADH

已知:Cyt.f(Fe3+) + e- ←→ Cyt.f(Fe2+) E0'=0.36 V Cyt.b5(Fe3+) + e- ←→ Cyt.b5(Fe2+)(微粒体) E0'=0.02 V 延胡索酸 + 2e- ←→ 琥珀酸 E0'=0.031 V CoQ + 2e- + 2H+ ←→ CoQH2 E0'=0.045 V

α-酮戊二酸 + CO2 + 2e- + 2H+ ←→ 异柠檬酸 E0'=–0.38 V NAD+ + 2e- + 2H+ ←→ NADH + H+ E0'=–0.32 V

9.下述每对中哪个成员失去电子的倾向大?①苹果酸和琥珀酸;②细胞色素a和细胞色素b。 第八章

1.解答:可以把处在发育阶段的小鸡当作一个系统看待;营养物、卵壳以及外部世界当作环境。由这个单细胞转化成一只鸡显著减少了该系统的熵。最初,胚外部的那部分卵(环境)含有复杂的燃料分子(一种低熵状态),当孵化时,其中一些复杂的分子转变成大量的CO2和H2O分子(高熵)。环境熵的增高比小鸡(系统)的熵的减少要大。因此,生命过程是不违反热力学原理的。

2.解答: ①当反应达到平衡时,

[A]=0.0130.2=0.02 (mol/L), =[C]=0.9930.2=0.198 (mol/L) K'平=([C])/{A}=(0.198)3(0.198)/0.02=19.6

②△G0'=–2.303RT2log K'平=–2.30338.31532983log19.6 =–7.4 kJ2mol/L

③逆反应的△G0'应与正反应的△G0'的数值相等,但符号相反.所以逆反应的△G0'=﹢7.4 kJ2mol/L

3.解答: ①△G0'=–2.303RTlog K'平=–2.30338.13532983log1.97=-1.67 kJ2mol/L

②△G'=△G0'+2.303RT log([葡萄糖-6-磷酸]/[ 果糖-6-磷酸]) =﹣1.67+2.30338.31532983log(0.5/1.5)=﹣4.4 kJ2mol/L ③在一给定温度下,任何一个反应的△G0'都是一个固定值,而且是在标准条件下(果糖-6-磷酸和葡萄糖-6-磷酸的浓度都是1mol2L-1)定义的。相反,△G是非标准条件下的自由能的变化,它随反应物和产物起始浓度的变化而变化。 ④当反应处在平衡状态时,没有自由能的变化,即△G=0。所以从处于平衡状态的反应中不可能得到能够做功的能量。由于平衡常数大约是2,所以,在平衡时,当有1分子的果糖-6-磷酸存在,就有2分于的葡萄糖-6-磷酸存在。果糖-6-磷酸和葡萄糖-6-磷酸的总浓度是2.0 mol2L-1(1.5+0.5),该混合物的1/3是果糖-6-磷酸,2/3是葡萄糖-6-磷酸。因此, [果糖-6-磷酸]=(2mol/L)1/3=0.67 mol/L [葡萄糖-6-磷酸] =(2mol/L)2/3=1.33 mol/L

4.解答:首先计算标准条件下该反应自由能的变化。根据已知的条件,可以计算该反应的标准自由能的变化是:

△G0'=(–43.0 kJ/mol +(30.5 kJ/mol)=–12.5 kJ/mol 在生理条件下,

△G'=△G0'+RT ln([肌酸][ATP]/[ 磷酸肌酸][ADP])

=–12.5 kJ/mol + 2.303 3 8.315 3 298 3 log(1.0310-332.6310-3/ 4.7310-330.2310-3) =10 kJ/mol

5.解答:在酵母抽提液中,ATP系统处在动态稳定状态,[ATP]保持恒定,因为ATP消耗的速度等于它的合成速度。ATP的消耗涉及它的末端(γ)磷的释放。由ADP合成ATP涉及这个磷的置换,因此,末端磷经受了快速转换。相反,中间

磷(β)只经受相对较慢的转换。

6.解答:①根据在标准条件下自由能变化的公式,

lnKeq=﹣△G0'/RT=﹣(25000J2mol-1)/(8.315K-1mol-1)(298)=–10.1

Keq=4.1310-5 ②将反应:

A → B △G0'=25 kJ2mol-1 与反应:

ATP + H2O → ADP + Pi △G0'=﹣30.5kJ2mol-1

偶联时的△G0'是﹢25 +(﹣30.5)=﹣5.5。根据标准自由能变化的公式, lnKeq=﹣△G0'/RT=2.0, Keq=7.5 偶联反应时的Keq比①中反应的Keq大180 000倍。

③因已知偶联反应的Keq=7.5,因此可以计算当[ATP]︰[ADP]是400︰1以及在标准条件下Pi保持恒定时,与[A]的比例。 Keq=7.5 =([ADP][Pi])/([A][ATP][H2O]) =([ADP])/([A][ATP])=(1)/[A](400) /[A] =3000︰1

与ATP水解反应偶联使/[A]的比例增大了3000÷(4.1310-5)=7.33107

7.解答:ATP水解的总反应式大致是: ATP4-+H2O→ADP3-+HPO4-2+H+

在标准条件下,ATP4-、ADP3-和HPO4-2都是1 mol2L-l,H2O的浓度是55 mol2L-1,并在反应中没有什么变化。在pH7.0时,每摩尔的ATP水解有30.5kJ2mol-1的自由能释放出来。由于H+是反应中产生的,如果H+浓度比较高(pH5.0),平衡会向左移动。因此释放出的自由能减少。

8.解答:电子流动的方向是从具有较负标准还原势的分子流向具有较正标准还原电势的分子:

2来自丙酮酸的羧基碳,因此,只要用14C标记葡萄糖的C-3或C-4或C-3和C-4可得到含放射性标记的CO2。

8.解答:①每分子葡萄糖在无氧下经糖酵解总共产生4分子的ATP,但第一阶段两次磷酸化反应消耗了2分子的ATP,故净产生2分子的ATP。

②在肌肉细胞中,果糖在果糖激酶催化下(消耗1分子的ATP)转变成果糖-6-磷酸,后者可直接进入糖酵解途径,净产生2分子的ATP。如果反应发生在肝细胞中,果糖先经磷酸果糖激酶催化转变成果糖-1-磷酸,后者经果糖-1-磷酸醛缩酶作用转变成磷酸二羟丙酮和甘油醛。甘油醛再经甘油醛激酶催化生成甘油醛-3-磷酸。磷酸二羟丙酮和甘油醛-3-磷酸都是糖酵解的中间物,能继续进行糖酵解反应。因此,每分子果糖在肝细胞中经糖酵解同样可净产生2分子的ATP。 ③甘露糖是葡萄糖C-2的差向异构体,己糖激酶能识别甘露糖,将其转变成甘露糖-6-

磷酸。甘露糖-6-磷酸再经甘露糖-6-磷酸异构酶催化生成糖酵解的中间物果糖-6-磷酸。因此,甘露糖在无氧下经糖酵解能净产生2分子的ATP。

④蔗糖经水解产生一分子的果糖和一分子的葡萄糖。果糖和葡萄糖经糖酵解分别净产生

2分子的ATP。所以一分子的蔗糖经糖酵解净产生4分子的ATP。

9.解答:①磷酸戊糖的C-2位含有14C标记。因为葡萄糖经6-磷酸葡萄糖酸转变成磷酸戊糖是磷酸己糖支路的第一阶段,即氧化脱羧阶段,脱羧部位是原初葡萄糖的C-1位。

②磷酸戊糖的C-3位以及C-1位和C-2位都含有放射性标记。在此过程中,葡萄糖转变成糖酵解的中间物果糖-6-磷酸(C-3含有标记)和甘油醛-3-磷酸(C-1含有标记,碳位数的转换见第3题)。糖酵解生成的果糖-6-磷酸和甘油醛-3-磷酸经转酮醇酶和转醛醇酶催化的逆反应,所生成的磷酸戊糖的C-3位以及C-1位和C-2位含有放射性标记

10.解答:若将葡萄糖以无氧酵解的方式代谢为乳酸,每分子的糖所产生的ATP

比正常细胞在有氧下代谢葡萄糖产生的ATP少得多,因此,需要更多的葡萄糖经无氧酵解被代谢才能产生细胞所需的足够的ATP,葡萄糖在无氧下转变成乳酸的速度也比在有氧下高出很多。处在缺氧环境下的肿瘤细胞会吸收更多的葡萄糖,也许过量产生某些糖酵解的酶,可以为加强该途径的运转作出必要的补偿。 -- ※ Origin: 凯歌--生物考研网 ◆ From: 222.82.228.*张楚富教授等原作!非常感谢!

第二章 氨基酸和蛋白质的一级结构 基本内容

蛋白质含有20种标准氨基酸,这些氨基酸在它们的α碳原子上分别含有一个氨基、一个羧基和一个侧链基团(或称R基团)。除甘氨酸外,所有其它氨基酸的α碳原子都是一个不对称的碳原子,即手性碳原子。蛋白质中的所有氨基酸都是L-型的。

20种标准氨基酸可以根据它们侧链的结构分为含脂肪烃基的氨基酸、含芳香基的氨基酸、含硫的(或含羟基的、或含酰胺基的)氨基酸。如果根据它们的侧链极性(或在生理pH下的解离),可分为侧链非极性氨基酸、侧链不带电荷的极性氨基酸和侧链解离带正电荷或负电荷的氨基酸。氨基酸侧链的性质对于决定蛋白质的性质、结构和功能来说是很重要的。

氨基酸的α-氨基和α-羧基都是可解离的基团,它们的解离取决于介质的pH。在生理pH下,α-氨基解离带正电荷(–NH3+),α-羧基解离带负电荷(–COO–);侧链可解离基团的解离取决于它们的pK值和介质的pH。氨基酸的解离性质是建立分离和分析氨基酸的方法的基础,它们的解离也影响蛋白质的性质、结构和功能。分离分析氨基酸的主要方法是离子交换法以及电泳法。

蛋白质是由氨基酸借肽键连接而成多聚物。在蛋白质多肽链中,肽键是唯一的共价键,由一个氨基酸的α-羧基和相邻氨基酸的α-氨基脱水缩合而成。在多肽链中,氨基酸残基的顺序称为蛋白质的一级结构。

蛋白质是生物大分子,虽然它们具有与氨基酸相似的解离性质,但这一性质却比氨基酸复杂。蛋白质的许多重要的性质,例如,溶解性、极性、带电性质、分子大小以及配体亲和性等,是构成分离分析它们的方法的基础。离子交换法、凝胶

过滤法、亲和层析法、超速离心法以及各种电泳法是常用的方法。

蛋白质一级结构的测定通常采用这样的程序,即纯净样品的末端分析、氨基酸组成分析、专一性酶或化学试剂进行部分水解、Edman降解法测定肽碎片的氨基酸残基的顺序以及片段重叠。末端分析常有丹磺酰氯法和二硝基氟苯法;肽链的部分水解一般是有胰蛋白酶法、胰凝乳蛋白酶法以及溴化氰法。

氨基酸顺序的分析能揭示不同来源的蛋白质彼此之间的进化关系,亦为分子病的诊断提供可靠的依据。

第二章 氨基酸和蛋白质的一级结构 习题

2–1.图2—1的滴定曲线描述了谷氨酸的电离。请回答下列问题:①指出三个pK’a的位置;②指出Glu-和Giu=各一半时的pH;③指出谷氨酸总是带净正电荷的pH范围;④指出Glu±和Glu-能作为一种缓冲液的共轭酸碱对的pH范围.

图2-1 谷氨酸的酸-碱滴定曲线

2–2.为什么甘氨酸处在等电点时是以偶极离子的形式存在,而不是以完全不带电荷的形式存在?处在等电点时,其完全不带电荷的形式是多少?

2–3.甘氨酸是乙酸甲基上的氢被氨基取代生成的,但是,甘氨酸羧基的pK’a值比乙酸羧基 pK’a低。为什么?

2–4.在pH9.0时,计算赖氨酸的两性离子、阳离子以及阴离子所占的比例。已知赖氨酸三个可电离基团α-COOH,α–NH3+和ε- NH3+的pK’a值分别为2.18、8.95和10.53。

2–5.用强酸型阳离子交换树脂分离下述每对氨基酸,当用pH7.0的缓冲液洗脱时,下述每对中先从柱上洗脱下来的是哪种氨基酸?

①天冬氨酸和赖氨酸;②精氨酸和甲硫氨酸;⑧谷氨酸和缬氨酸;④甘氨酸和亮氨酸;⑤丝氨酸和丙氨酸。

2–6.计算出由Ala、Gly、His、Lys和Val所构成的可能的五肽数目。 2–7.在大多数氨基酸中,α–COOH的pK’a值都接近2.0,α–NH3+的pK’

a值都接近9.0。但是,在肽中,α–COOH的pK’a值为3.8,而α–NH3+的pK’a比值为7.8。你能解释这种差别吗?

2–8.某蛋白质用凝胶过滤法测定的表观分子量是90kD;用SDS-PAGE测定时,它的表观分子量是60kD,无论2-巯基乙醇是否存在。哪种测定方法更准确?为什么?

2–9.一种分子量为24,000、pI为5.5的酶被一种分子量类似、但pI为7.0的蛋白质和另外一种分子量为100,000、pI为5.4的蛋白质污染。提出一种纯化该酶的方案。

2–10.下面的数据是从一个八肽降解和分析得到的,其组成是:Ala、Gly2、Lys、Met、Ser,Thr、Tyr。该八肽

用CNBr处理,得到:①Ala、Gly、Lys、Thr; ②Gly、Met、Ser、Tyr 用胰蛋白酶处理,得到:①Ala、Gly; ②Gly、Lys、Met、Ser、Thr、Tyr 用糜蛋白酶处理,得到:①Gly、Tyr; ②Ala、Gly、Lys、Met、Ser、Thr 经分析,N–末端残基是:Gly C–末端残基是:Gly 请确定该肽的氨基酸顺序。

第二章 氨基酸和蛋白质的一级结构 解答:

2–1解答: ①三个pK’a的位置如图2—4所示

图2–4 谷氨酸的酸-碱滴定曲线显示出它的三个 pK’a的位置以及它在不同pH下的电离状态 ②Glu-和Glu=各一半的pH值为9.67。 ③当pH小于3.22时,谷氨酸总是带净正电荷。

④Glu±和Glu-作为一种缓冲液的共轭酸碱对的pH范围是pH4.25左右 2–2解答:因为羧基的酸性(pK’a=2.36)比质子化的氨基的酸性强得多(pK’a=9.60)。因此,羧基将倾向于供出质子使氨基质子化,并且其平衡常数是107。这表明平衡状态非常强烈地偏向右边:

因甘氨酸的等电点是5.97,首先我们需要测定甘氨酸处在等电点时〔–COO-〕/〔–COOH〕和〔H3+N–〕/〔–NH2〕的比例。如果我们单独处理每个功能基团,并利用Henderson—Hass- elbalch方程,就会得到:

两者合并起来考虑时,两性离子与完全不带电荷的比例是:

因此,甘氨酸处在等电点时,大约1/107以不带电荷的形式存在的。 2–3解答:甘氨酸羧基的pK’a值为2.34,乙酸羧基的pK’a值是4.7。当甘氨酸溶液的pH值低于6.0时,氨基以正电荷的形式存在。这种正电荷通过静电相互作用使带负电荷的羧基离子稳定。这就意味着甘氨酸的羧基将比较容易失去它的质子,因而它是一种更强的酸(具有更低的 pK’a值)。 2–4解答:赖氨酸有三个可电离的质子:

[Lys±]=1.12[Lys+]=1.12346.45=52

由此可见,在pH9.0时,〔Lys++〕含量甚微,可以忽略不计,〔Lys+〕占46.45%,〔Lys+-〕为52%,〔Lys-〕为1.53%,整个分子带部分正电荷。

2–5解答:氨基酸从离子交换柱上被洗脱下来的速度主要受两种因素的影响:①带负电荷的树脂磺酸基和氨基酸带?绾傻墓δ芑胖涞睦胱游剑搅Υ蟮脑谑髦贤V偷氖奔涑ぃ又舷赐严吕吹乃俣嚷虎诎被岬牟嗔椿庞胧髦糠羌缘墓羌苤涞氖杷嗷プ饔谩7羌源蟮牟嗔碦基氨基酸与树脂骨架间的疏水作用力强,从树脂柱上洗脱下来的速度慢。

根据氨基酸可电离基团的pK’a值,我们可以确定题中每组氨基酸的结构以及在pH7时它们的平均净电荷。如果平均净电荷相同,则取决于它们侧链基团的疏水性。

本文来源:https://www.bwwdw.com/article/cqyw.html

Top