6000T近海油船设计 - 图文

更新时间:2024-01-03 02:09:02 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

武汉理工大学毕业设计(论文)

目 录

摘 要 ··················································································································································· I Abstract ·············································································································································· II 绪 论 ·················································································································································· 1 1 毕业设计任务书分析 ····················································································································· 2

1.1 设计要求 ··························································································································· 2

1.1.1 船型,航区及用途 ···································································································· 2 1.1.2 载重量 ····················································································································· 2 1.1.3 船级及规范 ············································································································· 2 1.1.4 航速,续航力 ············································································································ 2 1.1.5 主机,辅机及燃料 ···································································································· 2 1.1.6 设备 ························································································································· 2 1.1.7 船员编制及配置 ····································································································· 2 1.1.8 确定设计船主要要素 ····························································································· 2 1.1.9 型线设计 ················································································································· 3 1.1.10 总布置设计 ··········································································································· 3 1.1.11 性能校核 ··············································································································· 3 1.1.12 稳性计算 ··············································································································· 3 1.1.13 完成功率、螺旋桨计算书及预报航速 ······························································· 3 1.1.14 最小干舷计算 ······································································································· 3 1.2 调查报告 ··························································································································· 3 1.3 对本船的简要分析 ··········································································································· 3 2 全船设计说明书 ····························································································································· 4 2.1船型及用途 ························································································································ 4 2.2船级及规范 ························································································································ 4 2.3 载重量 ······························································································································· 4 2.4 主尺度 ······························································································································· 4 2.5 主要船型及系数 ··············································································································· 4 2.6 稳性及干舷 ······················································································································· 4 2.7 舱容 ··································································································································· 5 2.8 主要舱室布置 ··················································································································· 5 2.9 船体结构 ··························································································································· 5 2.10 推进设备 ························································································································· 5

2.10.1 主机 ······················································································································· 5 2.10.2 减速齿轮箱 ··········································································································· 5 2.10.3 螺旋桨 ··················································································································· 5 2.10.4 舵设备 ··················································································································· 6 2.11 其它设备 ························································································································· 6

2.11.1 锚设备及系泊设备 ······························································································· 6 2.11.2 航行信号设备 ······································································································· 6

武汉理工大学毕业设计(论文)

2.11.3 救生、消防设备 ··································································································· 6 2.11.4 其他 ······················································································································· 6

3 船舶主要要素确定 ························································································································· 7 3.1 主要要素估算 ··················································································································· 7

3.1.1?dw(第一次近似估算) ························································································· 7 3.1.2 ?估算 ····················································································································· 7 3.1.3 LPP估算 ···················································································································· 7

3.1.4 傅汝德数估算 ········································································································· 8 3.1.5 B、D、T估算 ········································································································· 8 3.1.6 Cb估算 ···················································································································· 8 3.2 性能校核 ··························································································································· 8 3.2.1 排水量校核 ············································································································· 8 3.2.2 航速校核 ················································································································· 9 3.2.3 稳性校核 ················································································································· 9 4 船舶型线设计 ································································································································ 12 4.1概 述 ······························································································································ 12 4.2 BSRA型线改造 ·············································································································· 12

4.2.1 型线特征 ··············································································································· 12 4.2.2 主要参数确定 ······································································································· 13 4.2.3 型线改造 ··············································································································· 13 4.3 手工绘制型线图 ············································································································· 14 5 静水力计算 ···································································································································· 17 5.1 计算结果 ························································································································· 17 5.2 计算结果分析与设计优化 ····························································································· 17 6 船舶总布置设计 ··························································································································· 18 6.1 总布置概述 ····················································································································· 18 6.2 主船体舱室划分 ············································································································· 18

6.3.2 居住舱室的布置 ··································································································· 19 6.3.3 公共处所的布置 ··································································································· 19 6.3.4 交通路线的布置 ··································································································· 19 6.4 船舶设备的布置 ············································································································· 19

6.4.1 锚泊设备 ··············································································································· 19 6.4.2 航行信号设备 ······································································································· 20 6.4.3 舵设备 ··················································································································· 20 6.4.4 救生、消防设备 ··································································································· 20 6.5 纵倾调整 ························································································································· 21

6.5.1 意义 ······················································································································· 21 6.5.2 调整典型载况 ······································································································· 21 7 阻力计算及螺旋桨设计 ··············································································································· 22 7.1 阻力计算 ························································································································· 22

武汉理工大学毕业设计(论文)

7.1.1 设计船主要要素 ··································································································· 22 7.1.2 计算过程 ··············································································································· 22 7.2 螺旋桨图谱设计 ············································································································· 24

7.2.1 设计螺旋桨时应考虑的若干问题 ······································································· 24 7.2.2 设计过程 ··············································································································· 24 8 舵设计 ············································································································································ 28 8.1 概述 ································································································································· 28 8.2舵主要要素的确定 ·········································································································· 28

8.2.1 舵的类型 ··············································································································· 28 8.2.2 舵的面积 ··············································································································· 28 8.2.3 舵的展舷比 ··········································································································· 29 9 干舷和舱容要素的计算及校核 ·································································································· 30 9.1 干舷计算及校核 ············································································································· 30

9.1.1 船舶的主尺度及系数 ··························································································· 30 9.1.2 计算及校核过程 ··································································································· 30 9.2 舱容要素计算及舱容校核 ····························································································· 32

9.2.1 舱容计算 ··············································································································· 32 9.2.2 舱容要素计算 ······································································································· 33 10 舾装设备的确定 ························································································································· 34 10.1 锚泊和系泊设备 ··········································································································· 34

10.1.1 锚设备 ················································································································· 34 10.1.2 锚链舱的容积 ····································································································· 34 10.2 救生、消防设备 ··········································································································· 34

10.2.1 救生设备 ············································································································· 34 10.2.2 消防设备 ············································································································· 35 10.3 本船配有的航行设备 ··································································································· 35 10.4 本船配置的航行信号设备 ··························································································· 35 11 稳性计算及校核 ·························································································································· 36 11.1 典型载况计算 ··············································································································· 36 11.2 稳性计算及校核 ··········································································································· 37

11.2.1 浮态、稳性、横摇周期、横摇角的计算 ························································· 38 11.2.2 大倾角稳性校核 ································································································· 38 结束语 ··············································································································· 错误!未定义书签。 参考文献 ············································································································································ 43 致 谢 ··············································································································· 错误!未定义书签。 附 录 ················································································································································ 44

武汉理工大学毕业设计(论文)

摘 要

本文阐述了6000T近海成品油船的设计。

内容包括任务书分析,主要要素的确定,船体型线设计,船舶性能计算,总布置设计,舱容和各种载况下的稳性计算,阻力计算,螺旋桨和舵设计等。整个设计过程以货舱舱容、稳性、操纵性和经济性为中心。确保设计的船具有足够的舱容,改善设计船的稳性和操纵性,同时具备良好的经济性。

设计船的主要数据如下:总长Loa=108.3m,两柱间长Lpp=103m,设计水线长Lwl= 105.33m, 型宽B=17m,型深D=7.9m,吃水T=6.4m,排水量Δ=8415t , 浮心纵向位置Xb= 0.538m(舯前),方形系数Cb=0.73,棱形系数Cp=0.738,舯剖面系数Cm=0.989,水线面系数Cw=0.850,货舱容积VC=8281.409m3。

I

武汉理工大学毕业设计(论文)

Abstract

This paper deals with the design of 6000 t offshore tanker design process.

The contents of the paper cover the analysis of the assignment ,the determination of the ship’ type and main feature ,the design of the moulded line and ship hydrostatic calculations ,the arrangement of whole ship ,the calculation of the resistance and the design of the propeller ,the calculation of the volume of the cargo hold and stability in various loading ,the design of the rudder and other ship’s equipment .The whole process of the ship design is on the consideration of the volume of the cargo hold ,stability ,manoeuvrability and keeping.

The main date for the final design are:length overallLoa=108.3m, length between perpendiculars LPP=103m, lengthen the waterline Lwl=105.33m, breath B=17m, depth D=7.9m ,draft T=6.4m ,block coefficient Cb=0.73,prismatic coefficient Cp=0.738, midship area coefficient Cm=0.989,the total mass of the ship corresponding to the draft T=6.4m is Δ=8415t , Vc=8281.409m3 .

II

武汉理工大学毕业设计(论文)

绪 论

沿海成品油运输历来在国民经济中占有重要地位,但我国成品油供需存在地区间的不平衡,形成了“北油南运,西油东进”的格局。为缓解成品油运输压力,提高成品油运输的经济性和安全性,迫切需要开发新型成品油船。

本论文是毕业设计的一个重要组成部分,它包括了设计中的重要计算过程,以及部分重要设计步骤。毕业设计是我们大学学习生涯中重要的一环,是我们学习新的知识,对以往所学知识的应用及检。不断的发现问题,解决问题,提高我们实际应用知识的能力。这对我们将来学习和工作都有很大的帮助。

本船为6000T近海成品油船。本船的设计,总体上满足设计所需的要求。全文内容包括任务书分析,主要要素的确定,船体型线设计,船舶性能计算,总布置设计,舱容和各种载况下的稳性计算,阻力计算,螺旋桨和舵设计等。整个设计过程以货舱舱容、稳性、操纵性和经济性为中心。确保设计的船具有足够的载货量,改善设计船的稳性和操纵性,同时具备良好的经济性。设计船的主要数据如下:总长Loa=108.3m,两柱间长Lpp=103m,设计水线长Lwl= 105.33m, 型宽B=17m,型深D=7.9m,吃水T=6.4m,排水量Δ=8415t , 浮心纵向位置Xb= 0.538m(舯前),方形系数Cb=0.73,棱形系数Cp=0.738,舯剖面系数Cm=0.989,水线面系数Cw=0.850,货舱容积VC=8281.409m3。

全文用确凿的数据和丰富的图表对以上内容进行了说明,对6000T近海成品油船的设计做了全面的阐述,内容丰富而具体。

尽管在设计的过程中,尽了自己最大的努力,但是由于水平和经验有限,难免出现缺点和不当之处。因此恳切的希望各位老师批评和指教,提出宝贵的意见。

1

武汉理工大学毕业设计(论文)

1 毕业设计任务书分析

1.1 设计要求

1.1.1 船型,航区及用途

本船为钢质、单甲板、双壳、双底,单机单浆,柴油机驱动的尾机型一级成品油散装运输船。主要航行于大连港至上海港之间,以及沿途的各个港口之间,以长江中下游A级航区为主要航段。

主要装运闪点不超过60°,雷特蒸气压低于大气压的成品油。

1.1.2 载重量

本船载重量为6000吨。

1.1.3 船级及规范

本船按”CCS”登记入级,设计应满足现行”CCS”《钢质海船入级与建造规范》、”GMSA”,《船舶与海上设施法定检验规则》(国内航行海船法定检验技术规则)及相应法规对油船的要求。

1.1.4 航速,续航力

船舶在满载状态,服务航速下的续航力4000nmile。 航速:本船满载试航速度不低于13kn/h。

1.1.5 主机,辅机及燃料

主机、辅机拟采用低油耗国产或引进专利国内生产柴油机,其型号与功率由设计者按设计要求自行选定。

1.1.6 设备

锚、系泊、舵装置、工作、救生、消防、防污染及航行信号等设备根据规范要求及实际需要配置。

1.1.7 船员编制及配置

船员按本船吨位及海事局规定定编。

船员舱室布置:高级船员为套间,其余船员按单人间和双人间设置。 公共场所布置一个综合厅、餐厅、公共卫生间等。

1.1.8 确定设计船主要要素

2

武汉理工大学毕业设计(论文)

根据设计任务书,通过分析,确定船舶主要要素。

1.1.9 型线设计

按型船改造、图谱或自行设计等方法进行型线设计并提交相应图纸。

1.1.10 总布置设计

按照制图标准完成设计船总布置图纸一套。至少完成一个液体舱的舱容要素曲线计算。

1.1.11 性能校核 1.1.12 稳性计算

至少两种典型载况完整稳性计算。

1.1.13 完成功率、螺旋桨计算书及预报航速 1.1.14 最小干舷计算

1.2 调查报告

经展开,就设计题目进行资料调查,了解一些型船资料以及油船运输业的前景,设计任务的可行性分析,完成调查报告。

1.3 对本船的简要分析

在国民经济快速增长的大环境的带动下,货运量稳步增长,油类运输更是如此。沿海成品油运输历来占有重要地位,但我国成品油供需存在地区间的不平衡,形成了“北油南运,西油东进”的格局。为缓解成品油运输压力,提高成品油运输的经济性和安全性,迫切需要开发新型成品油船。又有资料显示,现在市场上由于各方面的原因最需要的恰恰是5000T—10000T级的成品油船,因此,本船的设计有着深刻的现实意义和极大的实用价值。

3

武汉理工大学毕业设计(论文)

2 全船设计说明书

2.1船型及用途

本船为钢质、单甲板、双壳、双底,单机单浆,柴油机驱动的尾机型一级成品油散装运输船。主要航行于大连港至上海港之间,以及沿途的各个港口之间,以长江中下游A级航区为主要航段。

2.2船级及规范

本船按”CCS”登记入级,设计应满足现行”CCS”《钢质海船入级与建造规范》、”GMSA”,《船舶与海上设施法定检验规则》(国内航行海船法定检验技术规则)及相应法规对油船的要求。

2.3 载重量

本船的载重量为6000吨。

2.4 主尺度

总 长: 108.3m 设计水线长:105.33m 垂线间长: 103m 型 宽:17m 型 深:7.9m 设 计吃 水:6.4m 排 水 量: 8415t

2.5 主要船型及系数

方形系数 :0.73 棱形系数 :0.738 舯剖面系数:0.989 水线面系数:0.850 浮心纵向位置:0.538m (舯前) 航速、续航力、及船员

满载试航速度:13kn 续航力:4000 n mile 船 员:20人

2.6 稳性及干舷

本船各项装载性能及破舱稳性均满足中华人民共和国海事局《船舶与海上设施法定检验规则》(国内航行海船法定检验技术规则2004)的要求。

4

武汉理工大学毕业设计(论文)

2.7 舱容

本船全船共设置8个液货舱,设计载货舱容共计8281.409m3,满足设计舱容载货要求。

2.8 主要舱室布置

1)在#165~船首设置首尖舱兼首压载水舱。

2)在船尾#-6——# 3设有尾压载水舱,本船在货油舱区域两舷设置双壳。 3)在#10~#166肋位内设有高度为1.027m的双层底,分布于机舱区、货油舱区 4)机舱设在#10~#36肋位,Lm=15.6m。 5)在#41~#51肋位设燃油舱。 6)货油舱设在#56~#158肋位。 7)舵机舱设在#-6~#3肋位。

8)日用淡水舱设在#4~#11肋位。 其余布置参考总布置图

2.9 船体结构

本船采用纵、横混合骨架形式,首尾为横骨架式,中部货油舱区域为纵骨架式,全船肋距为600mm。货油舱区域设双层底。全船共设6道全通水密舱壁和一道纵向水密舱壁,将全船划分为8个液货舱。全船结构的骨材和型材按规范要求采用“A”级钢。

2.10 推进设备

2.10.1 主机

型 号:SL35MC 额定功率:3000kw 额定转速:210r/m 数 目: 1台

重 量:5500kg

外形尺寸:L?W?H?4733?1986?4865

2.10.2 减速齿轮箱

减速比:i=1

2.10.3 螺旋桨

盘面比:0.311 桨 径:3.98m 螺距比:0.66 推进效率:0.583 叶 数:4

5

武汉理工大学毕业设计(论文)

2.10.4 舵设备

本船设流线型舵1只,面积及展弦比见后附舵设计

2.11 其它设备

2.11.1 锚设备及系泊设备

本船首锚设A 3300kg霍尔锚3只,其中一只备用。设有档锚链,总长555m,其中左舷255m,右舷250m。设电动液压起锚机1台。

2.11.2 航行信号设备

1)船上的信号桅用于布置信号灯和航行设备的天线以及悬挂号旗和其他设备。其位置、高度按信号设备潜规的规定来确定

2)本船配有的航行设备有磁罗经1台, 雷达1部,测深杆4根,测深锤2只,天文航海仪器有:船用时钟3只,秒表2只,光学仪器有双筒望远镜2只,看图放大镜2只,温度计2只,无液气压计1只,倾斜指示器2只,海图仪器1。

3)本船配置的航行信号设备有:桅灯1只,左舷灯1只,右舷灯1只,艉灯1只,锚灯2只,红色环照灯2只,白环照灯1只,黄闪光灯1只,红旋转闪光灯1只; 锚球3只,中型号笛1只,号锣1只,大型号钟1只,国旗(3号,4号)各1面,5号国旗2面,国际信号旗(3号,4号)各1套,红旗1面,手旗1面。

2.11.3 救生、消防设备

1)救生设备

本船配有救生圈10只,其中带救生浮索救生圈5只,带自亮浮灯救生圈2只,带自亮浮灯及烟雾信号救生圈3只。胀式救生环2只。旅客救生衣16件。

2)消防设备

消防员装备4套,,包括防火服,消防靴和手套、头盔,手提安全灯,消防斧,储压式呼吸器,储压式备用氧气瓶,耐火救生绳等。货油舱及甲板设泡沫灭火系统及水灭火系统。甲板设降温撒水管系。

2.11.4 其他

罗经甲板上设有灯桅、雷达、磁罗经等号笛。

6

武汉理工大学毕业设计(论文)

3 船舶主要要素确定

3.1 主要要素估算

3.1.1?dw(第一次近似估算)

近年来,?dw有增大趋势

708所?dw公式:?dw?0.7337k(DW/1000)0.0557 建议k取1.0~1.02,取1.0得:

?dw?0.713

3.1.2 ?估算

??DW?8415t ?W3.1.3 LPP估算

(1)LPP?C(??DV21/3)? 2?V??8209.9m3

C根据兰伦水池试验资料修正后建议:C取7.09

?LPP?107.43m

(2)船舶设计使用手册统计公式:

LPP?5.7DW1/3?103.5759m

(3)低阻船长LPP?2.3V1/3?1/3?110m

(4)统计回归公式:LPP?10.8DW0.28?23?100.397m

另通过对1971-2001年建成的293条成品油船统计数据对比,船长缩短L/B、L/D减小,B、D均有增大趋势,Cb、B/T、D/T增大。

(5)LPP?8.15DW0.3?15?95.816m

7

武汉理工大学毕业设计(论文)

1n?5?Lpp??LPP?103.444m

5i?1取LPP?103m

3.1.4 傅汝德数估算

Fn?V(m/s)gL(m)?0.21

3.1.5 B、D、T估算

据统计资料显示5000-10000T, D?7.25~10.6

LPP/B?5.16~7.1

LPP/D?9.20~13.42

B/T?2.97~2.91 D/T?1.12~1.41

据对统计资料中4000吨-35000吨油船及部分6000吨级成品油船数据的统计回归插值得:

LPP/B?5.98

D/T?1.285 B=17m

B/d?2.685 L/D?12.161

d=6.4m D=7.9m

3.1.6 Cb估算

据亚历山大公式:

Cb?C?1.68Fn,C建议取1.08 Cb?0.7272

Cb???0.71

rkLBTr?1.025

K?1.003~1.006,取1.003

Cb?1.216?2.4Fn?0.71

3.2 性能校核

3.2.1 排水量校核

(1)钢料重量

WH?q0A1A2A3A4(0.7?0.026

8

L27.5)(1?)M DM?20武汉理工大学毕业设计(论文)

M?[Cb?(1?Cb)D?d]LBD/1000?10.345 3dq0;油船取80kg/m3

A1:干舷修正,油船取0.96

A2:甲板层数修正,单甲板取1.0 A3:上层建筑修正,取1.02

A4:航区修正,无需水区加强,取1.0 WH?1687.279t (2)木作栖装重量

W0?[a0?0.69(LBD)0.083](LBD)4/3?10?3?384.524t

a0建议成品油船取2.65 (3)机电设备重量

?2/3V3海军系数法:C0??310.13(型船)

pD2/3V3设计船p??2930.841,取3000t

C0?1.2???Wm??1.0??P0.75?405t

?0.9???所以Lw?2396t

Dw???Lw?6019t?6000t,符合设计要求。

3.2.2 航速校核

1.05?2/3V3[40?LPP?400(K?1)2?12Cb]61 15000?1.81NLPP根据瓦特生公式P?K?Cb?1.68Fn,N为螺旋浆转速r/min =1.063

P?2687.71kw?3000/kw 符合设计要求。

3.2.3 稳性校核

1)重心高度估算

9

武汉理工大学毕业设计(论文)

①船体钢料重心同度

ZGH1?CEHD1

CEH?0.48?0.0015[(0.85?Cb)(?0.55099

L2L)?0.08/?6.5] DBZGH1?0.55099?7.9?4.3528

考虑快速必性本船加球首,则CEH减小0.004,则ZGH1?4.321 ②栖装重心高度

Zgo?(1.02~1.08)D1

D1为相当型得即型深加上层建筑容积除以甲板面积:

D1?1?1.45LB?D

SS?CwLB

Cw?Cb?0.025

Zgo?1.05?7.9?8.295m

考虑初步计算取D为型深:

③机电重心高度

Zgm?0.55D?4.345m

④载重量重心高度,根据型船公式: 油船取:

CD?0.7

ZgD?Cb?D?5.53

Zg??W?Zii?1ngi?Wi?1n?4.321?1607.279?8.295?384.524?4.345?405?6019?5.53?5.369

2396?6019i2)初稳性估算 根据静力学:

GM?KB?BM?KG

B2GM?a1d?a2?a3D

dCwCw(0.17Cw?0.13)2B2?d???5.369 Cw?CBCBd

10

武汉理工大学毕业设计(论文)

又Cw?(1?2Cb)/3?0.807

GM?3.4275?3.7684?5.369?1.8269m 3)横摇周期估算

根据CMSA《船舶与海上设施法定检验规则》 横摇自摇周期:

T0?0.58fB2?4KG2D2?4?5.3692?0.58?1.01?9.25

GMf根据CMSA规则表2.1.8得f=1.01

1.826911

武汉理工大学毕业设计(论文)

4 船舶型线设计

4.1概 述

船体型线是关系船舶技术──经济性能的全局性设计项目之一。

主尺度确定之后,型线设计应与总布置设计互相配合进行。正式的型线图是后续的结构设计性能计算的依据。型线设计的好坏直接影响到船舶的快速性、稳性、耐波性等性能,同时也会影响到船舶的总布置和建造工艺。因此,型线设计必须考虑到下述三个方面:

(1)要保证设计船具有良好的航运性能

一般来说,除了应具有足够的浮力之外,主要还应从快速性、耐波性、稳性、及抗沉性上来考虑船体水下部分的型线;同时水上部分的外形和尺寸也很重要,力求做到船体水下和水上两部分型线在几何上的合理配合。

(2)应满足总布置的要求

包括需要的甲板面积、船舱尺度、舱口尺寸、机舱和设备的布置、浮态调整等总布置的要求。在总布置和性能相矛盾时,应适当降低对某些性能的要求,以照顾布置上的经济、合理、实用和安全。

(3)考虑结构合理、简易,达到施工、维修方便

在型线设计中考虑船舶性能、总布置、结构、工艺等要求时,首先要根据不同类型船舶的不同使用特点,综合权衡。另外,设计中可参照优秀的母型船型线,并按设计船要求用适当的方法作适当的修改。

型线设计的方法概括起来有三种:自行设计法、改造型线法、应用系列型线。实际上,各种方法不能截然地分开。自行设计法也要广泛利用型船和系列型线资料,改造型船法也要体现设计者的主观意图。结合设计任务书上的要求,考虑到本船的具体情况,在本次的设计中采用图谱法设计。

4.2 BSRA型线改造

4.2.1 型线特征

BSRA系列的基本母型虽然是相互独立的,但其横剖面形状基本一致,属于中V型。船底舭部略有升高,侧面轮廓线其尾部为巡洋舰尾,首柱在水下切除较多。首轮廓线在Cb>0.7 时随Cb的不同而有所变化,而且浮心位置xb的变化对其也有影响。

参数变化范围:

方形系数:Cb=0.55—0.85。

浮心纵向位置:xb在标准浮心位置前后约-2-2(%Lpp)范围。 宽度吃水比:B/D=2.0-4.0. 长度排水体积比:

Lpp?

13约为4.3~6.25,(视方形系数变化而有所不同)。

12

武汉理工大学毕业设计(论文)

Fn=0.12-0.27

4.2.2 主要参数确定

1 )CP确定

根据诺基德公式:当Fn?0.24时,经济的CP值为:

CP?1.015?1.46Fn?0.7084

另据船舶设计实用手册式5.2.8.5,适用于Fn=0.178-0.327沿海船。

CP?1.10?1.68Fn?0.7472

由船舶设计原理图6.2.2最佳Cp与Fn的关系图得Fn=0.21,Cp=0.69-0.74 查图6.2.3,Cb,Cm,Cp关系曲线得已知Cb=0.71,得Cm=0.989,得

CP?Cb?0.721 Cm2) LCB确定

最佳浮心位置纵向位置Xb查图6.24,由

Fn?0.21,得Xb?0.71%Lpp 做全船总布置草图得

5XB?W?X??Wi1i?5417.1*7.15?2396*5.15?601.9*38.675?0.36%LPP

8415又标准BSRA中,LCB=20?Cb?0.675?%Lpp=0.70%Lpp 与标准值之差=-0.34%Lpp.(舯前)

4.2.3 型线改造

1) 船舶主要要素

总 长: 108.30m 设计水线长: 105.33m 垂线间长:103.00m 型 宽:17.00m 型 深: 7.90m 设 计吃 水:6.40m 排 水 量: 8415. t 浮心纵向位置:0.538m 方形系数 : 0.73 棱 形 系数:0.738 舯剖面系数:0.989 水线面系数:0.850 2)LCB与标准值的差别 LCB=1.407552=0.36%Lpp.

标准BSRA中,LCB=20?Cb?0.675?%Lpp=0.70%Lpp 与标准值之差=-0.34%Lpp.(舯前)

13

武汉理工大学毕业设计(论文)

3) 把基本线型调整到所要求得LCB值。

从图62上Cb=0.71处读取LCB移动1%视各站的移动量,乘以偏移系数,所得变量列于下表:

表4.1 LCB改变0.34%Lpp各站所需移动的量值

站号 尾垂线0 1/4 1/2 3/4 1 1 1/2 2 2 1/2 3 3 1/2 4 5 6 6 1/2 7 7 1/2 8 8 1/2 9 9 1/4 9 1/2 9 3/4 首垂10 偏1% 0.0530 0.1760 0.4120 0.6470 0.9290 1.2870 1.6840 1.9880 2.1540 2.2590 2.3170 2.3570 2.3570 2.3570 2.2030 2.0630 1.7730 1.3940 0.9480 0.6690 0.4680 0.2790 0.1120 偏0.34% 0.0180 0.0598 0.1401 0.2200 0.3159 0.4376 0.5726 0.6759 0.7324 0.7681 0.7878 0.8014 0.8014 0.8014 0.7490 0.7014 0.6028 0.4740 0.3223 0.2275 0.1591 0.0949 0.0381 型线图显示数据 0.1201 0.3989 0.9339 1.4665 2.1057 2.9172 3.8171 4.5061 4.8824 5.1204 5.2519 5.3425 5.3425 5.3425 4.9935 4.6761 4.0188 3.1597 2.1488 1.5164 1.0608 0.6324 0.2539 4)绘制草图

5)测量并记录标准型值

4.3 手工绘制型线图

在静水力计算完成后(第五章将详细阐述)即可绘制正式的标准型线图 (1) 画格子线

本次采用电子版的格子线。 (2)画横剖面图

横剖线图是绘图中的重点、难点。最好的方法是先用一张白纸做出横剖线图,便于以后的修改。

根据上述从图谱中得到的设计船的标准水线的取值绘出1各条标准水线,然后,再根据各站的半宽值绘制出本船的各条横剖线。在绘制过程中,严格遵守从图谱中获取的各站半宽值,特别是水下部分的型值,如果在绘制横剖线时,为了保证型线的光顺性与协调性可以适当地修改设计船水上部分的型值。在绘制完各条横剖线后,再在该横剖线图中重新

14

武汉理工大学毕业设计(论文)

绘制出各条水线,根据本船的设计吃水和型深的实际特点,本船共设10条水线,其中水上部分2条。这样就可到各条水线在每一站上的半宽值,以便在后面绘制半宽水线图。

(3)绘制侧面轮廓线、甲板平面轮廓线

绘制侧面轮廓线,包括船舶的首尾侧面轮廓线、船底线和舷弧线,在设计中主要是参考型船的首尾形式,并且前面已经分析了本船的首尾形状及船底形状,结合设计船的自身特点自行绘制。甲板平面轮廓线是指甲板边线的水平投影,它反映甲板的面积大小及首尾部分的形状。由于本船为货船,因此甲板平面轮廓与总布置尤为重要,应结合货舱口尺度、设备的布置、甲板作业和装卸货物等要求加以考虑。在设计时,先对船舶的大概布置做一个草图,按总布置的要求进行设计。

(4)画半宽水线图

对应横剖面图中各条水线与各条站线的交点的半宽值,用纸条在半宽水线图上描绘出各点,并光顺连接,做出半宽水线。

(5)在纵剖线图上做出三条纵剖线。 (6)画横剖面图

根据已光顺的横剖线图、半宽水线图和纵剖线图,由投影关系做出型线图中的横剖线图。

(7)检验、量型值、标注

画斜剖线,检验已做出的型线图 对不光顺及投影关系不正确的地方进行修改,以达到型线图的要求——“关顺性、一致性、协调性”。检验完毕后,在图上读出型值,并对图纸进行标注。

15

武汉理工大学毕业设计(论文)

型值表: 水线 平底线 满载吃水6.5米时,在龙骨线上的高度 1/4 1/2 3/4 1 2 3 4 5 6 7 8 9 A B C D E F G H满载 J K 0.5000 1.0000 1.5000 2.5000 3.5000 4.5000 5.4000 6.4000 7.5000 8.5000 尾垂线0 0.0009 0.0010 0.0012 0.0013 0.0013 0.0015 0.0029 0.1799 1.9503 3.2257 3.8932 0.1289 0.1709 0.2508 0.2517 0.3014 0.3066 0.6434 1.5984 2.9987 4.2516 4.9032 0.1261 0.5113 0.6396 0.7673 1.0216 1.2908 1.8164 2.8393 3.9729 5.0725 5.7463 0.1316 0.9370 1.2569 1.4001 1.7879 2.2986 2.9415 3.9419 4.8702 5.8520 6.3936 0.2152 1.3672 1.7792 2.1227 2.6829 3.2734 4.0045 4.8741 5.6834 6.4409 6.9852 0.9642 3.7681 4.4982 5.1191 5.8938 6.5272 7.0532 7.4655 7.7736 8.0043 8.1007 3.4471 6.2421 7.1020 7.5450 8.0096 8.2626 8.3484 8.4414 8.4876 8.4956 8.5000 6.0427 7.6872 8.1328 8.4224 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 6.7545 8.0536 8.3962 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 6.4437 7.8986 8.3389 8.4881 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 4.1393 6.6666 7.3834 7.8600 8.2895 8.4785 8.4883 8.4937 8.4941 8.4967 8.5000 1.0721 3.9551 5.0735 5.6997 6.4706 7.0038 7.3398 7.5399 7.7172 7.8725 7.9626 0.2322 1.7776 2.4992 2.9326 3.4111 3.5616 3.7233 3.8926 4.2227 4.6989 5.2070 1 1/2 0.4346 2.4481 3.1481 3.6488 4.4145 5.0531 5.7435 6.4120 6.9339 7.4243 7.5823 2 1/2 1.9988 5.0304 5.8703 6.3191 7.1041 7.6486 7.9153 8.0221 8.1331 8.2723 8.3880 3 1/2 4.8959 7.1432 7.7400 8.0886 8.3827 8.4719 8.4751 8.4790 8.4929 8.5000 8.5000 6 1/2 5.5786 7.4522 8.0180 8.2970 8.4928 8.5000 8.5000 8.5000 8.5000 8.5000 8.5000 7 1/2 2.3666 5.3886 6.3826 6.9839 7.6570 8.0265 8.2526 8.2909 8.3433 8.3858 8.3888 8 1/2 0.4485 2.6871 3.6995 4.2539 4.9808 5.4059 5.7375 6.0314 6.3037 6.5721 6.8446 9 1/4 0.1965 1.4179 1.9745 2.2961 2.5504 2.5618 2.6522 2.8059 2.9962 3.5502 4.1494 9 1/2 0.1552 1.0731 1.5066 1.6508 1.7340 1.7628 1.7834 1.8062 1.9248 2.4362 2.9459 9 3/4 0.1162 0.7302 1.1814 1.3286 1.3149 0.9318 0.8612 0.9071 1.0356 1.4152 1.7813 首垂线0.0000 0.6346 0.8983 1.0145 1.0511 0.4332 0.1704 0.0120 0.0240 0.6367 0.8610 10 16

武汉理工大学毕业设计(论文)

5 静水力计算

5.1 计算结果

型线绘制完成之后,将各站型值量出,通过电算得出静水力计算结果。看对应的设计参数是否满足电算的结果,如不满足,需对型线进行修改。

本船电算详细结果如附录(四)所示。其主要结果如下: T 6.4 S 1487.481 D 8439.077 XF -1.384 ZB 3.433 ZM 7.200 XB 0.538 ZML 127.737 CB 0.73 D/CM 15.338 CW 0.850 M/CM 101.846 CM 0.989 CP 0.738 5.2 计算结果分析与设计优化

与自己初步计算结果对比可见,此次设计比较成功,但由于各个方面的原因,误差还是存在的,甚至有些参数误差较大,但本人认为均在可以接受范围之内,如有不妥,望老师予以指正批评。

17

武汉理工大学毕业设计(论文)

6 船舶总布置设计

6.1 总布置概述

总布置设计是船舶中极为重要的一环,船舶的总体布局对船舶的使用效能和航行性能均有重要影响。在选择和确定船舶主要要素时,对特定的总体布置方案,通常要绘制总布置草图。船舶主要尺度或排水量的确定,主要是根据各船的总布置草图来进行的。

由总布置所确定的船舶各项重量的分布,影响到船舶的纵倾、横倾及船舶重心高度,从而影响到船舶的浮态和稳性。货船容积,甲板地位是否足够,各项设备布置是否合理,货物及交通路线是否方便等等,直接影响到船舶的使用效果。

总布置设计所遵循的基本原则为:

1)应最大限度的提高船舶的使用效能。对货船首先应保证货舱容积,注意提高装卸效率。

2)应保证船舶有良好的适航性与安全性。

3)应注意结构合理性,以提高船舶的结构强度。

4)注意便于制造、修理、检查、保养以及设备的更换,船上各处所应有良好的可达性。 5)布置居住及工作舱室时,要注意考虑工作的需要,又力求缩小差别。 6)总体布局和总布置设计要结合建筑学和美学的要求。

总布置设计是实践性很强的工作,需注意和借鉴一切成功的实践经验。同时总布置设计更是创造性很强的工作。本船的总布置设计参考型船,在型船的基础上加以改造。

总布置设计的内容包括:

1)对船舶主体及上层建筑进行总体规划,结合建筑学和美学的要求。 2)调整船舶的浮态。 3)布置船舶舱室及设备。 4)规划及设计交通路线。

5)应注意结构的合理性,以提高船舶的结构强度。

6.2 主船体舱室划分

根据《钢质海船入级与建造规范》的要求,由本船的实际情况出发,分别设尾尖舱舱壁、机舱舱壁、燃油舱舱壁、靠近船首的压载水舱舱壁和首尖舱舱壁七道舱壁。 在#165~船首设置首尖舱兼首压载水舱。

1)在#165~船首设置首尖舱兼首压载水舱。

2)在船尾#-6——# 3设有尾压载水舱,本船在货油舱区域两舷设置双壳。 3)在#10~#166肋位内设有高度为1.027m的双层底,分布于机舱区、货油舱区 4)机舱设在#10~#36肋位,Lm=15.6m。 5)在#41~#51肋位设燃油舱。 6)货油舱设在#56~#158肋位。 7)舵机舱设在#-6~#3肋位。

8)日用淡水舱设在#4~#11肋位。

18

武汉理工大学毕业设计(论文)

6.3 舱室及交通路线的布置

在完成船舶总体布局与区域规划后,进入交通路线与舱室的布置。在进行舱室布置时,合理的组织、利用和分配空间,充分提高船舶有限空间使用率,尽量的扩大舱室的空间感。按照船员工种分层居住的要求即甲板部位条件的优劣和差异,将使用性质与要求各不相同的生活区和工作区作合理的规划,使舱室布置分区明确、布置紧凑、方便工作和生活、减少相互干扰。

具体参见总布置图。

6.3.1 工作舱室的布置

驾驶室设在驾驶甲板上,内布置有操舵仪、海图桌。海图桌设在驾驶室的后右侧。驾驶台前的船口用前倾式,有利于增加驾驶员的视野,减小盲区。

舵机舱设在主甲板之下尾尖舱内,位于#-6-#3肋位。

6.3.2 居住舱室的布置

船员的居住舱室大多布置在各层甲板的外侧,舒适程度较高,且自然通风和采光良好。舱室内床布置方向不同,适合各种船员的喜好,在靠窗的一侧布置写字桌和软椅。这样采光较好的区域,形成学习、办公和交谈工作的角落。为了不防碍走廊的交通,所有的门都是向内开的。上甲板设有和舱室与内外走廊都相通的门,夏季室同时开启,可通风;冬季时关闭,可保温。

6.3.3 公共处所的布置

休息室兼娱乐室设在主甲板上。

厨房设在主甲板上主甲板右侧,便于各种管道的布置。厨房门采用钢制门,保证失火时,不会蔓延至机舱和船员舱室。

浴厕室设在各层甲板的左居住舱室旁,且位于同一垂直柱体内,节省管路。卫生处与厨房相隔,内部应设置的大便器、小便器、洗手池、淋浴喷头的数量按舱室设备规范配置。

6.3.4 交通路线的布置

通道布置力求规则整齐。主甲板上的通道采用对称式,布置于机舱口围壁的左方。上甲板的通道与主甲板的通道上下对应,保证结构的连续性。

梯道的设置依据各处所和用途的不同,有不同的种类。具体种类和形式见总布置图。且每一楼梯口处均设门,保证安全和舒适性。

6.4 船舶设备的布置

6.4.1 锚泊设备

本船舾装数N根据《钢质海船入级与建造规范》(2006)

A2/3N???2Bh?

10△ ——夏季载重水线下的排水量,m;

19

武汉理工大学毕业设计(论文)

B——船宽,m;

h——从夏季载重水线到最上层舱室顶部的有效高度,m;即:

h?a??hi

其中a——从船中夏季载重水线到上甲板的距离,m;

hi——各层宽度大于B/4的舱室,在其中心线处量计的高度,m;

A——船长L 范围内夏季载重水线以上船体部分和上层建筑以及各层宽度大于B/4 的甲板室的侧投影面积的总和,。

计算得到N=1052.396 则锚配备如下: 本船首锚设A 3300kg霍尔锚3只,其中一只备用。设有档锚链,总长555m,其中左舷255m,右舷250m。设电动液压起锚机1台。

锚链舱的容积

可用下式进行计算:

V=e×a×d2/100

式中:V为容积(m3),e为链长(m);a为系数,取0.001,d为锚链直径(mm),径计算:

V=4.8m3

而实际总布置中,锚链舱的容积满足要求。

6.4.2 航行信号设备

1)船上的信号桅用于布置信号灯和航行设备的天线以及悬挂号旗和其他设备。其位置、高度按信号设备潜规的规定来确定

2)本船配有的航行设备有磁罗经1台, 雷达1部,测深杆4根,测深锤2只,天文航海仪器有:船用时钟3只,秒表2只,光学仪器有双筒望远镜2只,看图放大镜2只,温度计2只,无液气压计1只,倾斜指示器2只,海图仪器1。

3)本船配置的航行信号设备有:桅灯1只,左舷灯1只,右舷灯1只,艉灯1只,锚灯2只,红色环照灯2只,白环照灯1只,黄闪光灯1只,红旋转闪光灯1只; 锚球3只,中型号笛1只,号锣1只,大型号钟1只,国旗(3号,4号)各1面,5号国旗2面,国际信号旗(3号,4号)各1套,红旗1面,手旗1面。

6.4.3 舵设备

本船设流线型舵1只,面积及展弦比见后附舵设计。

6.4.4 救生、消防设备的布置

1)救生设备

本船配有救生圈10只,其中带救生浮索救生圈5只,带自亮浮灯救生圈2只,带自亮浮灯及烟雾信号救生圈3只。胀式救生环2只。旅客救生衣16件。

2)消防设备

消防员装备4套,,包括防火服,消防靴和手套、头盔,手提安全灯,消防斧,储压式呼吸器,储压式备用氧气瓶,耐火救生绳等。货油舱及甲板设泡沫灭火系统及水灭火系

20

武汉理工大学毕业设计(论文)

统。甲板设降温撒水管系。

6.5 纵倾调整

6.5.1 意义

在总布置设计时,应该考虑使船舶在航行中具有适宜的浮态,以保证: 1) 螺旋桨不至因超吃水或纵倾而增加搁浅与触礁的危险性

2) 螺旋桨有一定的沉深,不至于在纵摇和垂荡运动中产生“飞车”现象而影响推进效率。

3) 有一定的首吃水,船首在纵摇、垂荡中不至于出水或产生抨击现象。 4) 船舶具有良好的航向稳定性和操纵性。

5) 载荷和浮态的变化不至于对船舶强度造成危害。

6) 由于本船的型线图在总布置图之前就已经完成,因此只能通过调整重心的纵向位置来调整浮态。

6.5.2 调整典型载况

本船主要考虑两种典型的载况:满载出港和空载到港 满载出港时,保证船舶在满载吃水时处于正浮状态。

空载到港时,保证必要的首吃水。首吃水最小值为(2%~3%)L,以避免首部抨击;尾吃水至少保证螺旋桨浸于水中。

21

武汉理工大学毕业设计(论文)

7 阻力计算及螺旋桨设计

7.1 阻力计算

船舶快速性问题是船舶航行速度与所需主机功率之间的关系问题。快速性好,就是阻力小,在满足航速要求的情况下所需主机功率小,或主机功率给定的情况下航速较高。确定了船型排水量以及船舶的主要的要素后,就可以进行阻力计算。

7.1.1 设计船主要要素

??8209.756m3 ??8415T

LPP?103m

D?7.9m

B?17m

T?6.4m

Cb?0.73 LCB?0.538m

VS?13kn

DW?6000T

7.1.2 计算过程

(1)重线间长LPP?121.92m的基本船型的○C值.

C值,从图谱64(a)对于服务航速相对于尺度为121.92?16.76?6.71的基本线型之阻力○读取,对此基本船舶相应速度为:

B?121.92?14.144kn 103从基本阻力图谱上读取14.144kn时 C=0.712 ○

(2)对非标准的宽度吃水比B/T和船长排水体积系数L/?B/T?17/6.4?2.656

1/3的修正

??LPP?B?T?Cb?103?17?6.4?0.71?7956.544m3

?1/3?19.96372 L/?1/3?5.16

22

武汉理工大学毕业设计(论文)

由图70和72曲线中读取B/T和L/?1/3的修正系数分别为:1.040;1.01 (3)对非标准LCB修正

标准LCB位置位于舯前0.70%,设计船LCB位置为舯前0.36%,与标准位置偏差为-0.34%,C进行修正,修正从图77曲线读取。 故须对从基本船型所得○

非标准LCB的修正系数为:1.0

(4)垂线间长LPP为121.92的设计船之○C值

C值与由②③得到的设计航速下的修正系数之积。 该值为基本线型之○

C121.92?0.712?1.033?1.012?0.99?0.753 ○

(5)设计船之○C值

C值从LPP?121.92m修正到103m,由于船舶尺度的差异,还需把○可从图65或下式计算傅氏摩擦修正系数。

C121.92?○L○S C 103?(O121.92?O103)○○

S可用以下两公式计算。 其中,湿面积系数 ○M S=2.98+0.58○1)○

?2.98?0.58?5.16 ?5.9728

M为傅氏船长—排水体积系数 ○

其残留标准误差为?0.11

M-0.086L/B S=1.88+0.941CB+0.766○2)○

=5.978

其残留标准误差为?0.08

使用上述两个公式中任何一个所含的误差均在1%左右,在任何情况下不超过2%。 121.92m和103m的傅氏表面摩擦阻力值“O”可从文献中得到,其中:

O121.92?0.0741

O103用线性插值来取,得O103?0.0752 傅氏速去比系数:

Fn?

V13?0.514??0.21 gL9.3?10323

武汉理工大学毕业设计(论文)

则:

C?○ ?2/3V3?1151.378 裸体有效功率PE? 579.9总阻力R?PE1126.94??172.3KN V13?0.514同理分别计算V=11,12、14kn时PE

航速 功率(kw) 阻力(KN) 11 673.937 119.2 12 899 145 13 1126.94 172.3 14 1548.496 215 7.2 螺旋桨图谱设计

7.2.1 设计螺旋桨时应考虑的若干问题

1)螺旋桨的设计方法

一艘船舶各种螺旋桨的设计方法多为经验设计,即利用系列螺旋桨模型实验结果绘成的图谱进行设计,本船的螺旋桨设计采用MAU系列图谱进行设计。

2)螺旋桨的数目

选择螺旋桨的数目应该综合考虑推进性能,振动,操纵性能及主机能力等各方面的因素,而这些因素之间常有矛盾现象,因此应根据船舶的具体特征来选取。通常参考型船来选取。本船设一只螺旋桨。

3)螺旋桨的桨叶数的选取

桨叶数目的选择应根据船型、吃水、推进性能、振动和空泡等多方面加以考虑。通常双桨船多采用三或四叶桨。从推进效率讲,在直径不受限制时,叶片少,则叶片见的相互干扰少;推进效率就越高。从船体振动看,叶片少的螺旋桨容易引起船体振动。选择叶数时要避免和船体或轴系发生共振,同时避免主机汽缸数、冲程数与叶数相等或恰为其整数倍。本设计船采用MAU系列螺旋桨,取四叶。

4)螺旋桨转速

降低螺旋桨负荷,提高推进效率较好的方法是降低螺旋桨转速,但这会导致螺旋桨直径的加大。在选择螺旋桨转速时,除考虑螺旋桨本身效率外,还要考虑主机的类型、重量、价格、机器效率及齿轮箱传动比,此外,还要考虑船体和轴系的振动问题。

7.2.2 设计过程

1)已知船体的主要参数 设计水线长:105.33m B=17m

D=7.9m

Lpp?103m

T=6.4m

GB?0.73

??8415t

由模型试验提供的船体有效马力曲线数据如下表:

24

武汉理工大学毕业设计(论文)

航速V(kn) 有效马力PE(kw) 11 673.937 12 899 13 1151.3 14 1548.496

2)主机参数 型号:SL35ML 额定功率3000KW r?210r/min

L?W?H?4733?1986?4865(mm) W=5500kg 3)推进因子决定 (1)伴流分数: 根据BSRA图谱

通过对有关变量进行图形分析后,可以寻得许多等价的但具有不同参数组合的简单回归方程,其中

wT?0.35Cb?0.07?0.30985

方程的残留误差为?0.04 (2)推力减额分数

按经验公式决定推力减额分数:

t?0.6w?0.18591

取相对旋转效率为1.0

1?51?0.185910.81409???1.1796 船身效率?H?1?w1?0.39850.690154)可以达到最大航速的计算 (1)取储备功率10% 轴系效率尾机型?s?0.98 则螺旋浆敞水收到功率

PD?PN?0.9??S??G??R

?3000?0.9?0.98?1.09?0.96 ?2540.16kw

25

武汉理工大学毕业设计(论文)

(2)根据MAU4-40 MAU4-55 MAU4-70的BP??图谱列表计算如下表:

项目 假定航速 单位 数值 12 8.2818 61.333 7.83 88.75 0.6 0.506 1516.165 87.8 0.623 0.493 1477.212 86 0.655 0.475 1423.277 13 8.97195 50.21 7.06 81.5 0.625 0.535 1603.46 80.5 0.65 0.517 1549.125 78.8 0.68 0.501 1501.183 14 9.6621 41.72 6.46 75.6 0.643 0.56 1677.97 74.7 0.675 0.543 1627.03 73 0.703 0.523 1567.103 Kn Kn δ P/D kw kw kw VA?(1?w)V Bp Bp^.5 MAU4-40 ?0 PTE δ P/D MAU4-55 ?0 PTE δ P/D MAU4-70 ?0 PTE 据上表绘制PE、?、P/D及?1对D的曲线(见附表)

由PFE?f(V)曲线与船体满载有效功率曲线之交点,可获得不同盘面比所对应的设计航速及螺旋浆最佳要素P/D、D及?。如下表所示:

MAU 4-40 4-55 4-70 其中D?VA?? NVmax 14.05 14.02 14 P/D 0.627 0.66 0.69 ? 87 86.5 85.5 D 4.02 3.985 3.933 ?0 0.563 0.542 0.523 5)空泡校核

根据伯利尔商船螺旋桨限界线,计算不发生空泡的最小盘面比。 螺旋桨沉深:hc=6.4?2.7?3.7(m)

P0-PV=Pa+?hs-Pv=10330+1025*3.7-174=13948.5kgf/m2 计算温度: t=15,Pv=174 kgf/m2 PD=2371.51hp

26

武汉理工大学毕业设计(论文)

?=104.63kg*s2/m4

项目 Vmax VA D 单位 km/h m/s m 2MAu4-40 14.05 4.988 4.02 MAU4-55 14.02 4.976 3.985 939.827 964.588 0.277 0.158 0.542 28215 3.539 3.864 0.310 MAU4-70 14 4.969 3.933 915.460 940.151 0.285 0.165 0.523 27262.5 3.359 3.695 0.304 [0.7?(N/60)D] (m/s) (m/s) kgf 22956.409 981.289 0.272 0.153 0.563 29235 3.722 4.033 0.318 V0.7R2?VA2?(5) ?0.7R?(P0?PV)/(7) 查图求 ?C ?0 T?Pd??0?75/VA Ap?T/(8)/?C AE?Ap/(1.067?0.229?P/D) AE/A0

根据表中的数据绘制空泡检验图,可得其所对应的最佳螺旋桨要素如下:

盘面比:0.311 P/D: 0.66 D: 4.0m

Vmax: 14.02kn/h η0 : 0.543

27

武汉理工大学毕业设计(论文)

8 舵设计

8.1 概述

船的操纵性是船舶航行的重要性能,而舵是影响船舶操纵性好坏的最主要因素,所以舵设计是船舶设计过程中的一项重要内容之一。操舵能使船舶改变航向,把舵置于零舵位则具有稳航向的作用。舵的设计主要是舵面积的确定,其次是展弦比、外形、剖面形状及平衡系数的确定,其中重要的一项是确定恰当的舵面积,因为增加舵面积对航向稳定性和回转性都有利。但为了布置方便,舵面积不能无限增大,同时舵面积过大,舵机功率会有很大的浪费。

8.2舵主要要素的确定

船舶的操纵性是很重要的,而舵是决定船舶操纵性的关键。对舵的设计主要包括确定舵的形状,舵的面积,舵的宽度和高度以及其的展舷比,设计如下:

8.2.1 舵的类型

舵类型很多,一般根据船的用途大小和船尾型来选定。本船采用流线型舵。流线型舵的特点如下:流线型舵的阻力小,压力中心变化幅度小,力矩系数小;正对螺旋桨的流线型舵能对尾流起整流作用,提高舵效。

外形采用梯形,以减小舱杆弯矩

8.2.2 舵的面积

舵面积指舵的外形轮廓所包围的面积。舵面积对船舶的操纵是有很大的影响。增大舵面积能增大转舵力矩,提高回转性,同时当舵角为零时,大的舵面积能起到呆木的作用,也提高了稳定性。但为了布置的方便,舵面积不能无限的增大。同时,舵面积过大,舵机功率会很大的浪费。

舵面积AR??Ld?m2?

?按照《德国造船手册》推荐数值: 油船取1.3%-1.9% 决定综合考虑取?=1.6%

AR??Ld?m2?=1.6%*103*6.4=10.55m2

28

武汉理工大学毕业设计(论文)

8.2.3 舵的展舷比

1)求舵高和舵宽

一般来说,舵上缘距船底越近,舵的效率越高,并且应该尽量使舵的上缘与船底配合,以增加舵效。考虑到舵干连结和工艺安装的需要,舵的上缘和下缘离船体和基线应留有一定的间隙。

因此,由型线图可确定舵的高度h=4.6m. 则其平均宽度为:

b=A/h=10.55/4.6=2.29(m)

2)求舵的展舷比λ和平衡系数

根据型船资料,本次设计取平衡系数k=0.3。 其展舷比为Ar/b2,即

λ= Ar/b2=10.55/ 2.292=2.005

29

武汉理工大学毕业设计(论文)

9 干舷和舱容要素的计算及校核

9.1 干舷计算及校核

船舶具有足够的干舷一方面可以保证有一定的储备浮力,另一方面可以减少甲板上浪。如果干舷太小,航行中甲板容易上浪,而甲板上浪造成的后果是船的重量增加,重心升高,初稳性降低,并可能冲坏甲板上的封闭设施及其他设备,也会影响船员作业和人身安全;此外干舷的大小直接关系到船的储备浮力,如果甲板上浪不及时排掉或船体开口的封闭设施被破坏而导致海水灌入船体,此时如果储备浮力不足就容易下沉,甚至发生沉没和倾覆。因而核算最小干舷Fmin是船舶设计中的一个必不可少的内容。

9.1.1 船舶的主尺度及系数

总 长: 108.3m 设计水线长:105.33m 垂线间长: 103m 型 宽:17m 型 深:7.9m 设 计吃 水:6.4m 排 水 量: 8415t

方形系数 :0.73 棱形系数 :0.738 舯剖面系数:0.989 水线面系数:0.850

9.1.2 计算及校核过程

根据中华共和国船舶检验局的2004年《船舶与海上设施法定检验技术规则》(2004)(非国际航行船舶法定检验技术规则)。 最小干舷Fmin?F0?f1?f2?f3(mm) 式中:F0——基本干舷,mm;

f1 ——方型系数对干舷的修正值,mm;

f2——有效上层建筑和凸形甲板对干舷的修正值,mm; f3——非标准舷弧对干舷的修正值,mm;

基本干舷F0查《船舶与海上设施法定检验技术规则》(2004)(非国际航行船舶法定检验技术规则)得:

根据标准,本船属于“A”型船舶

则基本干舷F0按下式计算:

F0?KD1 (mm)

30

武汉理工大学毕业设计(论文)

式中: K——系数,A型船的K值由《船舶与海上设施法定检验技术规则》(2004)附录

1查得,L=93m,K=158.2 D1——计算型深,m.

F0?KD1?158.2?7.9=1249.78mm 方型系数对干舷的修正f1按下式计算

f1?0.6F0(Cb?0.68)?0.6?1249.78?(0.73?0.68) ?37.4934有效上层建筑和凸形甲板对基本干舷的修正f2按下式计算:

f2??C(80?4L)

式中:L——船长,m;当L>120m,按120m计算; C——系数,

EE); C?(1?LL式中: E——有效上层建筑和凸形甲板的总有效长度,m. 上层建筑的标准高度通过线性插值得,后升高甲板的标准高度为0.98,其他上层建筑的标准高度为2.054,本设计船尾楼甲板高度为2.1m,其余各层甲板高度均为2.1符合标准高度要求,即均可记入有效上层建筑。

由总布置图量取得:本设计船有效上层建筑和凸形甲板的总有效长度为53.8m

L=103 m

EE则,C?(1?)=0.795

LLf2??C(80?4L)= —391.218mm 非标准舷弧对干舷的修正值f3:

因本设计船采用标准舷弧设计而成,故不需要进行非标准舷弧对干舷的修正。

f3=0

?Fmin?F0?f1?f2?f3=1249.78+37.4934+0-391.218=896.0554mm 而本设计船F=D-T=7.9-6.4=1.5m>896.0554mm

干舷校核符合要求,且本设计船属于富裕干舷型船。

31

武汉理工大学毕业设计(论文)

9.2 舱容要素计算及舱容校核

9.2.1 舱容计算

油船货油区提供容积:

货舱容积:VTC?LCACKC?(LPP?LA?LF?LM)ACKC

LC货船长度:Lm、LF、LA分别为机舱长度和首尾尖舱长度。

VC?(K1?K2?LPP?K3?Lm)(B?2b)(D?hd) LPPK1?1.03Cb?0.07?0.8013

取K2=0.96

机舱丰满度系数K3艉机型K3?0.8~0.9(其中hd?25B?42d?300?1003mm

根据MARPOL附件1规则:DW?6000t边舱宽度B?0.5?小值1.0m 取B=1.1m

双层底高度h=B/15或2.0m取小者 最小值1.0m h=B/15=1.153m

dw或2米(取小者)最2000LLm?0.3);K3?0.5~0.6(m?0.1);

llLm?L机?(10?12)m

取Lm?15m

VC?8281.409m3

货油舱所需容积Vcw?Cw/rcw

Cw?DW?1?kp?

rcw货油比重,取rcw?0.71t/m3

kp为燃料、淡水、人员、粮食与所占比例系数

kp?2.112?10?6?R?1.981?10?10R

参考型船取0.1

Cw?DW(1?0.1)?5417.1

32

武汉理工大学毕业设计(论文)

Vcw?5417.1?7629.718?8281.409 0.71事实上所提供舱容载运rcw?0.85t/m3 油品时,其载货量将达

Cw?Vc?rcw?7039.1976t

载运rcw?0.71.8,满足设计要求。 t/m3油品时Cw?58799.2.2 舱容要素计算

设计任何一艘船舶,除满足重力于浮力平衡之外,还必须保证必要的内部容积及甲板

面积,以便用来装载货物和油水,安装机械和各种设备,布置各种工作舱室和生活舱室。

要求设计船提供的容积和甲板面积,应根据装载货物和油水等的要求以及布置机械、设备、人员及作业等方面的需要确定,并通过选择合宜的船舶主要尺度来保证。

根据设计任务书要求,至少完成一个液体舱的仓容要素曲线计算。选取NO.2货油舱(左)为计算对象。该舱为长方体形状,具体计算如下表:

液货舱 长度 16.8 16.8 16.8 16.8 16.8 液货舱宽度 液面高度 7.5 7.5 7.5 7.5 7.5 1.5 3 4.5 6 6.88 体积 189 378 567 756 866.88 型心X(距中) 16.8 16.8 16.8 16.8 16.8 型心Z 0.75 1.5 2.25 3 3.44 纵轴惯性矩 4.725 37.8 127.575 302.4 455.924941

做舱容要素曲线如下所示:

33

武汉理工大学毕业设计(论文)

10 舾装设备的确定

10.1 锚泊和系泊设备

船舶建造规范用舾装数来规定船舶锚的重量和数量锚链直径和长度、拖曳和系泊缆索的根数以及每根缆索的长度及破断强度。

本船舾装数N根据《钢质海船入级与建造规范》(2006)

A2/3N???2Bh?

10△ ——夏季载重水线下的排水量,m; B——船宽,m;

h——从夏季载重水线到最上层舱室顶部的有效高度,m;即:

h?a??hi

其中a——从船中夏季载重水线到上甲板的距离,m;

hi——各层宽度大于B/4的舱室,在其中心线处量计的高度,m;

A——船长L 范围内夏季载重水线以上船体部分和上层建筑以及各层宽度大于

B/4 的甲板室的侧投影面积的总和,计算得A=1051.379。

10.1.1 锚设备

本船首锚设A 3300kg霍尔锚3只,其中一只备用。设有档锚链,总长555m,其中左舷255m,右舷250m。设电动液压起锚机1台。

10.1.2 锚链舱的容积

锚链舱的容积可用下式进行计算:

V=e×a×d2/100

式中:V为容积(m3),e为链长(m);a为系数,取0.001,d为锚链直径(mm),径计算:

V=4.8m3

而实际总布置中,锚链舱的容积满足要求。

10.2 救生、消防设备

10.2.1 救生设备

本船配有救生圈10只,其中带救生浮索救生圈5只,带自亮浮灯救生圈2只,带自亮浮灯及烟雾信号救生圈3只。胀式救生环2只。旅客救生衣16件。

34

武汉理工大学毕业设计(论文)

10.2.2 消防设备

消防员装备4套,,包括防火服,消防靴和手套、头盔,手提安全灯,消防斧,储压式呼吸器,储压式备用氧气瓶,耐火救生绳等。货油舱及甲板设泡沫灭火系统及水灭火系统。甲板设降温撒水管系。

10.3 本船配有的航行设备

磁罗经1台, 雷达1部,测深杆4根,测深锤2只,天文航海仪器有:船

用时钟3只,秒表2只,光学仪器有双筒望远镜2只,看图放大镜2只,温度计2只,无液气压计1只,倾斜指示器2只,海图仪器1。

10.4 本船配置的航行信号设备

桅灯1只,左舷灯1只,右舷灯1只,艉灯1只,锚灯2只,红色环照灯2只,白环照灯1只,黄闪光灯1只,红旋转闪光灯1只; 锚球3只,中型号笛1只,号锣1只,大型号钟1只,国旗(3号,4号)各1面,5号国旗2面,国际信号旗(3号,4号)各1套,红旗1面,手旗1面。

35

武汉理工大学毕业设计(论文)

11 稳性计算及校核

船舶在航行和营运的过程当中,载重量是变化的。随着载重量的变化,船的排水量及浮心和重心位置也不同,因而船舶的各种技术性能就不同。为了掌握在营运过程中的船舶技术状况,需在无数装载的情况中,取若干个典型载况,掌握了这些典型载况,也就掌握了船舶在使用过程中各种载况的性能。

船舶重心坐标可由Xg、Yg、Zg来表示。船舶的型线一般都是左右对称的,总布置设计时也总是要使左右舷的重量相平衡,故Yg值等于零。通常船舶重心的估算主要是指重心的纵坐标Xg和Zg。Xg关系到船的浮态,即影响到船的纵倾。为此对船舶的重心的估算要引起高度重视。

本船主要对满载出港、空载到港2种状况进行计算,并在此基础上进行稳性计算。

11.1 典型载况计算

(1)满载出港 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 项目 空船 船员与行李 食品 淡水 备品 燃油 滑油 NO.1货油舱 NO.2货油舱 NO.3货油舱 NO.4货油舱 污油舱 排水量储备 总计 距基线 2396 2.3 0.897 42 19.168 277 10 1120.5 1350.34 1350.34 1350.34 245.7 250.6 8415.185 5.369 15.11 8.95 4.6 9.5 4.5 0.5 4.463 4.463 4.463 4.463 4.463 6.7 4.79963 12864.12 34.753 8.02815 193.2 182.096 1246.5 5 5000.792 6026.567 6026.567 6026.567 1096.559 1679.02 纵向 -6.18 -35.7 -43.5 -44.1 45.9 -27.9 -39 36.875 17.39 0.583 -13.35 -26.18 -52.605 -14807.3 -82.11 -39.0195 -1852.2 879.8112 -7728.3 -390 41318.44 23482.41 787.2482 -18027 -6432.43 -13182.8 3926.722 重量(t) 力臂(m) 力矩(t.m) 力臂(m) 力矩(t.m) 40389.77 0.466623

36

武汉理工大学毕业设计(论文)

(2)空载到港(燃料、淡水及备品 10%) 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 项目 空船 船员与行李 食品 淡水 备品 燃油 滑油 NO.1货油舱 NO.2货油舱 NO.3货油舱 NO.4货油舱 污油舱 压载水 总计 重量(t) 2396 2.3 0.0897 4.2 1.9168 27.7 1 0 0 0 0 0 2267.023 4700.23 距基线 力臂(m) 5.369 15.11 8.95 4.6 9.5 4.5 0.5 4.463 4.463 4.463 4.463 4.463 5.6 5.480092 力矩(t.m) 12864.12 34.753 0.802815 19.32 18.2096 124.65 0.5 0 0 0 0 0 12695.33 25757.69 -6.18 -35.7 -43.5 -44.1 45.9 -27.9 -39 36.875 17.39 0.583 -13.35 -26.18 6.5 -0.22695 纵向 力臂(m) 力矩(t.m) -14807.3 -82.11 -3.90195 -185.22 87.98112 -772.83 -39 0 0 0 0 0 14735.65 -1066.71

11.2 稳性计算及校核

船舶受到外力作用将离开其平衡位置,当外力消除之后又能恢复到原始平衡位置的能力即为之船的稳性。稳性与抗沉性、强度等都是保证船舶安全航行的基本性能。船舶在营运过程中,不可避免的要受到各种外力的作用。引起船舶横倾的外力主要的有:

(1)风压作用造成的倾斜力矩。 (2)波浪作用引起的扰动作用。

(3)船舶使用过程中的作用力。诸如全速回航时的离心力,货物移动,旅客集中一舷等等。

为了抵抗这些外力的作用,设计时必须保证船舶有足够的稳性,以免影响船舶的使用性能或倾覆。

稳性差的船,特别是在小角度倾斜范围内复原力臂很小的船,在受到不大的横倾力矩作用后就会产生很大的横倾角,而且复原缓慢,这就影响乘员的生活和工作条件。

但是过大的小倾角稳性会引起剧烈的横摇。这不仅有害于航行性能,对船舶安全也十分不利。更重要的是稳性不足的船将经受不住风浪和急流的作用,以至于子恶劣的海况和险要的航道中使船舶有倾覆的危险。

船舶设计如何保证稳性的问题,应从如下几方面入手:

(1)表征船舶稳性的指标及其与船舶主要要素、船型、载荷分布之间的关系; (2)分析设计船在营运中可能受到的外力及其计算方法; (3)稳性衡准----及判断船舶是否安全的一种度量; (4)如何保证船舶有足够的稳性。

37

武汉理工大学毕业设计(论文)

11.2.1 浮态、稳性、横摇周期、横摇角的计算

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 项 目 水线长 水线宽 排水量 型排水体积 平均吃水 重心纵坐标 浮心纵坐标 纵倾力矩 每厘米纵倾力矩 纵倾值 漂心坐标 艏吃水增量 艉吃水增量 艏吃水 艉吃水 重心垂向坐标 横稳心垂向坐标 初稳性高 系数 系数 横摇周期 系数 系数 系数 横摇角 T=0.58f?d??d?符 号 及 公 式 Ls Bs Δ V d Xg Xb Δ(Xg-Xb) Mcm ? (Xg?Xb)100Mcm单位 m m t m m m m t.m t.m/cm m m m m m m m m m s deg 3满载出港 105.330 17.000 8415.000 8373.134 6.400 0.538 0.601 -530.145 101.500 -0.052 -1.333 -0.027 0.025 6.373 6.425 3.433 4.600 1.167 2.656 1.0000 9.84359 0.236 0.452 1.0066 16.79 空载到港 101.800 17.000 4700.580 4677.194 3.850 0.327 0.857 -2491.307 81.000 -0.308 0.667 -0.152 0.156 3.698 4.006 2.160 4.855 2.695 4.416 1.0600 6.568885 0.240 0.467 1.0710 17.83 Xf (L/2 ?Xf)?dL ?Xf)?d(L/2L?ds??df=d+Δdf ds=d+Δds Zg KM GMo=KM-Zg Bs/d f B2?4KG2 GMC1 C2=0.21+0.26Zg/d C3=f+0.0025*Bs/d 15.28*C1*(C2/C3) 0.511.2.2 大倾角稳性校核

根据中华人民共和国船舶检验局《船舶与海上设施法定检验规则》(非国际航行海船法定检验技术规则)(2004)的规定,校核满载出港和空载到港。

1)静稳性臂及动稳性臂的计算(根据稳性插值曲线)

(1)满载出港

38

武汉理工大学毕业设计(论文)

横倾角度 0 10 20 30 40 50 60 70 80 形状稳性臂Lo(m) 0 1.258 2.358 3.188 3.843 4.318 4.596 4.67 4.535 Zg 3.433 3.433 3.433 3.433 3.433 3.433 3.433 3.433 3.433 sinθ 0 0.174 0.342 0.5 0.643 0.766 0.866 0.94 0.985 Lo-Zgsinθ 0 0.660658 1.183914 1.4715 1.635581 1.688322 1.623022 1.44298 1.153495 自上而下之和 —— 0.660658 2.50523 5.160644 8.267725 11.591628 14.902972 17.968974 20.565449 动稳性臂 0 0.057649017 0.21860637 0.450317795 0.721441684 1.011485459 1.300433337 1.567972671 1.79454108 (2)空载到港

横倾角度 0 10 20 30 40 50 60 70 80 形状稳性臂Lo(m) 0 2.005 2.601 3.807 4.623 5.515 5.308 5.378 5.215 Zg 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 sinθ 0 0.174 0.342 0.5 0.643 0.766 0.866 0.94 0.985 Lo-Zgsinθ 0 1.62916 1.86228 2.727 3.23412 3.86044 3.43744 3.3476 3.0874 自上而下之和 —— 1.62916 5.1206 9.70988 15.671 22.76556 30.06344 36.84848 43.28348 动稳性臂 0 0.142160502 0.446823556 0.847284129 1.36745146 1.986522766 2.623335774 3.215398365 3.776916465 根据以上满载出港下所得的结果作图,可得到满载出港时浮态下的动、静稳性力臂。 2)侧投影面积、面积矩计算

(1)满载出港侧投影面积、面积矩计算

船侧 桅杆 旗杆 满实 非满实 ∑ 侧投影面积 643.256 11.203 0.250 658.970 25.100 684.070 形心距基线高 6.580 22.430 11.260 6.887 面积矩 4232.624 251.283 2.815 4486.723 224.336 4711.059

(2)空载到港侧投影面积、面积矩计算 船侧 桅杆 旗杆 满实 非满实 ∑ 侧投影面积 815.365 11.203 0.250 831.290 25.100 856.390 形心距基线高 6.750 22.430 11.260 7.060 面积矩 5503.714 251.283 2.815 5757.812 287.891 6045.703

39

武汉理工大学毕业设计(论文)

3)风压衡准数计算

排水量(t) 吃水(m)d 水线宽(m) 受风面积(m) 受风面积形心垂向坐标Zf 单位计算风压 风压侧倾力臂lf 最小倾覆力臂 风压衡准数k Bs/d 满载出港 8415.185 6.400 17 684.07 6.887 260 0.023 0.075 3.261 满足稳性要求 50.17 空载到港 4700.230 3.850 17 856.39 7.06 724 0.095 0.369 3.884 满足稳性要求 54.29

4)进水角的确定

进水角的确定需进行一系列的绘图计算及读值,具体需要作出五条静水力计算水线所对应的进水角,然后根据其所对应的排水量绘制出不同水线的排水量—横摇角曲线,在其上面绘出进水角曲线. 本设计取主甲板机舱口进水角进行校核.

根据本节结果及第一节结果可绘制出完整的静稳性及动稳性曲线。进水角计算曲线及静稳性和动稳性曲线附于后面。

排水量△(t) 机舱口进水角(度) 满载出港 8415 50.17 空载到港 4700 54.29

(1)进水角计算

θj---V曲线可以按下叙的方法求得:对于主甲板机舱门槛的那一点,是最危险的进水点,将其画在乞氏剖面图上,以中间水线为圆心,作与各个水线相切的圆弧,从门槛这一点作与圆弧的切线,量出切线与各个水线的夹角θ1,θ2,θ3、、、在以排水量为横坐标,θ为纵坐标的稳性插值曲线上作出这些角度与其相应水线的交点,然后连接这些交点,就可以得到进水角曲线,乞氏剖面图和进水角曲线如下图所示:

40

武汉理工大学毕业设计(论文)

41

武汉理工大学毕业设计(论文)

(2)满载出港的最小倾覆力矩

(3)空载到港的最小倾覆力矩

42

武汉理工大学毕业设计(论文)

参考文献

[1] 中国船舶工业总公司.船舶设计实用手册(总体分册)。北京:国防工业出版社,1998 [2] 顾敏童.船舶设计原理.上海:上海交通大学出版社,2003王肇庚、龚昌奇编著.运输

船舶设备于系统.人民交通出版社

[3] 朱美琪、潘伟文、李树范编.运输船舶特点.大连海运学院出版社. [4] 蔡岭梅、王兴权、杨万柏编.船舶静力学.人民交通出版社.1995.10 [5] 王国强、盛振邦编著.船舶推进.武汉理工大学出版社.

[6] 冯恩德、席龙飞编.船舶设计原理.大连海运学院出版社.2003.7

[7] 吴永富、杨家其、方芳编.国际集装箱运输与多式联运.人民交通出版社. [8] 《船舶与海上设施法定检验规范》(国内航行海船法定检验技术规则).中国海事局。

2004

[9] 《船舶设计实用手册》总体分册中的第七章油船 [10] BSRA图谱(《远洋运输单桨船船型系列试验》英国船舶研究协会 [11] 《日本运输技术研究所AU型螺旋桨设计图谱》

[12] 中华人民共和国船舶检验局.船舶与海上设施法定检验规则(国内航行船舶法定检

验技术规则). 北京:人民交通出版社,2004

[13] 中国船级社.钢质海船入级与建造规范(2004).北京:人民交通出版社,2004 [14] 《船舶设计实用手册》编辑委员会.船舶设计实用手册(第一分册)。北京:国防工

业出版社,1962

43

武汉理工大学毕业设计(论文)

附 录

1 型线图 2 总布置图 3 静水力曲线图 4 邦金曲线图 5 稳性插值曲线图 6 满载有效功率曲线图

44

本文来源:https://www.bwwdw.com/article/coxx.html

Top