超级电容器技术资料【中英文对照】

更新时间:2023-04-22 23:03:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

智能电网,分布式发电储能技术,纳米技术

High Energy Density UltraCapacitor (UC)

高能量密度超级电容器(UC)

Background

The first recorded creation of a capacitor was 1745 by Ewald Georg von Klieist. It was a glass jar coated inside and out with metal. A rod was placed through an insulating lid touching the inner coating. This is the first capacitor that was constructed from layered metal separated by a dielectric.

背景

历史上第一个有留下记录的电容器是克拉斯特主教 (Ewald Georg von

Kleist) 在1745年所发明;它是一个内外层均镀有金属膜的玻璃瓶。玻璃瓶内有一金属杆,通过一个绝缘盖触及内部涂层。这是第一个由一个绝缘体隔离的分层金属构造的电容器。

Capacitors typically store charge on electrically conductive surfaces. These charge bearing surfaces are separated by a dielectric an electrical insulator with a bulk resistance greater than 106 ohm-cm. As a charge is placed on the material surfaces, an electrical field is established between the plates resulting in a voltage. The net charge stored within the capacitor is always zero.

电容器通常在电传导表面储存电荷。这些电荷支承表面被一个绝缘电介质隔离; 一个电绝缘体的电阻大于106 ohm-cm,当在金属表面上储存电荷时,两个金属盘之间将建立电场并产生电压。储存在电容器内的净电荷始终为零。

Charge can be added to the plates until the electric field becomes so strong that it breaks down the dielectric. One measure of dielectric's performance is its permittivity its capacitance per unit length. The higher the permittivity the slower the electric field will build for a given amount of charge. The other measure of a dielectric’s performance is its breakdown voltage the electric field strength that will cause the dielectric to rupture.

在金属板上可以增加电荷,直至电场变强打破电介质。衡量电介质性能的一个标准是其介电常数;即每单位长度的电容量。介电常数越高,电场建立给定电荷量的速度越慢。衡量电介质性能的另一个标准是其击穿电压,即将导致电介质破裂的电场强度。

While a battery stores its energy as a chemical potential, a capacitor's energy is stored in its electric field created by charge on the plates. A capacitor

typically can accept and deliver energy faster and with less loss than a battery. This makes capacitors more efficient and more powerful than batteries.

智能电网,分布式发电储能技术,纳米技术

The controlling physical parameters of a capacitor are described by three simple equations: d

With stored Energy =1/2Capacitance x Voltage2

虽然电池储存其能量作为化学势,电容器的能量是储存在由金属板电荷创建的电场中。电容器通常可以比电池更快地接受与传送能量,且降低能量损耗。这使得电容器比电池的效率更高,作用更强大。

电容器的控制物理参数可由三个简单的一次方程进行描述:

电荷 =电容量 X 电压和

电容量=(介电常数 x A)

d

带有的储存能量= 1 / 2电容量x电压2

Figure 1. Schematic of a simple capacitor.

图1 一个简单电容器的电路原理图

Charge 电荷

Plate area 金属板面积

Electric field 电场

Plate separation金属板分离距离

From these equations in order to maximize the capacitance, the plate area must be increased and plate separation be minimized. In addition, a large increase in permittivity of the area between the plates will result in a large

increase in the capacitance of the device. Finally, increasing the voltage on the capacitor has an exponential effect on the energy stored within the device. 从这些方程式可知,为使电容量增至最大限度,金属板面积必须被增加,金属板分离距离被减至最低。此外,金属板之间介电常数的大量增加将使设备的电容量大量增加。最后,电容器电压的增加将对设备内储存能量造成指数效应。

智能电网,分布式发电储能技术,纳米技术

Capacitors typically have not been able to match a battery's energy storage capability because there have not been materials and structures available that can tolerate electric fields of sufficient strength. But capacitors, due to lack of internal electrochemical reactions, have the ability to be cycled thousands of times.

由于没有可用的材料和结构能够承受足够强度的电场,电容器通常无法与电池能量存储的能力相当。但是,电容器,由于缺乏内部电气化学反应,具有循环上千万次的能力。

The term “ultracapacitor” has been given to capacitors that begin to approach the energy storage of a battery. However, material and structural constraints have limited stateoftheart ultracapacitors to an energy storage capacity

approximately 25 times less than a similarly sized lithiumion battery. The proposed NewUC ultracapacitor will overcome these constraints by using nanocomposite materials that have the required permittivity and breakdown voltage to store, charge, and discharge energy at performance levels

equivalent or superior to the best LiIon batteries.

术语“超级电容器”用于描述开始接近电池能量储存的电容器。但是,材料与结构方面的限制因素使最新式超级电容器的能量储存容量比类似大小锂离子电池少约25倍。拟议的新型超级电容器(UC)将通过使用具有所需的介电常数和击穿电压的纳米技术混合材料克服这些局限性,其储存,充电和放电的性能水平相当于或优于最好的锂离子电池。

Electric Double Layer Capacitors:

All existing Ultracapacitor offerings are based around the Electric Double Layer Capacitor (EDLC) principle. In EDLC, a high surface area porous

electrode, typically made from carbon, is placed on either side of a dielectric barrier. These electrodes have surface area to weight ratios of 1000 to 2300 m2 per gram. A liquid electrolyte solution is injected into the porous structure, coating the surface. The solution contains dissolved electrolyte salts

suspended in an organic solvent.

双电荷层电容器:

所有现有的超级电容器产品是基于双电荷层电容器(EDLC)的原理。在双电荷层电容器中,一个大表面面积多孔电极通常由碳制成,并被放置在电介质绝缘体的两边。这些电极具有每克1000至2300 m2重量比的表面面积. 液体电解质溶液被注入多孔结构,涂层表面。该溶液包含悬浮在有机溶剂中溶解的电解质盐。

During operation, when charge is present on the capacitor, the electrolyte salts respond to the electric field created by the charge and align along the porous surface of the electrode. This alignment creates a counter electric field which minimizes the net capacitor voltage, allowing the addition of more

electrical charge. Since the charge separation is very small (10 Angstrom-100 Angstrom) the resulting capacitances of the structure are very high. 1500 to 3500 F cells are the norm. The structure of the DLC is shown below.

智能电网,分布式发电储能技术,纳米技术

在操作过程中,当电容器上存在电荷,电解质盐将对电荷创建的电场做出反应,并与电极的多孔表面形成同轴度。此同轴创建一个反电场,将最大限度地减少净电容电压,允许增加更多的电荷。由于电荷分离非常小(10埃- 100埃),致使结构所产生的电容量非常高。1500至3500 F电池是司空见惯的。双电荷层电容器(EDLC)的结构如下所示:

Figure 2. EDLC capacitor structure.

图2 双电荷层电容器(EDLC)结构

Electronic double layer 双电荷层

Electrode Current-collector 电极集电器

Activated Carbon 活性炭

Separator 离析器

The electrolyte solution enables extremely high capacitances but limits the voltage that can be applied to the cell. The organic solvents employed will

break down at 3 VDC. For safety, typical DLC voltages are limited to 2.7 VDC.

There are over 350 existing and 250 applied for patents for DLC

capacitors. This area is undergoing heavy R&D with the emphasis on carbon nanotubes and other high surface area carbon structures.

电解质溶液使电容量非常高,但限制了可以应用到电池的电压。被采用的有机溶剂将在3伏直流电压下分解。出于安全考虑,通常的双电荷层电容器电压被限制在2.7伏直流电压。

目前,有超过350种双电荷层电容器,其中250种已申请专利。且研发重点将是有关碳纳米管和其他大表面面积碳结构的双电荷电容器。

智能电网,分布式发电储能技术,纳米技术

NewUC

The NewUC is different as it uses our high charge density solid electrolyte polymeric materials. The NewUC X Corporation specializes in high charge density electrolyte polymer membranes. We produce these membranes in both cationic free ion exchange form and anionic free ion exchange form. In Calendar year 2008, the overall production of these materials exceeded 850,000 sq ft.

新型超级电容器

新型超级电容器的不同之处在与它使用了我们公司的高电荷密度固体电解质聚合材料。新型超级电容器公司专注于高电荷密度电解质聚合体隔膜。公司既生产阳极自由离子交换形式的隔膜,又生产阴极自由离子交换形式的隔膜。在2008年,这些材料的整体产量超过850,000平方英尺。

Our NewUC is not an EDLC device as is traditional in these devices. It

exhibits behavior analogous to an electrochemical battery at lower voltages but will transition to electrostatic capacitor behavior as voltages rise beyond a few volts.

我们公司生产的新型超级电容器不是按照传统双电荷层电容器设备而设计的。它会具有类似于较低电压下电气化学电池的作用,但在电压上升几个伏数时,它将转换至静电电容器的性能。

Our device starts out as a sodium iodide redox battery. As voltage is applied to the current collector plates at each end of the device the sodium and iodine ion population in the dielectric material “plates” out onto the electrodes. When the redox battery is completely charged and the ion populations within the

dielectric have been depleted, the structure begins to act as an electrostatic capacitor. The difference over standard electrostatic capacitors is that the dielectric layer between the plates will have a permittivity in the tens of

thousands and will be stable at voltages far exceeding EDLC constraints. When the polarized dielectric layer is combined with high surface area

composite electrodes, energy densities exceeding LiIon battery levels are possible.

我们生产的超级电容器设备开始可作为一种碘化钠氧化还原电池使用。当电压被施加于电容器设备每端的集电器金属板时,电介质材料“金属板” 上的钠和碘离子群将显露在电极上。当氧化还原电池完全充满电,电介质内的离子群已被大大减少,电容器结构开始作为一个静电电容器。超过标准静电电容器的不同之处在于金属板之间的绝缘层将有数以万计的介电常数,并将在远远超过双电荷层电容器限制的电压下保持稳定性。当极化的介电层与大表面面积复合电极相结合,能量密度超过锂离子电池的水平是可能的。

智能电网,分布式发电储能技术,纳米技术

NewUC Materials:

There are four materials contained within the device. Two are types of

high charge density, high ion conductivity polymer electrolyte: an anionic

exchange electrolyte with a negative electrostatically bound ion and a cationic exchange electrolyte with a positive electrostatically bound ion. Two are types of carbon composite electrodes: an anode made up of anionic polymer

electrolyte and high surface area graphite particles and a cathode made of cationic polymer electrolyte and high surface area graphite particles.

新型超级电容器材料:

目前在超级电容器中使用四种材料。两种是高电荷密度,高离子导电聚合物电解质类型:一是带有负静电束缚离子的阴离子交换电解质,一是带有正静电束缚离子的阳离子交换电解质。两种是碳复合电极类型:一是由阴离子聚合物电解质与大表面面积石墨粒子构成的阳极,一是由阳离子聚合物电解质与大表面面积石墨粒子构成的阴极。

The dielectric with a large electronic resistance is constructed from

alternating layers of anionic and cationic polymer electrolyte, with each layer approximately 1,000 nanometers in thickness. There will be 12 to 24 layers forming a dielectric structure 12 to 25 microns thick. The dielectric layer will be oriented such that the layer facing the anode will be anionic and the layer facing the cathode will be cationic. The dielectric will be constructed by

simultaneously roll laminating alternating layers of anionic and cationic

electrolyte.

高电阻电解质是由阴离子与阳离子聚合体电解质轮换层构成的,每一层的厚度约1000毫微米。将有12至24层形成一个12至25微米厚介质结构。电介质层将被导向,因此朝向阳极的层将是阴离子的,朝向阴极的层将是阳离子的。电介质将同时由阴离子和阳离子电解质辊压层压轮换层构成。

Each layer of electrolyte will have a lamella nanostructure as shown in the TEM microscopy photograph below. These nanostructures are a function of the base resin and resin to electrolyte synthesis process that are proprietary to NewUC. The polymer structures self assemble during the membrane

manufacturing process.

电解质的每一层将会具有一个薄层纳米结构,参见下面透射电子显微照片所示。这些纳米结构对于电解液合成工艺起到原料树脂与树脂的作用,是新型超级电容器专有的功能。聚合体结构在膜制造过程自行组装。

智能电网,分布式发电储能技术,纳米技术

Figure 3. Electron microscopy of NewUC electrolyte material.

图3 新型超级电容器电解质材料的电子显微镜图

TEM:Triblock, 29 mol% styrene with 55% Sulfonation of styrene blocks. Microtomed at -1000C & stained with RuO4. Lamellae thickness varies between ca. 5-30 nm.

透射电子显微镜:三嵌段,29 mol%苯乙烯与55%苯乙烯块磺化作用

在-1000C温度下显微镜用薄片切片机切片,且用RuO4染色。薄片厚度为5-30纳米之间不等。

These structures have high ionic conductivities and are crosslinked for

mechanical stability. The charge density of these layers is high, exceeding commercial fluoropolymer electrolytes by a factor of 2 or 3, as measured by acid equivalents.

A multilayer alternating anionic and cationic structure, composed of

un-polarized polymer electrolyte materials, exhibits high permittivity behavior that has large frequency dependence due to ionic conduction as shown in Figure 4 below.

这些结构具有很高的离子电导率,并是交联的,具有机械稳定性。这些层的电荷密度高,如以酸等值衡量,超过了商业含氟聚合物电解质2或3倍。

多层交替阴离子和阳离子结构,由非级化的聚合物电解质材料构成,由于离子导电,表现出高介电常数的性能,具有很大的频率依赖性,如下图4所示。

Pat Irwin, GE Research, Niskayuna, NY

Figure 4. Permittivity testing of an unpolarized electrolyte structure.

图4 非极化电解质结构的介电常数测试

智能电网,分布式发电储能技术,纳米技术

Placing the polymer electrolyte under an external electrical field

overcomes the electrostatic forces binding ions to their counter ions in the electrolyte, allowing the previously bound ions to become mobile and

eventually plate themselves on the oppositely charged electrode. As free ions are removed from the dielectric the electrolyte layer polarizes because the electrolyte counter ion moiety is fixed by covalent bond to the polymer

structure. Once the free ions are removed, the frequency dependence will be minimized or eliminated and high permittivities shown at 10-2 hertz will be stable at elevated DC voltages. Increasing the electrolyte charge density will increase the resulting polarized permittivity.

置聚合物电解质于外部电场下克服了电解液中束缚离子至其抗衡离子的静电力,允许先前的束缚离子流动,并最终在相对电荷电级上自行电镀。因为电解质抗衡离子的一部分是由共价键固定在聚合物结构上,当自由离子远离电介质,电解质层将分化。且自由离子一旦远离,频率依赖将会减少或消除,在10-2赫兹显示的高介电常数将在提高的直流电压保持稳定。增加电解质电荷密度将提高因而发生的两极分化介电常数。

The requirement to remove the ions from the dielectric layer dictates the ion forms of the electrolyte. The ions forms are chosen from materials that will form plated layers on the graphite powder surfaces within the composite electrode structures. Areas where the electrolyte has wetted the graphite

surfaces will allow ions to plate to the structure. The ion forms chosen are Na+ for the cationic exchange electrolyte and Ifor the anionic exchange electrolyte.

从电介质层移走离子的需要表明电解质的离子形式。从材料中选择的离子形式将在复合电极结构的石墨粉末表面形成镀金层。已具有浸湿石墨表面的电解液区域将允许离子镀在结构上。选择的离子形式是用于阳离子交换电解质与阴离子交换电解质的钠离子。

As shown in Figure 5 below, the initial behavior of the device is that of a sodium iodide redox battery. The dielectric materials are layered, with the sodium cationic exchange electrolyte alternating with the iodide anionic

exchange electrolyte. The external electrical field applied to the anode and cathode causes the free ions to migrate through the electrolyte and plate the surface of the oppositely charged electrode. The electrodes are constructed by mixing conductive graphite powders, which are commercially available with surface areas far exceeding 40 m2 per gram, with the corresponding polymer electrolyte. This structure reduces the effective surface area but produces a balance between ionic and electronic conducting structures. It is expected that 10-20% of the particle surface area will still be available for redox plating and electrostatic charging. At modest graphite loadings per cm2 of composite electrode, surface area enhancements of 104 are expected.

如下图5所示,超级电容器设备最初是作为钠碘氧化还原电池。随着钠阳离子交换电解质与碘阴离子交换电解质的交替,电介质材料将分层。应用于阳极和阴极的外部电场将引起自由离子通过电解质迁移,并电镀相反电荷电极的表面。

智能电网,分布式发电储能技术,纳米技术

电极由商业上通常远远超过每克40 m2表面面积的混合传导石墨粉与相应的聚合物电解质构成。这种结构有效地减少了表面面积,但使离子和电子之间传导结构平衡。预计粒子表面积的10-20%仍然可用于氧化还原电镀和静电充电。在复合电极每平方厘米适度的石墨负载下,预期104的表面面积增加。

Free Ion

Anionic Exchange

Electrolyte

自由离子

阴离子交换

电解质 Free Ion Cationic Exchange Electrolyte 自由离子 阳离子交换 电解质

Figure 5. Redox behavior while charging the NewUC.

图5 新型超级电容器充电时的氧化还原行为

Anode阳极

Cathode阴极

智能电网,分布式发电储能技术,纳米技术

This initial charging of the device requires physical movement of the ions

through the electrolyte until they are plated onto the electrodes. It is expected that the voltage necessary to polarize the dielectric will exceed 5 volts and that dielectric polarization will be slow due to the interfacial resistances at

electrolyte layer boundaries. As long as the external voltage is maintained at this level or higher, the sodium and iodide ions will not be released back into the electrolyte. The resulting structure behaves like an electrostatic capacitor with a high permittivity dielectric consisting of layers of the polarized electrolyte, as shown in Figure 6 below.

超级电容器设备的初始充电需要通过电解质离子的物理运动,直到它们被镀上电极。预计分化电介质的必要电压将超过500伏,且电介质极化将由于电解质层边界的界面电阻而缓慢。只要外部电压保持在这一水平或更高,钠和碘离子将不会被释放到电解液中。由此产生的结构会起到具有极化电解质层,高介电常数电介质静电电容器的作用,如下图6所示。

Free Ion

Plated onto Graphite

自由离子

镀上石墨 Free Ion Plated onto Graphite自由离子 镀上石墨

Figure 6. Polarized dielectric behavior of the NewUC.

图6 新型超级电容器极化介电行为

The polymer electrolyte layers left behind when the sodium and iodide

ions are plated onto the electrodes alternate between positively and negatively charged covalently bound ionic groups. Physically, these thin layers minimize the separation distance between charges, allowing them to effectively couple to the electrical fields from the externally applied electrical charge. This high permittivity increases the capacitance of the device in a manner similar to the liquid electrolyte in current EDLC capacitors. However, the polymer

electrolytes are not limited by the low breakdown voltage of the organic solvents in EDLC capacitors, allowing the NanoCap NewUC to operate at

much higher voltages and store significantly more energy the energy storage depends on the voltage squared.

钠和碘离子在电极上被电镀时,留在原处的聚合物电解质层在正负电荷共价

智能电网,分布式发电储能技术,纳米技术

束缚离子基之间交替。从物理学角度,这些薄层将减少电荷之间的分离距离,允许他们从外部施加电荷有效地连接电场。这种高介电常数将提高设备的电容量, 方式上类似于目前双电荷层电容器的液体电解液。然而,聚合物电解质不会被双电荷层电容器中有机溶剂低击穿电压所限制,将允许NanoCap 新型超级电容器在较高电压下运行,并储存更多的能量;能源储存取决于电压平方。

Operating voltages for the structure in electrostatic mode will range from 48 VDC to about half the dielectric breakdown voltage. The dielectric in polarized form will have breakdown voltages that exceed 120 volts/micron, as we have already measured some samples in unpolarized form that had this capability (Pat Irwin, GE Research, Niskayuna, NY). The top operating voltage of the device will be in excess of 500 volts.

静电模式结构的工作电压范围从48伏至大约电介质击穿电压的一半。极化形式中的电介质将具有超过120伏特/微米的击穿电压,正如我们已经测量具有这种能力的非极化方式样品(帕特 欧文,通用电气公司研究,纽约Niskayuna州)。超级电容器的最高工作电压将超过500伏。

NewUC Materials and Structure

NewUC will assemble the composite electrodes and dielectric into a five layer capacitor cell, projected to be 75 to 100 microns thick. A schematic diagram of a cell and its structure is shown below in Figure 7.

新型超级电容器的材料与结构

新型超级电容器将组装混合电极与电解质成为5层电容器电池,预计为75至100微米厚。电池与其结构的原理图如下图7 所示。

智能电网,分布式发电储能技术,纳米技术

- + Layered Electrolyte

Dielectric 12-25 um

thick

Cationic Ionomer

Graphite Powder

12μm thick Anode

阳离子离聚物

石墨粉末

12微米厚阳极 分层电解质 12-25微米厚

Anionic Ionomer

Carbon Nano-Powder 12 μm thick Cathode

阴离子离聚物

Aluminum Layer 12 μm thick

铝层12微米厚 碳纳米粉 12微米厚阴极

Elastomer

Dielectric

弹性体电介质

Figure 7. Structure of a single NewUC cell.

图7 单一新型超级电容器电池的结构

智能电网,分布式发电储能技术,纳米技术

NanoCap Device Construction:

Each cell will be encased in a plastic pouch and tabs will access the NewUC cell within. Multiple cells will be connected in parallel by a bus accessing those tabs.

NanoCap超级电容器设备结构:

每个电池将装在一个塑料袋中装箱,标签将贴在新型超级电容器的内部。多个电池将并联通过母线接入标签。

Figure 8. Packaged UC cell with plastic isolation and electrical connection tabs.

图8 已包装的超级电容器电池,带有塑料隔离与电气连接标签。

Stacking these capacitors cells in a prismatic arrangement allows the

creation of an NewUC energy storage device with superior specific energy, energy density, and specific power that retains typical capacitor cycling and round trip energy efficiency characteristics.

这些电容器电池将以棱镜排列方式堆叠,以便允许创建具有卓越的比能,能量密度和功率系数,且保留典型电容器循环周期与来回能源效率特点的新型超级电容器能量储存设备。

Figure 9. NewUC cell pack.

图9 新型超级电容器电池组

智能电网,分布式发电储能技术,纳米技术

NewUC Summary:

The UC addresses the five primary challenges of an NewUC:

1. Breakdown voltage – The dielectric material is made from multiple

layers of polarized dielectric that will have breakdown voltages in

excess of 120 V/μm.

2. Leakage current – Multilayer construction of inherently nonelectrically conducting electrolyte layers are highly resistive. Property not yet

measured in polarized form.

3. Total capacity – High dielectric permittivity combined with modest plate surface and high voltage generates high energy density structures.

4. Equivalent series resistance – While the composite electrode layers will be more resistive, the aluminum outer coating provides a highly

conductive electrical path to the external load. Packaging the cells in

parallel will pide cell resistance creating a low equivalent series

resistance cell pack.

5. High voltage operation– The extraordinary dielectric permittivity and large breakdown voltage allow the cells to store energy comparable to

and potentially in excess of LiIon batteries while retaining capacitor

characteristics.

新型超级电容器概要:

超级电容器表明了新型超级电容器的五个主要挑战:

1.击穿电压 - 电介质材料是由多层极化电介质组成,将在120 伏/微米以上的击穿电压。

2.泄漏电流 –固有的非电传导电解质层多层结构具有高电阻。性能尚未以极化形式测量。

3.总容量 - 高电介质介电常数与适中的金属板表面及高电压结合,产生高能量密度的结构。

4.等效串联电阻 - 虽然复合电极层电阻性更强,铝外涂层为外荷载提供了一种高传导电子路径。串联包装电池将分化电解槽电阻,产生低等效串联电阻电池组。

5.高压操作 – 额外安排的电介质介电常数与高击穿电压允许电池储存相当于和潜在超过锂离子电池储存的能量,同时保持电容器的特性。

It is expected that the NewUC devices will have functionality in the

outlined green area of the chart below. How much of the outlined area is realizable is a function of the dielectric permittivity and composite electrode properties.

预计该新型超级电容器设备将具有如下图绿色区域标出的功能性。可以实现

智能电网,分布式发电储能技术,纳米技术

的标出区域的大小具有电介质介电常数与复合电极的性能功能。

Figure 10. Celllevel properties of various energy storage technologies.

图10 各种能源存储技术的电池级别属性

Projected Fuel Cell设计的燃料电池

Batteries电池

Nano EEG纳米EEG

Gasoline Hydrogen汽油氢

Flywheels调速轮

Carbon Capacitors碳电容器

DOE Target for Ultracapacitors美国能源部的超级电容器的目标

Maxwell EDLC麦克斯韦(Maxwell)双电荷层电容器

Projected Metal Oxide Capacitors设计的金属氧化物电容器

Specific Energy比能

Specific Power 功率系数

智能电网,分布式发电储能技术,纳米技术

Conclusion:

The NewUC X Corporation intends to create an NewUC that functions as a primary energy storage device yet retains capacitor operational

characteristics.

We believe these materials and their associated manufacturing

technology will produce an affordable, world class, NewUC having specific

energy and specific power metrics in excess of the best known electrochemical devices.

The materials to create our NewUC are already in production for uses in a variety of fields. We thank the General Electric Corporation for assisting in the testing of the material characteristics as we develop this exciting new

technology.

结论:

新型超级电容器公司意欲制造一个新型超级电容器,作为主要能源存储设备的功能,且仍然保留电容器运行特性。

我们相信,这些材料及其相关的制造技术将制作出一个性价比高,世界一流的,具有超过最著名的电化学装置的比能与功率系数指标的新型超级电容器。

用于制造新型电容器的材料已被用于各种领域的生产。我们感谢通用电气公司在我们发展这个激动人心的新技术中在材料特性检测方面给与我们的帮助。

智能电网,分布式发电储能技术,纳米技术

Appendix A: The effect of “polarizable” materials on the function of a capacitor. The insulating gap between the plates of a capacitor is called the dielectric. The

reference dielectric is a vacuum, but air gives a value that is very similar. We can use a dielectric other than air. Some insulating materials do not affect the capacitance of the capacitor at all, but there are others, for example polythene or waxed paper that make the capacitance rise quite a lot. This happens because the molecules become polarized, which means that the electrons move slightly towards the positive plate, leaving a deficiency of electrons, hence a positive charge, at the other end.

We see this:

附录A:“可极化”材料对电容器功能的影响。

电容器金属板之间的绝缘间隔被称为电介质。参考电介质是真空,但空气中给出的值是非常类似的。

除了空气,我们还可以用电介质。一些绝缘材料根本不影响电容器的电容量,但其他,如聚乙烯或蜡纸,使电容量上升不少。这是因为分子处于对立状态,这意味着电子稍微移动至正极板,使电子不足,

因此在另一端具有正电荷。

我们看到:

Dielectric 电介质

Negative plate负极板

Polarised molecules极化分子

Positive plate正极板

The presence of the polarized molecules alters the electric field between the plates. Electric field goes from positive to negative.

The field between the plates goes from right to left.

The polarized molecules make a field that goes from left to right.

The overall field is reduced therefore more electrons can crowd onto the plates, thereby increasing the charge that can be held.

极化分子的存在改变了金属板之间的电场。电场由正极变为负极。

从右到左金属板之间的电场。

使电场由从左至右的极化分子。

总电场减少;因此更多的电子可以集群到金属板上,从而增加了持有电荷。

智能电网,分布式发电储能技术,纳米技术

Reprinted from: 转载至:

E field from the polarized molecules

Polarised molecules

E field from the plates

极化分子产生的电场

极化分子

金属板产生的电场

本文来源:https://www.bwwdw.com/article/ckvq.html

Top