奥数讲座(4年级-下)(14讲)
更新时间:2023-10-06 01:57:01 阅读量: 综合文库 文档下载
- 小学奥数讲座推荐度:
- 相关推荐
四年级奥数讲座(二)
目录
第一讲 乘法原理 第二讲 加法原理 第三讲 排 列 第四讲 组合 第五讲 排列组合
第六讲 排列组合的综合应用 第七讲 行程问题 第八讲 数学游戏
第九讲 有趣的数阵图(一) 第十讲 有趣的数阵图(二) 第十一讲 简单的幻方及其他数阵图 第十二讲 数字综合题选讲 第十三讲 三角形的等积变形 第十四讲 简单的统筹规化问题
第一讲 乘法原理
在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.
例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?
分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:
第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:
注意到 3×1=3.
如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:
共有六种走法,注意到3×2=6.
在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.
在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,?,做第n步有mn种不同的方法,那么,完成这件事一共有
N=m1×m2×?×mn种不同的方法.
这就是乘法原理.
例1 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?
分析 某人买饭要分两步完成,即先买一种主食,再买一种副食(或先买副食后买主食).其中,买主食有3种不同的方法,买副食有5种不同的方法.故可以由乘法原理解决.
解:由乘法原理,主食和副食各买一种共有3×5=15种不同的方法.
补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.
例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?
分析 甲虫要从A点沿线段爬到B点,必经过C点,所以,完成这段路分两步,即由A到C,再由C到B.而由A到C有三种走法,由C到B也有三种走法,所以,由乘法原理便可得到结论.
解:这只甲虫从A到B共有3×3=9种不同的走法.
例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?
分析 要做的事情是从外语、语文书中各取一本.完成它要分两步:即先取一本外语书(有6种取法),再取一本语文书(有4种取法).(或先取语文书,再取外语书.)所以,用乘法原理解决.
解:从架上各取一本共有6×4=24种不同的取法.
例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?
分析 三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形. 例5 由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数?
分析 在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.
①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法,由乘法原理,共可组成3×4×4=48个不相等的三位数. ②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法,由乘法原理,共有3×3×2=18个没有重复数字的三位数. 解:由乘法原理
①共可组成3×4×4=48(个)不同的三位数;
②共可组成3×3×2=18(个)没有重复数字的三位数.
例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决. 解:由1、2、3、4、5、6共可组成 3×4×5×3=180
个没有重复数字的四位奇数.
例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?
分析 由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决. 解:由乘法原理,共有 16×9×4×1=576 种不同的放法.
例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?
分析 要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取,共9种取法,即0、1、2、3、4、5、6、7、8;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.由乘法原理,共有9×4=36种情形,但注意到,要求“至少取一张”而现在包含了一张都不取的这一种情形,应减掉. 解:取出的总钱数是 9×4-1=35种不同的情形.
正在阅读:
奥数讲座(4年级-下)(14讲)10-06
2018年河南省中考英语试题+答案及评分标准+听力MP3(精校word文本06-15
蓝田县玉山镇产业发展规划11-02
动脉硬化及粥样斑块的延缓、预防及逆转07-18
高考绝对值不等式(j基本全了)01-09
年产300万平方米人造石英石板材项目节能评估报告 - 图文12-25
关于电脑的小学作文06-15
用主要矛盾和次要矛盾关系的原理,说明我国坚持以经济建设为中心03-05
生物统计试题 答案分析01-06
别墅区景观深化设计08-09
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 奥数
- 讲座
- 年级
- 2016年辽宁省锦州市中考数学试卷带答案解析
- 长寿区罗家湾水库施工总结1
- 《高分子化学》 习题与答案浙江大学(第4版) - 潘祖仁
- 2012年微机原理期末复习题(学生版)
- 2018年广东省中考语文模拟试卷原稿八
- 竞争性谈判采购文件范本资料
- 湖南省永州市2015届高三第一次模拟考试数学理试题 Word版含答案
- 《马克思主义基本原理概论》整理简洁版
- 环境保护水土保持专项方案
- sqlserver2000自动备份数据库,Sql Server Agent服务未启动问题集合
- 公共关系答案
- 电流互感器的极性关系
- 四十二式太极剑竞赛套路剑谱
- JAVA实验报告册
- Excel格式转换软件
- 2018年宁德市初中毕业班质量检测数学试题及答案
- 深圳市人民政府关于印发深圳市污水处理厂BOT项目管理办法的通知 深府155号
- 非盈利 练习题与答案
- 中国法制史第1阶段测试题
- 人教版语文六年级下册字形字义选择题(附答案)