高等数学-习题答案-方明亮-第四章
更新时间:2024-03-11 00:27:01 阅读量: 综合文库 文档下载
- 高等数学理工类方明亮推荐度:
- 相关推荐
习 题 4-1
1.求下列不定积分: (1)解:?(1xx1235?5xx)dx??(xx??5x2)dx?2x?2x2?C
(2)解:?(2?3)dx?x242ln2?2?6xln6?9x2ln3?C
(3)略. (4) 解:?(1x?12?cot2x)dx??1x?12dx??(csc2x?1)dx
=arcsinx?cotx?x?C
(5) 解:?102dx ??108dx??80dx?x3xxxx80xln8012?C
(6) 解:?sin(7)?cos2x2x2dx=??21(1?cosx)dx?212x?sinx?C
cosx?sinxdx ??cosx?sin2xcosx?sinxcos2dx??(cosdx?x?sinx)dx??sinx?cosx?C
(8) 解:?cos2xcos2xsin2xdx??x?sin22xcosxsin2x?(1sin2x?1cos2x)dx
??cotx?tanx?C
(9) 解: ?secx(secx?tanx)dx??sec2xdx??secxtanxdx?tanx?secx?C
??x,x??1?(10) 解:设f(x)?max{1,x},则f(x)??1,?1?x?1.
?x,x?1??f(x)在(??,??)上连续,
?12??2x?C1,x??1??1?x?1又?F(x)须处处连续,有F(x),F(x)??x?C2,?1?x2?C3,x?1?212x?C1) ,即?1?C2??122则必存在原函数
x??1lim?(x?C2)?lim?(?x??112?C1,
x?1lim?(12x?C3)?lim?(x?C2) ,即x?12?C3?1?C2,
1
.
联立并令C1?C,可得C2?12+C,C3?1?C.
?12??2x?C,x??1?1?故?max{1,x}dx??x??C,?1?x?1.
2??12x?1?2x?1?C,?2. 解:设所求曲线方程为y?f(x),其上任一点(x,y)处切线的斜率为从而
y?dydx?x3,
?xdx?314x?C4
由y(0)?0,得C?0,因此所求曲线方程为 y?3.解:因为
?1?sin?2214x4.
???1x??sinxcosx,??cos??22??x??cosxsinx ??1?1???cos2x??sin2x?sinxcosx
2?4?
所以sin2x、 ?2112cos2x、 ?14cos2x都是sinxcosx的原函数.
习 题 4-2
1.填空. (1)
1x2dx = d(?1x + C) (2)dx = d(lnx+ C)
x1(3)exdx = d(ex+ C) (4) sec2xdx = d(tanx+ C) (5)sinxdx = d(?cosx+ C) (6) cosxdx = d(sinx+ C) (7)
11?x2dx = d(arcsinx+ C) (8)
x1?x1x?122dx = d(1?x2+ C)
(9)tanxsecxdx = d(secx+ C) (10)
dx = d(arctanx+ C)
2
(11)
1(x?1)xdx = d(2arctanx+ C) (12) xdx = d(
x22+ C)
2.求下列不定积分: (1) 解:?
xx?412dx ??1x?42d(x?422)?12?(x?4)2?12 d(x?4)
2
?(x2?4)2?C?ln42x?4?C
(2) 解:?xx1dx??ln1x4xd(lnx)?ln5x5?C
(3) 解:?exx2dx??ed(?1x1)??ex?C
13e3x(4) 解:?(e2x?2e3x?2)exdx??(e2x?2e3x?2)d(ex)?dx4?9x2?12e4x?2e?Cx
(5) 解:???dx21?(3x2)2?13d(3x2)?)2?131?(3x2arcsin3x2?C
(6) 解:?(7) 解:?(8) 解:?1?lnx(xlnx)12dx??(xln1x)2d(xlnx)??1xlnx?C1
d(lnlnx)?lnlnlnx?Cxlnxlnlnx1e?e4x?xdx??ln12x1xlnlnxxd(lnx)??lnlnxx
dx??e?1d(e)?arctane?C
2(9) 解:?cosxdx??( ??(?4?1?cos2x2cos2x42)dx?2?1?2cos2x?cos2x41?cos4x2dx
1cos2x2??)dx ?x?sin2x4??dx
3x?sin2x4sin4x4?C
12(10) 解:?3sinx?cosxsinx?cosx3dx??3sinx?cosxd(sinx?cosx)?2(sinx?cosx)3?C
(11) 解:?cosxdx??cosxcosxdx??1?sinxd(sinx)?sinx?22sin3x3?C
3
(12) 解:?10arccosxdx??10arccosx1?x2?10arccosxd(arccosx)??ln10?C
(13) 解:?arcsinx2x?
1?x2d?arcsinxd(arcsinx)?arcsinx2?C(14) 解:?cosx1sinxdx??sinxd(sinx)?2sinx?C
(15) 解:?arctanxdx?2xxx(1?x)?arctan1?xdx?2?arctan1?(x)2d(x)
?2?arctanxd(arctanx)?(arctanx)2?C
(16) 解:?sin3xcos5xdx??sin2xcos5xdcosx???(1?cos2x)cos5xdcosx?118cos8x?6cos6x?C
(17) 解:?tan3xsec5xdx?tan2xsec4xdsecx??(sec2x?1)sec4xdsecx
?117secx7x?55secx?C
(18) 解:?cos5xsin4xdx??sin9x?sinx2dx??118cos9x?12cosx?C
(19) 解:?tan3xsec4xdx??tan3xsec2xdtanx??tan3x(tan2x?1)dtanx
?16156tanxx?4tanx?C
(20) 解:令6x?t,则x?t6,dx?6t5dt,代入原式得
2?1x(1?3x)dx??15t3(1?t2)6tdt?6?t?1?1t2?1dt?6t?6arctant?C
=66x?6arctan6x?C
(21) 解:令x?sect,t?[0,?2],dx?secttantdt,则
?1tdt?xx2dx??1?1secttantsecttan?dt?t?C=arccos1x?C
1(22) 解:?1??x21?x2dx?1d(?1???xd(1)x(12x)x)?1(1)2x
x?1 4
??2?112()?1xd((1x)?1)??2()?1?2x2121?xx2?C
习 题 4-3
求下列不定积分 (1)解:?xsin2xdx???x2cos2x?1?214xd(?cos2x)??x2cos2x?1cos2xdx ?2sin2x?C
(2)解:?xe?xdx???xde?x??xe?x??e?xdx??xe?x?e?x?C (3)解:?xlnxdx??lnxd(2x33)?x33lnx??x33d(lnx)?x33lnx??x23dx
?x33lnx?x39?C
(4)略.
(5)解:?x2cosxdx??x2dsinx?x2sinx??sinxdx2?x2sinx??2xsinxdx
?xsinx?22?2xdcosx?xsinx?2xcosx?2?cosxdx
2
?xsinx?2xcosx?2sinx?C(6)解:因为?e?xsin2xdx???sin2xde?x??e?xsin2x??e?xd(sin2x)
??e??e?xsin2x?2?cos2xd(esin2x?2e?x?x) ??e?xsin2x?2e?xcos2x?2?e?xd(cos2x)
?x?xcos2x?4?esin2xdx?x
?C
于是?e?xsin2xdx??e?xsin2x?2e5x3cos2x(7)解:?xarctanxdx??arctanxd23?x33arctanx??x33darctanx
?x33x3arctanx?1?31?x2x32dx?x33arctanx?1?3x?x?x1?x23dx
?3arctanx?13x?ln(1?x)?C
2 5
(8)解:?xcosxdx??x21?cos2x2dx?12?(x?xcos2x)dx?1x24?1xcos2xdx ?2?x24x2?1?4xdsin2x?x24?14xsin2x??sin42xdx
?4?14xsin2x?18cos2x?C
(9)解:?
1xarcsinxdx?2?arcsinxdx?2xarcsinx?2?xdarcsinx?2xarcsinx??111?xdx?2xarcsinx?21?x?C
(10)解:?xedx?23x?3xde23x?xe33x23x?2?3e3xxe3xdx?xe323x??xde923x
?xe323x?29xe?227?C
(11)解:因为?coslnxdx?xcoslnx??xdcoslnx?xcoslnx??sinlnxdx
?xcoslnx?xsinlnx??xdsinlnx ?coslnxdx
?C?xcoslnx?xsinlnx?于是?coslnxdx?xcoslnx?xsinlnx2
(12)解:?xf??(x)dx??xdf?(x)?xf?(x)??f?(x)dx?xf?(x)?f(x)?C
习 题 4-4
求下列不定积分 (1)解:?x3x3x?1x2dx??x?1?1x?13dx??(x?x?1)dx?2?x?1dx
1?3?25?x?lnx?1?C
(2)解:?
x?x?8x?x34dx??(x2?x?1)dx??x?x?8x?x32dx
6
??(x?x?1)dx??(x328x?4x?1?3x?1)dx
?3?x222?x?8lnx?4lnx?1?3lnx?1?C
(3)解:?2x?2x?13(x?2)(x?1)122dx??x?2121dx???x?2x?132dx??(x2?3x?42?1)2dx
?lnx?2??2d(x?1)x?122?2?x?1dx??2(xd(x?1)22?1)??(x42?1)2dx
?lnx?2?12ln(x?1)?2arctanx?232(x?1)2?2xx?12?2arctanx?C
(上式最后一个积分用积分表公式28) (4)解:?6x?11x?4x(x?1)22dx?1?[4x?2x?1?1(x?1)22]dx
1x?1?4lnx?2lnx?1?xx?x?x?11432x?1?C?2lnx(x?1)??C
12(5)解:??12dx??(x?1)(x12x2?1)dx?12?x?1dx??xx?12?1dx
lnx?1?dx3?sin2ln(x?1)?2dx2arctanx?C
du(6)解:?x??7?cos2xu?tanx?3?4u2?1?3du1?(23u)2
?123arctan2tanx3?C
(7)解:?(8)解:?dx1?31?xt?31?x?3tdt1?t2?3?(t?1?11?t)dt?32t?t?lnt?1?C2
1?xx1?xdxt?1?x1?x?(t4t222?1)(t?1)dt??(1t?1?1t?1?2t?12)dt
?lnt?1t?1?2arctant?C
习 题 4-5
利用积分表计算下列不定积分:
7
(1)?dx5?4x?x2
解:因为?dx?d(x?2)5?4x?x2?
1?(x?2)2在积分表中查得公式(73)
?dx22C
x2?a2?ln(x?x?a)?现在a?1,x?x?2,于是
?dx?ln(x?5?4x?x2?2)?C
5?4x?x2(2)?ln3xdx
解:在积分表中查得公式(135)
?lnnxdx?x(lnx)n?n?lnn?1xdx
现在n?3,重复利用此公式三次,得
?ln3xdx?xln3x?3xln2x?6xlnx?6x?C.
(3)?1(1?x2)2dx
解:在积分表中查得公式(28)
?11dx(b?ax2)2dx?x2b(ax2?b)?2b?ax2?b
于是现在a?1,b?1,于是
?11dxx(1?x2)2dx?
x2(x2?1)?2?x2?1?2(x2x?1)?arctan?C(4)?dxxx2
?1解:在积分表中查得公式(51)
?1dx?1axx2?aaarccosx?C
于是现在a?1,于是
?dx1xx2 ?arccos?1x?C
8
(5)?x2x2?2xdx 解:令t?x?1,因为
?x2x2?2xdx??x2(x?1)2?1dx??(t2?2t?1)t2?1dt
由积分表中公式(56)、(55)、(54)
?x2x2?a2dx?x2222a2228(2x?a)x?a?8lnx?x?a?C
?xx2?a2dx?12233(x?a)?C
?x2?a2dx?x222x2?a?a22lnx?x2?a?C
于是
?x2x2?2xdx?x?12228[2(x?1)?a)(x?1)?a2
2?5a1?(x?1)2?a2?128lnx?3[(x?1)?a2]3?C(6)?dxx2
2x?1解:在积分表中查得公式(16)、(15)
?dx??ax?badxx2ax?bbx?2b?
xax?b?dx?2arctanax?bax?b?b?b?C
x于是现在a?2,b??1,于是
?dxx?12
2x?1dxx2x?1?x??x2x?1?2x?2arctan2x?1?C(7) ?cos6xdx
解:在积分表中查得公式(135)
?cosnxdx?1n?1ncosxsinx?n?1n?2n?cosxdx
现在n?6,重复利用此公式三次,得
?cos6xdx?153sinx?15(1x6cosxsinx?524?cosx244sin2x?2)?C.
(8)?e?2xsin3xdx
.
9
解:在积分表中查得公式(128)
?e?eaxsinbxdx?1a?b22eax(asinbx?bcosbx)?C
现在a??2,b?3,于是
?2x
113e113axsin3xdx?(?2sin3x?3cos3x)?Cax .
??e(2sin3x?3cos3x)?C
本章复习题 A
一、填空. (1)已知F(x)是
sinxx的一个原函数,则d(F(x)) = 22sinxx2dx.
(2)已知函数y?f(x)的导数为y??2x,且x?1时y?2,则此函数为
y?x?1.
2(3)如果 ?f(x)dx?xlnx?C,则f(x)= lnx?1.
(4)已知?f(x)dx?sinx?x?C,则?exf(ex?1)dx=sin(ex?1)?ex?1?C. (5)如果 ?f(sinx)cosxdx?sin2x?C,则f(x)=2x. 二、求下列不定积分.
1?cos2(1)解:?x1?cos2xdx??1?2cos1?cos22xx?1dx?1?21?coscos22xxdx??(1?sec2x)dx
?x?tanx?C
e?x(2)解:?dx1?ex??1?edx?x???d(e?x?1)?x1?e??ln(e?1)?Cx
3x2()x?xxx22?3?5?23x14?5?C dx?2?()dx?5?()dx?(3)解:?x42ln3?ln4ln24(4)解:?(arcsinx)2dx?xarcsin2x?2?arcsinx?x1?x2dx
10
?xarcsin2x?2?arcsinxd1?x2?xarcsin2x?21?x2arcsinx?2?1?x2darcsinx
?xarcsin2x?21?x2arcsinx?2x?C
(5)解:令t?x?1,则x?t2?1,于是
?dx?2tdt?2dt1)dt?lnt?1xx?1?(t2?1)t?t2?1??(1t?1?t?1t?1?C
3(6)解:?xx(1?x2)2dx??[xx1?x2?(1?x2)2]dx??1?x2dx??x(1?x2)2dx?1ln(1?x2)?122(1?x2)?C
(7)解:?dx??1?C
(arcsinx)21?x2?(arcsinx)?2d(arcsinx)?arcsinx(8)解:?1?xx?1dx?dx
9?4x2d?9?4x2?x9?4x23?13?2d(2x)?114x2)
1?(2238?9?4x2d(9?3x)?12arcsin2x13?49?4x2?C
(9)解:?tan5xsec4xdx??tan4xsec3xdsecx??(sec2x?1)2sec3xdsecx86??(sec7x?2sec5x?sec3x)dsecx?secx8?secxsec4x3?4?C
(10)解:令x?sint,t?(?π2,π2),于是 ?dx?costdt1dtd(t1?1?x2?1?cost??1?cost?1?costdt?t??1?cost?t??2) cos2t2
11
?t?tant22sin?C?arcsinx?2cos2t2tsinsint2?C?arcsinx?1?t21?xxx22?C
(11)解:?x3exdx?1?xde2x22212x21?xe??exdx2?1xe2?1ex2?C
22222(12)解:?lnlnxxdx?lnlnxdlnx?lnlnx?C
?1,x?0三、设 f(x)???x?1,0?x?1,求?f(x)dx.
??2x,x?1解:?f(x)在(??,??)上连续,则必存在原函数F(x),使得
?x?C?1,x?0F(x)???12x2?x?C2,0?x?1 , ??x?1?x2?C3,又?F(x)须处处连续,有
lim1?(x?C1)?limx2?x?C ,即Cx??0??0?(x22)1?C2,
limx2?Clim12?C3x?1?(3)??(x?xx?122) ,即 1?C3?2?C2
联立并令C11?C,可得C2?2+C,C3?1?C.
??x?C,?.x?0故?f(x)dx???12x2?x?C,0?x?1. ??x?1??x2?12?C,四、若In??tannxdx,n?2,3,?,证明:I1n?1n?n?1tanx?In?2.
证明:因为
12
In???tan?tan1nxdx?xsec2?tann?2xtan2xdx??tann?2x(sec2x?1)dx
n?2xdx??tann?2xdx??tann?2xdtanx??tann?2xdx
?n?1tann?1x?In?2
故 In?
1n?1tann?1x?In?2.
本章复习题B
一、填空. (1) ?12e?x1x; (2) x?213x?c; (3)
34155x2?433x2?c1x?c2
(4) (?2x2?1)e?x?c 二、求下列不定积分.
arctanee2xx(1)?dx
解:?arctanee2xxdx??12?arctanedex?2x=?[e?2xarctanex??2111?(e)xe2x1e2xdx]
=?[e21?2xarctane?x?(1ex?ex2x1?e)dx]=?12(e?2xarctane?ex?x?arctane)?Cx。 (2)?dxsin2x?2sinxx2
2t1?t2解:令t?tan是
,则sinx?,cosx?1?t1?t22,x?arctant,dx?11?t2dt。于
?sindx2x?2sinx2?111x1(?t)dt?lntan?tan?4t4282x2?C
(3)?ln(x?1?x)dx;
13
解:?ln(x?1?x2)dx?x?ln(x?1?x2)??x?ln(x?1?x)?2?xdln(x?1?x)
22?xdx1?x2
2?x?ln(x?1?x)?dx
1?x?C。
(4)?xexxe?12e?1,则x?ln(1?u),dx?解:令u?x2u1?u2du,于是有
?xexxdx?e?12?(1?u)ln(1?u)u4u22222u1?u2du?2?ln(1?u2)du
?2uln(1?u)??1?uxdu?2uln(1?u)?4u?arctanu?C
2?2xe?1?4e?1?arctanxe?1?C。
x(5)略,(6)略, (7)略, (8)略, (9)略. 三、略.
四、设F(x)是f(x)的原函数,且当x?0时,有f(x)F(x)?sin22x,又F(0)?1,
F(x)?0,求f(x).
解:因F(x)是f(x)的原函数,则f(x)=F?(x).于是
sin22x?f(x)F(x)?F?(x)F(x)
上式两端积分得:
?sin22xdx??F?(x)F(x)dx
?sin4x8?C
F(x)2122?x2又F(0)?1,F(x)?0,得C?,故F(x)?x?sin4x4?1,从而
f(x)=F?(x)?1?cos4x4x?4?sin4x.
14
15
正在阅读:
高等数学-习题答案-方明亮-第四章03-11
常用门电路74系列芯片10-18
德尔菲法案例分析12-13
外 国 民 歌 欣 赏05-15
计算机原理考试2答案及评分标准04-19
县商务局工作总结和2022年工作思路04-25
201X年9月农民入党转正申请书-精选word文档(2页)03-12
各位游客大家好07-01
《消费经济学》第06章在线测试06-07
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 第四章
- 习题
- 明亮
- 高等
- 答案
- 数学
- 初中政治课有效教学的建构
- 人教版小学数学二年级下册第一单元集体备课材料
- 浅析建筑玻璃幕墙节能技术
- 高一数学期末模拟试题(必修1+必修2)
- 爱福亲公司登记(备案)申请书 - (有填写说明)
- 2016年广州农商银行信用卡事业部招聘公告
- 李良荣《新闻学概论》笔记
- 组织行为学思考讨论题
- 基于无线通信网络技术的远程
- CTC车务终端使用手册-行车日志
- 组织行为学作业
- 《西江月夜行黄沙道中》课堂教学设计
- 全自动洗衣机设计及组态王仿真毕业设计 - 图文
- 《公共关系原理与实务》复习资料
- 上海财经大学国际金融试卷(A)
- 汇报演出主持词
- 拙政园导游词
- 山东省2015年高中历史 第16课 五四爱国运动教案39 岳麓版必修1
- 2013年公路造价师:机械台班单价的组成和确定方法模拟试题
- 江森自控METASYS操作手册 - 图文