Fe3O4-PEDOT核壳微球的合成及其电磁波吸收性能
更新时间:2023-05-16 16:33:01 阅读量: 实用文档 文档下载
- fe3o4配平推荐度:
- 相关推荐
RESEARCHARTICLE
SynthesisandElectromagnetic,MicrowaveAbsorbingPropertiesofCoreÀShellFe3O4ÀPoly(3,4-ethylenedioxythiophene)Microspheres
WencaiZhou, , XiujieHu,*, XiaoxiaBai, , ShuyunZhou,*, ChenghuaSun, JunYan, andPingChen
KeyLaboratoryofPhotochemicalConversionandOptoelectronicMaterials,TechnicalInstituteofPhysicsandChemistry,ChineseAcademyofSciences,Beijing100190,China
GraduateUniversityofChineseAcademyofSciences,Beijing100049,China
’INTRODUCTION
Recently,theconjugationofconductingpolymersandinor-ganicmagneticnanoparticleshasattractedmoreattentionbe-causetheresultantmaterialsnotonlyexhibitacombinationoftheconductiveandmagneticpropertiesbutalsotaketheadvantagesofbothnanomaterialsandpolymers.Besides,theinorganicmag-neticnanoparticlescoatedbytheconductingpolymerswillbepreventedfromreunitingcausedbyhighsurfaceactivity.There-fore,theseconductiveandmagneticcompositeshavegreatpotentialapplicationsinthe eldsofelectricalandmagneticshields,mol-ecularelectronics,nonlinearopticsandmicrowaveabsorbingmaterials.1À4
Amongmagneticmetaloxides,Fe3O4withpropertiesofsuperparamagnetisminadditiontoitslowtoxicityandhighbiocompatibilityisthemost-studiedmaterialformagneticnanoparticles5inmagneticstoragemedia,contrastagentsformag-neticresonanceimaging(MRI),6separationofbiomolecules,7environmentalorfoodanalyzes,8immunoassays,9controllingtargeteddrugdelivery/release,10andmicrowaveabsorbing.11
Uptonow,theresearchesonthefabricationofconductiveandmagneticcompositesbaseonFe3O4aremainlyfocusedonFe3O4Àpolypyrrole/polyaniline(Fe3O4ÀPPy/PANI).Liuetal.synthe-sizedelectricandferromagneticFe3O4ÀPPycompositesbya
r2011AmericanChemicalSociety
chemicalmethodusingp-dodecylbenzenesulfonicacidsodiumsalt(NaDS)assurfactantanddopant.12Dengetal.preparedcoreÀshellFe3O4ÀPPynanoparticlesanddemonstratedthatboththeconductivityandthemagnetizationofthecompositesstronglydependedontheFe3O4contentandthedopingdegree.13Luetal.alsosynthesizedhighlyregulatedcoreÀshellFe3O4ÀPPymicrosphereswithlowconductivity.14Ontheotherhand,Reddyetal.synthesizedelectromagneticfunctionalizedFe3O4ÀPANIcompositeswithammoniumperoxydisulfateastheoxidiz-ingagent.15
Poly(3,4-ethylenedioxythiophene)(PEDOT),apolythio-phenederivative,isoneofthemostpromisingconductivepolymerswithexcellentelectrochemicalactivity,highelectricalconductivity,moderatebandgap,lowredoxpotential,andexcellentenvironmentalstability.Andinourrecentstudy,wehaverevealedthemicrowaveabsorbingabilityofPEDOT.16Therefore,thecompositeconsistedofFe3O4andPEDOTwillhaveanattractiveprospect.Reddyetal.havesynthesizedcoreÀshellnanocompositecomposedofFe3O4nanoparticlesand
Received:April18,2011
Accepted:September13,2011Published:September13,2011
3839
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–
3845
persulfate(APS)(1mmol)wasaddedtoprepare100mLofthemixture.Afterbeingstirredfor24hatroomtemperature,themixturewascentrifugedandwashedthreetimeswithasolventofdeionizedwater/ethanol(1/1,v/v).Theprecipitatewasdriedunderavacuumat60°Cfor24h.
Measurements.ThemorphologyoftheproductswasinvestigatedusingJEM-2100Ftransmissionelectronmicroscope(TEM).Fouriertransforminfrared(FTIR)spectraintherangeof500À2000cmÀ1wereconductedonsamplepelletswithKBrbymeansofaninfraredspectro-photometer(Excalibur3100,America,Varian).ThephaseidentificationofthefinepowdercompositewasperformedusingX-raydiffraction(XRD)analysisonaD8FocusDiffractometer(Germany).ConductivitymeasurementsoftheFe3O4ÀPEDOTsamples(compressedintorec-tangularblock)wereperformedusingaKeithley220SourceMeterfour-pointprobeinstrument.Magneticpropertiesweretestedbyvibratingsamplemagnetometer(VSM,Lakeshore707Series).ThecompositessamplesforelectromagneticparametermeasurementwerepreparedbymixingtheFe3O4ÀPEDOTmicrospheresandparaffinwaxatdifferentvolumefractionoftheFe3O4ÀPEDOTmicrospheres.Themixturewasthenpressedintoatoroidalshapewiththethicknessof2mm.Subsequently,therelativecomplexpermeability(μr)andpermittivity(εr)werecarriedoutbyaHP8722ESnetworkanalyzeratthefrequencyrangeof2À18GHzandthereflectionlosseswerecalculatedusingthemeasuredμrandεr.
Figure1.TEMimagesof(a)pureFe3O4microspheresand(bÀf)Fe3O4ÀPEDOTcoreÀshellmicrospherespreparedwithdi erent(EDOT)/(Fe3O4)ratios:(b)10,(c)15,(d)20,(e)30,and(f)50.
’RESULTSANDDISCUSSION
hollowmicrospheres.TheparticlesaresphericalwithdiametersCharacterizations.Figure1ashowsthemorphologyofFe3O4
rangingfrom200À400nmandawallthicknessofabout50nm.ThedensityofthepreparedFe3O4microspheresis3.56gcmÀ3becauseoftheexistenceofahollowcavity,whichislowerthanthatofthebulkFe3O4.Figure1bÀfshowsthemorphologyoftheobtainedFe3O4ÀPEDOTcoreÀshellmicrospherespreparedwithdifferent(EDOT)/(Fe3O4)ratios.ItisclearthattheFe3O4microspheresarefullycoatedbyPEDOTandtheshellgraduallythickenswiththeincreaseofthe(EDOT)/(Fe3O4)ratio.When(EDOT)/(Fe3O4)ratiois10,theshellthicknessisabout60nm(Figure1b).Theshellsincreasetoabout90and140nmwhen(EDOT)/(Fe3O4)ratiosareat15(Figure1c)and20(Figure1d),respectively.When(EDOT)/(Fe3O4)ratioreaches30,theshellthicknesscanreach250nm(Figure1e).Further,theshellthicknessincreaseslittlewhenthe(EDOT)/(Fe3O4)ratiocontinuestoincreaseto50(Figure1f).Therewillbeasaturationshellthicknessifthe(EDOT)/(Fe3O4)ratiocon-tinuouslyincreases.Theaboveresultsindicatethatthe(EDOT)/(Fe3O4)ratiohasasignificantinfluenceonthestructureoftheFe3O4ÀPEDOTcoreÀshellmicrospheres.
Toidentifythecomponentsofthecomposites,especiallythepolymercomposition,weperformedFTIRanalysesofFe3O4,purePEDOT,andFe3O4ÀPEDOTcompositespreparedwith(EDOT)/(Fe3O4)ratiosof10,20,and50.ThespectraareshowninFigure2.TheFTIRspectrumofFe3O4(Figure2A)
3840
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
Scheme1.FormationMechanismofFe3O4ÀPEDOTCoreÀShellMicrospheres
Figure2.FTIRspectraof(A)Fe3O4;(BÀE)Fe3O4ÀPEDOTcom-positespreparedwithdi erent(EDOT)/(Fe3O4)ratios:(B)10,(C)20,(D)50;and(E)purePEDOT.
Figure3.XRDpatternsof(A)Fe3O4microspheresand(BÀF)Fe3O4ÀPEDOTcompositespreparedwithdi erent(EDOT)/(Fe3O4)ratios:(B)10,(C)15,(D)20,(E)30,and(F)50.
showscharacteristicpeakat588cmÀ1,attributedtotheFeÀObondstretching.Thispeakshiftsto576cmÀ1intheFe3O4ÀPEDOTsampleswitha(EDOT)/(Fe3O4)ratioof10andcontinuouslyshiftstolowerwavenumberandoverlapsthepeakofPEDOTwiththeincreaseofthe(EDOT)/(Fe3O4)ratio.Figure2EshowsthespectraofpurePEDOT.Thepeaksat690,845,922,and983cmÀ1areattributedtothedeformationmodesofCÀSÀCinthethiophenering;thepeaksat1091,1147,and1203cmÀ1areassociatedwiththeCÀOÀCbendingvibrationoftheethylenedioxymoiety;thepeakat1357cmÀ1isassignedtoCÀCstretchingofthequinoidalstructure;thepeaksat1473and1517cmÀ1areduetotheCdCstretchingofthequinoidstruc-tureofthethiophenering.ThemainpeaksofPEDOTshiftstohighwavenumberwiththeincreaseofFe3O4inthecompositescomparedtothepurePEDOT,whichisduetosomeinteractionofferriteparticlesandpolymerchains.19Aboveall,theFTIRspectracon rmthecoexistenceofFe3O4andPEDOT.
XRDpatternsofFe3O4microspheresandFe3O4ÀPEDOTcompositespreparedwithdi erent(EDOT)/(Fe3O4)ratioswerealsoobserved(Figure3).Fe3O4(Figure3A)showsdi ractionpeaksat2θ=18.4,30.1,35.6,37.2,43.1,53.5,57.1,and62.7°,whichareinagreementwithliteratures.18,20These
peakscorrespondtothe(111),(220),(311),(222),(400),(422),(511),and(440)latticeplanes.When(EDOT)/(Fe3O4)ratiosare10(Figure3B)and15(Figure3C),thedi ractionpeaksofFe3O4ÀPEDOTcompositesareatthesamepositionastheFe3O4microspheres(Figure3A).However,withthe(EDOT)/(Fe3O4)ratiosincreasingto20(Figure3D)and30(Figure3E),newpeaksat2θ=25.6and11.7°appear.Thesetwopeaksbecomestrongerwithhigher(EDOT)/(Fe3O4)ratios,accompaniedwithdecreasingintensityoftheFe3O4peaks.Thepeaksat2θ=25.6and11.7°provetheexistenceofPEDOTaccordingtoliterature.17Thedi ractionpatternsindicatethatFe3O4ÀPEDOTcompo-sitesarecomposedofpurephasewithnoimpurity.
FormationMechanism.Weexploredtheformationmechan-ismoftheFe3O4ÀPEDOTcoreÀshellstructurebyaseriesofexperiments.ItwasfoundthattheFe3O4ÀPEDOTcoreÀshellstructurecouldnotformintheabsenceofPVAorp-TSAintheexperiments.WithouttheinclusionofPVA,onlyamixtureofFe3O4microspheresandPEDOTwasobtained.MostofPED-OTpresentedinamorphousstatewhereasalittlepolymerwasfoundcoatedontheFe3O4microspherestoformathinlayer.TherewereFe3O4microspheresandalittlepolymerwithoutp-TSA,andthepolymeraggregatedapartfromtheFe3O4micro-spheres.Overall,thecoexistentofPVAandp-TSAisimportantduringtheformationofFe3O4ÀPEDOTcomposites.Inaddi-tion,weusedFe(p-toluenesulfonate)toreplaceAPSandp-TSAinordertoexplorewhethertheoxidantwithSO3Àcouldactasthedualroleofoxidantanddopant.ThesystemdidnotformcoreÀshellstructure,whichindicatedthatSO3Àcouldnottaketheplaceofp-TSA.ThenwesuggestapossiblemechanismoftheFe3O4ÀPEDOTcoreÀshellmicrospheresformationshowninScheme1.
Fe3O4particlesarenaturallyhydrophilicduetoplentifulhydroxylsontheparticlesurface.21ThehydroxylgroupinPVAcanformhydrogenbondswiththehydroxylgrouponFe3O4particles,whichenablesFe3O4particlestobewelldispersed.BecauseoftheweakstaticinteractionsbetweentheSO3Àgroupinp-TSAmoleculesandFe3O4particles,14p-TSAmoleculescanbeabsorbedonthesurfaceofFe3O4particles.AfterEDOTmonomerisadded,themoleculetendstogatheraroundthehydrophobicinPVAbecauseof“similarcompatibility”.Subse-quently,p-TSAservesasthedopanttoenhancetheprotonationofEDOT,thusconnectsEDOTtotheFe3O4particles.OnceAPSoxidantisintroduced,thepolymerizationwilloccurandEDOTmonomerwillbenucleatedonthesurfaceofFe3O4microspheres.AfterEDOTnucleationoccurringonthesurfaceofFe3O4microspheres,thepolymerizationwillcontinuetocarryoutwiththeas-formedPEDOT.Duringtheformation,PVAas
3841
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
Figure4.TEMimagesofFe3O4ÀPEDOTcomposite((EDOT)/(Fe3O4)=10)withdi erentpolymerizationtime:(a)24,(b)48,and(c)60h.
Table1.ElectricalandMagneticPropertiesofFe3O4ÀPEDOTcomposites
compositeswithdi erent(EDOT)/(Fe3O4)pureFe3O41015203050
a
conductivity(Scm)5.28Â101.21Â101.06Â102.34Â103.13Â10
b
À4À3À2À1À1À1
Msa(emug)84.858.840.31711.35.85
c
À1
Mrb
À1
Hcc61.964.758.859.161.178.1
(emu3g)(Oe)7.63.62.20.820.560.38
Figure5.Magnetizationcurvesappliedmagnetic eldatroomtem-peratureofFe3O4microspheresandFe3O4ÀPEDOTcompositespre-paredwithdi erent(EDOT)/(Fe3O4)ratios.
Saturationmagnetization.Remnantmagnetization.Coercivity.
thestabilizer,promotesthe“orientedattachment”22tojointheas-formedPEDOTandgivesrisetotheshell.However,inthecaseofFe(p-toluenesulfonate)replacingAPSandp-TSA,thepolymershelldidnotform.ThisisbecausealthoughtheSO3ÀgroupintheFe(p-toluenesulfonate)helpedtheattrac-tiononthesurfaceofFe3O4particles,itcouldnotenhancetheprotonationofEDOT.Thatistosay,thereisnolinkbetweenFe3O4andEDOT,sothesystemcouldnotformthecoreÀshellstructure.
Toprovethemechanismfurther,theotherstabilizeranddopantswereusedtoprepareFe3O4ÀPEDOTcoreÀshellmicro-spheres.Itisfoundthatpolyvinylpyrrolidone(PVP)asatypicalstabiliercancompletelyreplacePVA.Andβ-naphthalenesulfonicacid(β-NSA)insteadofp-TSAinFe3O4ÀPEDOTformationcanformcoreÀshellstructuretoo,thoughthecoreÀshellstructurewasnotasgoodasthatusingp-TSAasthedopant.ThecarbonylgroupinPVPcanformahydrogenbondwiththehydroxylgrouponthesurfaceofFe3O4particles.ThusPVPcanstabilizethepolymersols,andimprovethedispersionoftheparticlesbecauseofsterichindrancee ectingfromPVPadsorptiononparticlesurface.21However,usingoxalicacidasthedopantcannotproduceFe3O4ÀPEDOTcoreÀshellmicrospheres.TheresultsindicatetheinteractionbetweenSO3ÀgroupandFe3O4microspheresplaysanimportantroleintheformationofFe3O4ÀPEDOTcoreÀshellstructure.Insummary,thestabilizerandsulfonicacidgrouptogetherpromotetheformationofcoreÀshellFe3O4ÀPEDOTmicrosphere.
Accordingtothesuggestedmechanism,EDOTmonomeronthesurfaceofFe3O4particleswillincreaseandtheorganiclayerwillthickenasincreaseofthepolymerizationtime.Figure4providestheevidenceforthissuppose.Ata xed(EDOT)/(Fe3O4)ratioof10,theshellofFe3O4ÀPEDOTmicrosphereincreasesfrom60to100nmfollowingthereactiontimein-creasingfrom24h(Figure4a)to48h(Figure4b).Theshell
increasebecomesminorafterareactiontimelongerthan60h(Figure4c).
ElectricandMagneticProperties.TheelectricalpropertiesoftheobtainedFe3O4ÀPEDOTcompositesweremeasuredbyfour-pointprobemethodandtheconductivitiesaredisplayedinTable1.Itisfoundthattheconductivitiesofthecompositesatroomtemperatureareintherangeof1Â10À4to1Â10À1ScmÀ1andincreasewiththe(EDOT)/(Fe3O4)ratioincreasing.Theten-dencyisconsistentwiththeshellthickness(Figure1bÀf)becausetheconductivityismainlydeterminedbythepolymer.Thethickertheshellis,thehighertheconductivityis.
ThemagneticpropertiesofFe3O4andFe3O4ÀPEDOTmicrospherespreparedwithdi erent(EDOT)/(Fe3O4)ratioswereinvestigatedwithaVSMwhichfeaturesasensitivityof1Â10À5emu.AndFigure5showsthehysteresisloopsoftheobtainedsamplesintheappliedmagnetic eldsweepingfromÀ10to10kOeatroomtemperature.ThemagneticparameterscorrespondingtoFigure5areshowninTable1.ThepureFe3O4isatypicalsuperparamagneticmaterial,presentinghighsaturationmagnet-ization(Ms),highremnantmagnetization(Mr),andlowcoercivity(Hc).Withtheincreaseofthe(EDOT)/(Fe3O4)ratio,thesatu-rationmagnetizationandremnantmagnetizationaredecreased,duetothedecreaseofFe3O4contentinthecomposites.Thein-dependenceofcoercivityonthe(EDOT)/(Fe3O4)ratiosuggeststhatthesuperparamagnetismhasthesameorigin,fromFe3O4.ItisclearfromTable1thattheFe3O4ÀPEDOTcompositesexhibitgoodmagneticpropertiesandlowconductivitieswithlower(EDOT)/(Fe3O4)ratios,whilelowmagneticpropertiesandhighconductivitieswithhigher(EDOT)/(Fe3O4)ratios.MicrowaveAbsorbingProperties.Foramicrowave-absorb-inglayerterminatedbyashortcircuit,thenormalizedinputimpedanceisrelatedtotheimpedanceinfreespace,Zin,andreflectionloss(RL)isrelatedtothenormalincidentplanewave,whichcanbegivenbythetheoryoftheabsorbingwall.23
r μr2πp
μrεrfd Zin¼tanh½jcr
ZÀ1
in
RLðdBÞ¼20log Zin3842
ð1Þ
ð2Þ
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
RESEARCHARTICLE
Figure6.ElectromagneticparametersofFe3O4ÀPEDOTcompositeswithdi erent(EDOT)/(Fe3O4)ratiosat50%volumefractioninthe2À18GHzrange:(a)realand(b)imaginarypartsoftherelativecomplexpermittivity;(c)realand(d)imaginarypartsoftherelativecomplexpermeability.
wherecisthevelocityoflightinfreespace,fisthefrequency,anddisthelayerthickness.Therelativecomplexpermittivity(εr)andrelativepermeability(μr)oftheabsorbingmediumareexpressedasεr=ε0Àjε00,μr=μ0Àjμ00.Theimpedancematchingconditionisdeterminedbythecombinationofthesixpara-meters:ε0,ε00,μ0,μ00,f,andd.
Therealpermittivity(ε0)andrealpermeability(μ0)symbolizethestorageabilityofelectromagneticenergy,24whiletheima-ginarypermittivity(ε00)isrelatedtothedissipationofenergyandthemagneticlossisexpressedbyimaginarypermeability(μ00).19Thecurveofε0,ε00,μ0,andμ00ofFe3O4ÀPEDOTcompositeswithdi erent(EDOT)/(Fe3O4)ratiosat50%volumefractionareshownasFigure6.Itisobservedthatthesampleswithhigher(EDOT)/(Fe3O4)ratiosshowhighervaluesofε0andε00(Figure6a,b),whichisrelatedtohigherconductivities.Moreover,theμ0valuesobviouslydecreaseandthenincreasewiththefrequencyincreasinginthe2À18GHzrange(Figure6c).When(EDOT)/(Fe3O4)ratiosare10and15,theμ00valuesexhibitpositiveinthewholerange;whileanegativeμ00valuemeansthemagneticenergyisradiatedoutwithnoabsorption.24Thatistosay,thecompositesmainlyexhibitelectricallosseswhen(EDOT)/(Fe3O4)ratiosare20,30,and50.
Onthebasisofformulas1and2,wecalculatedtheRLofFe3O4ÀPEDOTcompositeswithdi erent(EDOT)/(Fe3O4)ratiosinthefrequencyrangeof2À18GHzat50%volume
Figure7.Re ectionlossesinthethicknessof2mmoftheFe3O4ÀPEDOTcompositespreparedwithdi erent(EDOT)/(Fe3O
4
)ratiosat50%volumefraction.
fraction.Figure7showstheRLvariationwhenthelayerthicknessis2mm.Witha(EDOT)/(Fe3O4)ratioof20,theminimumRLofthecompositeisÀ27.6dB,whichisbetterthanpurePEDOTinourresearchbefore(À24dB).16Theminimum
3843
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
RESEARCHARTICLE
Figure8.Re ectionlossesindi erentthicknessofFe3O4ÀPEDOTcompositeswith(a)(EDOT)/(Fe3O4)=20and(b)50at20%volumefraction(c)(EDOT)/(Fe3O4)=20
and(d)50at50%volumefraction.
re ectionlossesofthespecimenwiththe(EDOT)/(Fe3O4)=30and50areÀ4.6dBandÀ3.8dB,paringwiththeconductivitiesinTable1,itcanbefoundthatthecompositeswithhigherconductivitiesat(EDOT)/(Fe3O4)=30and50donotcorrespondtobetterabsorbingparameters.Thisindicatesthatbothhigherconductivityandlowerconductivity((EDOT)/(Fe3O4)=10)arenotbene cialtoimprovingmicrowaveabsorbingandthemaximummicrowaveabsorbingcorrespondstoanintermediateconductivity.25,26
Inaddition,tostudythein uenceofvolumefractiononmicrowaveabsorbingproperty,theelectromagneticparametersofFe3O4ÀPEDOTcompositeswith(EDOT)/(Fe3O4)=20and50at20%volumefractionweremeasuredandthecalculatedre ectionlossesareshownaspanelsaandbinFigure8,res-pectively.Meanwhile,panelscanddinFigure8showthecalculatedre ectionlossesofFe3O4ÀPEDOTcompositeswith(EDOT)/(Fe3O4)=20and50at50%volumefraction,respec-tively.Whenthevolumefractionis20%(Figure8a),thesamplewith(EDOT)/(Fe3O4)=20exhibitsexcellentmicrowaveabsorb-ingpropertyinthelayerthicknessrangeof3-4mmandtheminimumRLisÀ30dBat9.5GHzwithalayerthicknessof4mm;whenthevolumefractionis50%(Figure8c),thiscom-positeexhibitsgoodmicrowaveabsorbingpropertyinthelayerthicknessrangeof2À4mmandtheminimumRLisÀ27.6dBat13GHzwithalayerthicknessof2mm.Besides,theRLoftheFe3O4ÀPEDOTcompositewith(EDOT)/(Fe3O4)=50at20%volumefraction(Figure8b)islargerthanthesampleat50%
volumefraction(Figure8d)andtheminimumRLisÀ22dBat18GHzwithalayerthicknessof2mm.Theresultindicatesthattheconductivity,volumefractionandlayerthicknessallhavegreatimpactsonmicrowaveabsorbingproperty.
’CONCLUSIONS
UniformcoreÀshellFe3O4ÀPEDOTmicrospheresweresuccessfullysynthesizedbyatwo-stepmethod.Theselectionofbothstabilizeranddopantareessentialfortheformationofthecomposites.Thepropertiesofthecompositesaresigni cantlyin uencedbythe(EDOT)/(Fe3O4)ratio.TheFe3O4ÀPEDOTcompositesexhibitedgoodconductivitiesathigh(EDOT)/(Fe3O4)ratiosandexcellentmagneticpropertiesatlow(EDOT)/(Fe3O4)ratios.There ectionlossescalculatedbythetheoryoftheabsorbingwallshowedthattheFe3O4ÀPEDOTcompositewith(EDOT)/(Fe3O4)=20exhibitedthebestmicrowaveabsorbingpropertyintherangeof2À18GHz.TheminimumRLreachedapproximatedÀ30dBatthethicknessof4mm.Insummary,thetwo-stepsynthesisandelectromagneticcoreÀshellFe3O4ÀPEDOTcompositeswillhaveapromisingapplicationinmicrowaveabsorbing eld.’AUTHORINFORMATION
CorrespondingAuthor
*E-mail:huxiujie@(X.H.);zhou_shuyun@(S.Z.).Fax:+86010-82543517;Tel:+86010-82543515.
3844
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
’ACKNOWLEDGMENT
ThisworkwassupportedbyNationalNaturalScienceFounda-tionofChina(20874112and60808022).TheauthorsthankX.HuangandM.WangfortheassistanceinTEMcharacterization.’REFERENCES
(1)(2)Kawaguchi,J.C.;(3)Zhang,Jacobo,Kurlyandskaya,L.;Wan,H.Prog.Polym.Sci.2000,25,1171–1210.
S.E.J.Phys.G.M.V.;J.Phys.Chem.Cunanan,Chem.Solids2007J.;BBhagat,2003,107,6748–6753.,68,1527S.M.;Aphesteguy,33(4),Marchessault,R.H.;Rioux,P.;Raymond,L.–1532.
Polymer1992,322(5)4024–4028.
,1828Lu,–W.;Shen,Y.;Xie,A.;Zhang,W.J.Magn.Magn.Mater.2010,Mater.(6)Hu,1833.
F.Q.;Wei,L.;Zhou,Z.;Ran,Y.L.;Li,Z.;Gao,M.Y.Adv.Nakayama,(7)2006Seino,,18S.;,2553Kinoshita,–2556.
T.;Otome,Y.;Nakagawa,T.;Okitsu,K.;Res.2004,5T.;,136Sekino,–T.;Niihara,K.;Yamamoto,T.A.J.Ceram.Process.40(8),Rana,S.;139.
White,P.;Bradley,M.TetrahedronLett.1999,(9)8137–8140.
J.Mater.(10)Kuramitz,Yang,X.;H.Zhang,Anal.Bioanal.X.;Ma,Chem.Y.;2009,394,61–69.
Compd.(11)2010Ni,Chem.S.;2009,19,2710–2714.
Huang,Y.;Wang,Y.;Chen,Y.,489Wang,,252X.;Zhou,G.;Yang,F.;Wang,J.;He,D.J.Alloys38(12),Liu,J.;Wan,–M.256.
J.Polym.Sci.,PartA:Polym.Chem.2000,Int.(13)2734–Deng,2739.
J.;Peng,Y.;He,C.;Long,X.;Li,P.;Chan,A.S.C.Polym.(14)2003320(15)Lu,,52Reddy,X.;,1182Mao,–1187.
K.R.;H.;Lee,Zhang,K.P.;W.Gopalan,pos.A.I.Colloids.2009,Surf.,30,847A–854.Technol.(16),49–56.
2008,Ni,X.;Hu,X.;Zhou,S.;Sun,C.;Bai,X.;Interface(17)2011Reddy,,22K.,532Chen,P.Polym.Adv.R.;–Park,537.
W.;Sin,B.C.;Noh,J.;Lee,Y.J.Colloid2010(18)Sci.2009,335,34–39.
,48Lv,,Q.R.;Fang,Q.Q.;Liu,Y.M.;Wang,W.N.Chin.J.Phys.Mat.(19)113(20)InterfacesOhlan,417–423.
Hu,P.;2010A.;Singh,K.;Chandra,A.;Dhawan,S.K.ACSAppl.Yu,,L.;2,Zuo,927–A.;933.
Guo,C.;Yuan,F.J.Phys.Surf.,(21),900–Guo,906.
Chem.C2008,L.;Pei,G.-L.;Wang,T.-J.;Wang,Z.-W.;B2002(22)A2007Yang,,293Q.;,Jin,Y.ColloidsTang,58–62.
K.;Wang,C.;Qian,Y.;Zhang,S.J.Phys.Chem.Eng.,(23),106B2005Abbas,,9227,123S.–9230.
,M.;167Dixit,–A.K.;Chatterjee,R.;Goel,T.C.Mater.Sci.Zhang,(24)B.(25)T.Wang,C.;Han,171.
X.;Xu,P.;Wang,J.;Du,Y.;Wang,X.;Qin,W.;J.Phys.Xu,J.Phys.Chem.P.;Han,Chem.B2008X.;Wang,C2010,112,2775C.;,114Zhao,,3196–3203.
–2781.
H.;Wang,J.;Wang,X.;Zhang,28(26),3307Unsworth,–3312.
J.;Kaynak,A.;Lunn,B.;Beard,G.J.Mater.Sci.1993,RESEARCHARTICLE
3845
/10.1021/am2004812|ACSAppl.Mater.Interfaces2011,3,3839–3845
正在阅读:
Fe3O4-PEDOT核壳微球的合成及其电磁波吸收性能05-16
手抽筋的滋味作文700字07-03
全国人大常委会法制工作委员会关于正确理解和执行《环境保护法》11-17
一级建造师04年法规真题及答案05-26
非经常性损益06-25
(五年高考真题)2016届高考物理 专题二 相互作用(全国通用)05-29
英语专业毕业论文09-19
捉宠物风波作文800字06-21
论英汉民族思维模式差异及其语言翻译08-25
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 电磁波
- 合成
- 吸收
- 性能
- 及其
- PEDOT
- Fe
- AP物理B和C的区别
- 3-1体内受精和早期胚胎发育0
- 2010年成都市中考物理试卷分析
- 牛津英语译林9A精英班( Unit 1)拓展培优训练(教师版 学生版)
- access2007实用教程 第01章 数据库基础知识
- 中高层管理“魔鬼特训营”47页
- 灭蚊消杀的注意事项
- 用友软件股利政策与公司价值
- 职业技能鉴定试题(数控车)
- 建筑工程预算基础教程基础
- 2021年中国民生银行法人账户透支业务管理办法(试行)
- 信用管控企业信用监管指标分析精编
- 清华大学MBA的详细介绍
- 安全生产、文明施工、环境管理目标责任书
- 驻村帮扶工作计划
- The simplescalar tool set, version 2.0
- 形势与政策复习资料
- 韩咀小学食品安全事故应急演练方案
- 楼盘暖场活动 DIY暖场活动(目前比较流行的DIY项目) (1)
- 2013年中考说明文阅读训练题