Formally Verifying Dynamic Properties of Knowledge Based Systems
更新时间:2023-05-22 14:06:01 阅读量: 实用文档 文档下载
- formally推荐度:
- 相关推荐
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
Proceedingsofthe11thEuropeanWorkshoponKnowledgeAcquisition,Mod-eling,andManagement(EKAW’99)
D.Fenselet.al(eds),LectureNotesinAI,SpringerVerlag,1999
Formallyverifyingdynamicproperties
ofKnowledgeBasedSystems
PerryGroot,AnnettetenTeije,andFrankvanHarmelen
Dept.ofComputerScienceandMathematics
VrijeUniversiteitAmsterdam
perry,annette,frankh@cs.vu.nl
Abstract.Inthispaperwestudydynamicpropertiesofknowledge-basedsys-
tems.Wearguetheimportanceofsuchdynamicpropertiesfortheconstruction
andanalysisofknowledge-basedsystems.Wepresentacase-studyofasimple
classi cationmethodforwhichweformulateandverifytwodynamicproperties
whichareconcernedwiththeanytimebehaviourandthecomputationtraceofthe
classi cationmethod.WeshowhowDynamicLogiccanbeusedtoformallyex-
pressthesedynamicproperties.WehaveusedtheKIVinteractivetheoremprover
toobtainmachine-assistedproofsforallthepropertiesandtheoremsinthispaper.
1Introduction
1.1Motivation
AcharacteristicpropertyofKnowledgeBasedSystems(KBSs)isthattheydealwithintractablecomputationaltasks:diagnosis,design,andclassi cationarealltasksforwhicheventhesimplevarietiesareintractable.Asaresult,simpleuninformedsearchprocedurescannotbeusedtoconstructrealisticknowledge-basedsystemsforcomplextasks.
AtraditionalapproachinKnowledgeEngineeringistoequipaKBSwithstrongcontrol-knowledgethatisusedtoguidethecomputation[1,4,12].Suchcontrolknowl-edgeconsistsofknowledgeonthesequenceofreasoningstepsduringproblemsolving,andisanessentialpartofexpertise.Examplesofsuchcontrolknowledgearetheor-derinwhichobservationsmustbeobtainedduringdiagnosticreasoning,ortheorderinwhichcomponentsmustbecon guredduringdesignreasoning.ManyKnowledgeEngineeringmethodologiesprovidesomeformofexpressingthecontrolknowledgeinaKBS[28,20,3,27].
Amorerecent,andlessexploredapproachtodealingwiththeintractabilityofKBSsisthedevelopmentofanytimealgorithms[19].Ananytimealgorithmgraduallyap-proachestheperfectsolution.Asruntimeincreases,thequalityofthesolutionincreases.Thealgorithmcanbeinterruptedatanymoment,forinstancewhennomorecomputa-tiontimeisavailable,atwhichpointthecurrentlyavailablesolutionisreturned.Suchmethodshavebeenemployedinplanning[6]anddiagnosis[22]amongothers.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
BothoftheseapproachestodealingwiththeintractabilityofKBSs(addingcontrolknowledgeanddevelopinganytimealgorithms)areconcernedwith“how”solutionsarecomputed,andnot(or:notonly)with“what”countsasasolution.Thisdistinc-tionbetween“what”and“how”correspondstothedistinctionbetweenfunctionalanddynamicpropertiesofasystem.Purelyfunctionalpropertiesareconcernedwiththere-lationbetweeninputsandoutputsofthesystem.Dynamicpropertiesontheotherhandareconcernedwiththecomputationprocessitself,andnotonlywiththe naloutputofthisprocess.
ThetypicalexampleofafunctionalpropertyistheI/O-relationofasystem.Exam-plesofdynamicpropertiesarethenumberofrequiredcomputationsteps,thesequenceinwhichthesecomputationstepsaretaken,etc.
Inthisview,dynamicpropertiesareare nementoffunctionalproperties:twoim-plementationsofthesamefunctionalI/O-relationcanhaveverydifferentdynamicprop-erties.OntheotherhandanytwosystemsforwhichallthedynamicpropertiescoincidenecessarilyhavethesamefunctionalI/O-relation.
Inthispaperwewillinvestigatehowtoformallyexpressandverifydynamicprop-ertiesofKBSs.
1.2Approach
Asstatedabove,weareaimingatstudyingthedynamicpropertiesofKBSs:formallystatingsuchproperties,andprovingwhetherornotsuchpropertiesholdforagivenKBS.InSoftwareEngineering,manyformalframeworkshavebeendevelopedforaformalanalysisofdynamicproperties.See[24]andreferencesincludedthereinforanumberoftheseapproaches.
WithinKnowledgeEngineeringformalanalysisofpropertieshasbeenmostlylim-itedtofunctionalproperties([10,11,26,23],withDESIRE[5,15]asanexception).SuchfunctionalanalysiscanbefruitfullyformalisedandcarriedoutinDynamicLogic
[14,17],asillustratedin[25,7,9].
Theapproachwewilltakeinthispaperistousethesamelogicthathasbeenusedforanalysisoffunctionalproperties(DynamicLogic),butnowfortheanalysisofdy-namicproperties.Thisisincontrastwithworkin[5,15],whereaformalismisusedwhichisspeci callydesignedtodealwithdynamicproperties.TheuseofDynamicLogichasasimmediateadvantagethatwecanexploitthesupportofferedforthisfor-malismbyinteractivetheoremproversliketheKIVsystem[18],whichhasbeenusedwithsomesuccessbeforefortheformalanalysisoffunctionalpropertiesofKBSs[10,11].
TheuseofDynamicLogicfortheanalysisofdynamicpropertiesisnotunprob-lematic.InDynamicLogicitisnotpossibletodirectlysaysomethingaboutaninternalstateofaprogram.InDynamicLogicaprogramisseenasapairofstates:(start,end).Thusprogramswiththesame(start,end)stateareequivalent,irrespectiveofthebehav-iorthatgetsthemfromthestartstatetotheendstate.Byusingconstructslikeαφwecanonlyconcludeφafterterminationofprogramα.
Wecansolvethisprobleminthefollowingway:givenaprogramα,weconstructanewprogramαwhichhasadditionalparameters.TheseparametersareusedtoencodesomeofthebehaviouroftheoriginalprogramαintheI/O-relationoftheprogramα.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
Forexample,wemightencodethesequenceofinternalstatesoftheprogramαinanadditionaloutputargumenttoα.Thisadditionaloutputargumentthenconstitutesatraceoftheprogramαandcanbeusedtoformulatedynamicpropertiesofαintermsoftheoutputfromα.Ineffect,weareencodingsomeofthedynamicpropertiesofαasfunctionalpropertiesofthemodi edprogramα.ThiswillthenallowustoexpressandprovedynamicpropertieswithinthelimitationsofDynamicLogic.
1.3Structureandcontributionsofthispaper
Inthispaper,wewilltaketheapproachoutlinedaboveandapplyittotwosimplecase-studies.InSect.2wedescribeasimpletask-de nitionandproblemsolvingmethodforclassi cation.InSect.3wepresentananytimeadaptationofthisPSM.WeformallyexpressandproveanumberofdynamicpropertiesofthisPSM,suchasitsbehaviourwhenrun-timeincreases,anditseventualconvergencetothenon-anytimePSM.InSect.4weencodepartofthecomputationtraceoftheclassi cationPSMinanadditionaloutputargument,andusethistoprovesomepropertiesaboutthecontrolknowledgethatwasexploitedinthePSM.Inthe nalsection,wediscussthepro’sandcon’softheapproachtakeninthispaperandhowwellthesetwocase-studiesgeneralisetootherdynamicproperties.
Thispapermakesthefollowingcontributions:
AnalysingdynamicpropertiesWhereasexistingliteratureonKBSstypicallydeals
withfunctionalproperties,westudyanumberofsimpledynamicproperties,inparticulartheanytimenatureofourclassi cationalgorithmandthecomputationtraceofthisalgorithm.
UsingDynamicLogicWeshowhowsuchdynamicpropertiescanbeformallyex-
pressedinalogicalformalism,namelyFirstOrderDynamicLogic.
Machine-assistedproofsWehaveformallyveri edthesepropertiesinmachineas-
sistedproofsusingtheKIVinteractiveveri er.
GeneralisationWesuggesthowouranalysisofthespeci cdynamicproperties(any-
timebehaviourandcomputationtrace)forasimpleclassi cationalgorithmcanbestatedinthegeneralcase.
2AsimpleProblemSolvingMethod
ForourcasestudyweuseaverysimplePSM,namelylinear ltering.Ititeratesoverasetofcandidatestoproduceasetofsolutionswhichallsatis yagiven ltercriterion.This ltercriterionisappliedtoindividualcandidatesci,andwillbewrittencorrectci.Thetask-de nitionofthePSMisthen:
cioutputcscicscorrectci(1)orequivalently:outputcscicicscorrectci.
Thisisaverygenerictask-de nition,whichcomprisesanytaskforwhichtheoutputcriteriacanbestatedintermsofindividualcandidates.Simpleformsofclassi cation,
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
diagnosisandcon gurationcanallbephrasedinthisformat,usinganappropriatedef-initionforcorrectci1.
Theproceduralde nitionofourlinear- lteringPSMisasfollows:
filter#(cs;varoutput)
begin
/thenoutput:=0/elseifcs=0
varcandidate=select(cs)in
ifcorrect(candidate)then
begin
filter#(cscandidate;output);
output:=insert(candidate,output)
end
else
filter#(cscandidate;output)
end
Fig.1.PSMforclassi cationbylinear ltering
First,wecheckifnocandidateclassesareleft.Ifso,wereturntheemptyset,ifnot,weselectanarbitrarycandidate.Ifthecandidateiscorrectitisinsertedintheoutputsetthatiscomputedrecursively.Theonlyrequirementweneedtoimposeontheselectionstepisthatitdoesindeedselectoneoftheavailableclasses:
cs/0selectcscs(2)Thelinear lteringmethodthatweuseisquitenaive.Itonlyworksforsmallcandidate-sets,butitisadequatetodemonstratetheideasinthispaper.
Intermsofthespeci cationframeworkof[8],formula(1)isthegoal-de nition.Inoursimpleexample,thisgoal-de nitioncoincidesexactlywiththecompetencedescrip-tionofthePSMfromFig.1.WethereforedonotgiveaseparatecompetencedescriptionfortheabovePSM.Below,wewilluse ltercswhenwemeanthecompetenceofthefilter#program.2
UseofKIV:TheKIVinteractiveveri erfordynamiclogic[18]wasusedtoautomat-icallygeneratetheproofobligationsthatarerequiredtoshowtheterminationofthePSMfromFig.1anditscorrectnesswithrespecttoitscompetencedescription(whichisequaltothepredicateoutputfromformula(1)).BothproofobligationswereprovenintheKIVsystem.Theterminationproofconsistedof16proofstepsofwhich8wereautomatic,thecorrectnessproofrequired67proofsteps,ofwhich38wereautomatic.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
3AnytimeProblemSolvers:PSMswithboundedrun-TimeInthispaperwearestudyingthedynamicpropertiesofKBSs.InthissectionwewillstudyananytimePSM,sinceforsuchaPSMtheanalysisofitsdynamicpropertiesareofcentralimportance.Rememberthatananytimealgorithmgraduallyapproachestheperfectsolution,andcanbeinterruptedatanymomentwhennomorecomputationtimeisavailable,atwhichpointthecurrentlyavailablesolutionisreturned.
WewillbeinterestedindynamicpropertiesofthisPSM,suchasitsbehaviourwhenrun-timeincreases,andthegradualconvergenceoftheanytimebehaviourtotheoptimalsolution.
3.1OperationalisationofananytimePSM
Ouroriginalprogramfilter#returnedthesubsetofallcorrectelements(solutionclasses)ofagiveninputset(candidateclasses)andwassoundandcompletew.r.t.itscompetencedescription.Butthisisonlytrueundertheassumptionthatitcanhaveallthetimeitneedstocomputeitsoutput.Withthisinmindwecanadjustourprogramtoanotherprogram,whichwewillcall lter-bounded,whichgetsanintegerasadditionalparameter.Thisintegerwillbeaboundonthenumberofstepstheprogramcandoandcanbeinterpretedasaboundontheprogramrun-time.
ThisadditionalparameternmakesthisPSMintoananytimealgorithm:themethodreturnsasensibleapproximationofthe nalanswer,evenwhenallowedonlyalimitedamountofrun-time(i.e.whenthetime-boundissmallerthanthenumberofclassesthatmustbeconsidered).Theprogramterminateswhennreacheszeroandndecreasesbyoneineveryrecursivecall,andisshowninthe gurebelow.Wehaveindicatedthedifferenceswiththeoriginalcodeofthefilter#program.Thesedifferencesareonly:anadditionalparametern,whichisdecreasedineveryrecursivecall,plusanadditionaltestonn0toprematurelyendtherecursion.
filter-bounded#(cs,n;varoutput)
begin
//elseifcs=0n=0thenoutput:=0
varcandidate=select(cs)in
ifcorrect(candidate)then
begin
candidate,n-1;output);filter-bounded#(cs
output:=insert(candidate,output)
end
else
filter-bounded#(cscandidate,n-1;output)
end
Fig.2.Anytimeversionofthelinear lteringPSM
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
3.2CompetencedescriptionofananytimePSM
WewillnowgiveadeclarativedescriptionofthecompetenceoftheanytimePSMde-scribedabove.Inthiscompetence-description,wewillmakeuseofthecompetence-descriptionforthenon-anytimeversiongivenaboveinformula(1).
lter-boundedcs0
lter-boundedcsn
lter-boundedcsn lter-boundedcsn/0 lter-boundedcsn11 lter-boundedcsn1 lter-boundedcsn(3)(4)(5)
1
csn lter-boundedcsn ltercs(6)Axiom(3)statesthat lter-boundedreturnstheemptysetwhenitgetsnocomputationtime.Axiom(4)statesthattheoutputsetof lter-boundedcanonlyincreasemono-tonicallywithincreasingrun-time.Axiom(5)statesthatthenumberofoutputclasses
)increasesbyatmostoneelementifweallowonemore(indicatedbythefunction
computationstep.Finally,axiom(6)statesthatifthenumberofallowedcomputationstepsisatleastaslargeasthenumberofcandidateclasses,then lter-boundedisiden-ticalto lter.
Observethatallaxiomsarenecessarytocharacterizethefilter-bounded#pro-gram.Omittinganaxiomwouldallowunwantedbehavior.Twosimplecounterexamplesaregivenasfollows:
filter-bounded#(cs,n;varoutput)
begin
filter#(cs;output)
end
filter-bounded#(cs,n;varoutput)
begin
/output:=0
end
Neitheroftheseprogramshaveanytimebehaviour.Theleftprogram(whichsimplycallsthenon-anytimeversionoftheprogram)satis estheaxioms(4),(5)and(6)andtherightprogram(whichalwaysreturnstheemptyset)satis estheaxioms(3),(4)and
(5),butbothviolatetheremainingaxiom.Similarcounterexamplescanbefoundfortheothercases.
UseofKIV:Theterminationoffilter-bounded#anditscorrectnesswithrespecttoaxioms(3)–(6)wereallproveninKIVwiththefollowingstatistics:terminationwasprovenin16steps,ofwhich8wereautomatic;axiom(3)onlytook3steps,axioms
(4)–(6)tookaround80stepseach,withanautomationdegreeofaround30%3.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
3.3Anytimeproperties
ThePSMspeci edabovedoesindeedhaveanumberofpropertieswhicharetobeexpectedofareasonableanytimealgorithm.WehavestatedandprovenanumberofsuchpropertiesinKIV,andwewilldiscussthesepropertiesbelow.
Firstofall,noticethataxiom(6)abovecanbeinterpretedastheadapter[8]thatisrequiredtobridgethegapbetweenthegoaldescriptionfromformula(1)andthecompetenceoftheanytimealgorithm.Since ltercsoutputcs,axiom(6)statesthat lter-boundeddoesindeedachievetheclassi cationtaskundertheassumptionofsuf cientrun-time(namelynatleastaslargeasthenumberofclassesthatmustbechecked).
Twootherpropertiesare
lter-boundedcsnn
Thisstatesthatthenumberofelementsintheoutputsetisboundedbythenumberofcomputationsteps,and
n ltercs lter-boundedcsn ltercs
Thisstatesthatgiveninsuf cienttime,theanytimealgorithmalwayscomputesonlyastrictsubsetoftheclassicalalgorithm.
UseofKIV:BothpropertieswereproveninKIVwiththefollowingstatistics:the rstpropertywasprovenin14steps,ofwhich8wereautomatic;thesecondpropertywasprovenin45steps,ofwhich28wereautomatic.
PropertiessuchastheseguaranteethatthePSMdoesindeedbehaveinadesirableanytimefashion,graduallyapproachingtheidealcompetencewhenrun-timeincreases.TheaboveresultsshowthatitispossibletouseDynamicLogictobothspecifyandimplementsuchanytimebehaviour,andtoprovetherequiredpropertieswithinthislogic.
Noticethatallofthesepropertiesareformulatedintermsofthedeclarativecom-petenceoftheanytimePSM(thefunction lter-bounded,speci edinaxioms(3)–(6)).Sincewehaveproventhecorrectnessoftheoperationalisationfilter-bounded#withrespecttothiscompetence,allofthesepropertiesarealsoguaranteedfortheoperationalbehaviour.
3.4GeneralapproachtospecifyinganytimePSMs
Inthissubsectionwewillsuggestamoregeneralcharacterizationofprogramswithaboundontheircomputationtime.Ifwelookatthe4axiomsfromthe lter-boundedspeci cationwecan ndthefollowingunderlyinggeneralconditions:
–
–
–
–axiom(3):startcondition,axiom(4):growthdirection,axiom(5):growthrate,axiom(6):endcondition.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
The rstconditiondescribesthestartoftheprogram.Forthefilter-bounded#programthiswasjustoneaxiomwhichstatedthattheprogramreturnedtheemptysetwhengivennocomputationtime.Otherversionsofthisaxiomarealsopossible.Asanexample,consideraclassi cationalgorithmthatworksbygraduallyeliminatingincorrectclassesfromthelistofcandidates(insteadofgraduallyaddingcandidates,asourcurrentalgorithmdoes).Suchanalternativealgorithmwouldreturntheentiresetofcandidateswhengivennocomputationtime,insteadoftheemptysetasourcurrentalgorithmdoes.
Theconditionsongrowthdirectionandgrowthratestatewhathappenswhentheprogramisallowedoneadditionalcomputationstep.Again,otheralgorithmsmightsatisfydifferentvariationsoftheseconditions,forexampleacandidateeliminational-gorithmwouldhaveadecreasingoutputwithincreasingcomputationtime.
Finally,thefourthconditionstatesthat,givensuf cientcomputationtime,thepro-gramwillcomputeexactlythedesiredoutput.
Furthercase-studiesarerequiredtodetermineifthisgeneralpatternisindeedap-plicabletothespeci cationofmore(andperhapsall)anytimePSMs.
4WritingHistory
The rstcasestudywasconcernedwithaparticularclassofalgorithmswithinterestingdynamicbehaviour(namelyanytimealgorithms).OursecondcasestudyisconcernedwiththecontrolknowledgeofKBSs.Asarguedintheintroductionofthispaper,controlknowledgeisatypeofknowledgethatischaracteristicforaKBS.
Inthissectionweadapttheoriginalprogramfilter#fromFig.1,suchthatweencodethesequenceofsomeexecutedstepsexplicitlyinatraceofthealgorithm.Thistraceisanoutputparameteroftheslightlyadaptedprogramfilter-trace#.Weshowhowwecanusesuchatraceforprovingpropertiesofaprogram.Assimpleexampleofadynamicpropertyoffilter#weusetheorderinwhichthecandidateclassesareselectedbythePSM.
AsalreadyannouncedinourmotivationinSect.1,thesepropertiesarefunctionalpropertiesoftheadaptedprogram,butdynamicpropertiesoftheoriginalprogram.
4.1OperationalisationofaPSMextendedwithatrace
Again,westartfromtheoriginalprogramfilter#(Fig.1).Theslightlyadaptedver-sionoffilter#isournewprogramfilter-trace#inFig.3.Thisprogramhasanadditionaloutputparameter,namelyalistofclasses.Thislistre ectstheorderinwhichtheclassesaretestedbythePSM.Ifaclassc1isselectedbeforeaclassc2,thenthisisencodedintheorderoftheelementsinthelist.Theonlydifferenceswithrespecttotheoriginalfilter#programaretheextraparametercalledtraceandastatementthataddstheselectedclasstothetrace.
Previously,theonlyrequirementontheclass-selectionstep(select)wasthatitdidindeedselectoneoftheavailableclasses(axiom(2)).Inordertoincorporatesomemeaningfulcontrolknowledgeinthealgorithm(aboutwhichwewanttoproveproper-tiesbyexploitingtheencodedtrace),weplaceanadditionalrequirementontheselect
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
filter-trace#(cs;vartrace,output)
begin
/thenifcs=0
/;trace:=nilendbeginoutput:=0
else
varcandidate=select(cs)in
begin
ifcorrect(candidate)then
begin
filter-trace#(cscandidate;trace,output);
output:=insert-class(candidate,output)
end
else
begin
filter-trace#(cscandidate;trace,output);
end
trace:=candidate::trace
end
end
Fig.3.Versionofthelinear lteringPSMwhichcomputesatrace
function,namelythattheclassesoftheinputareselectedusingaheuristicfunctionwhichselectstheclasswiththehighestheuristicvalue.
ccsmeasurecmeasureselectcs
Theadaptedfilter-trace#programhastwooutputparameters:traceandoutput.However,inaspeci cationafunctioncanonlyreturnoneoutput.Thistechnicalobsta-clecanbeavoidedbyintroducingtwoauxiliaryprograms:oneprogramforreturningthetraceparameter,andoneforreturningtheoutputparameter.Thetrivialimple-mentationoftheseauxiliaryprogramsisasfollows:
filter-trace-1#(cs;varoutput)
begin
vartrace=nilin
filter-trace#(cs;trace,output)
end
filter-trace-2#(cs;vartrace)
begin
/invaroutput=0
filter-trace#(cs;trace,output)
end
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
4.2CompetenceofPSMextendedwithatrace
Theprogramfilter-trace#performsthesametaskastheoriginalfilter#pro-gram,inthesensethatthesamesolutionswillbecomputed(theoutputparameter).Furthermorethemodi edprogramproducessomeextracontrolknowledgeinformationinthetraceparameter.
Asresult,thecompetencespeci cationoffilter-trace#containstheaxiomsofthespeci cationofthefilter#programplussomeadditionalaxiomstospecifythetraceparameter4:
ltercs lter-trace-1cs
ccsin-listc lter-trace-2cs
lter-trace-2csc1::clin-listc2clmeasurec2
lter-trace-2csc1::cl lter-trace-2csc1clmeasurec1(7)(8)(9)
(10)
Axioms(7)speci esthattheoriginaloutputwillnotbeaffectedbytheintroductionofthetrace.Axiom(8)statesthatthetraceconsistsonlyofclassesthatweregivenintheinput.Axioms(9)and(10)specifythattheelementsinthetraceareordered:ifaclassc1precedesclassc2inthetrace,thenwemusthavethattheheuristicvalueofc1isgreaterthanorequaltothatofc2.
UseofKIV:Again,theterminationandcorrectnessofthefilter-trace#programhasbeenprovenwithrespecttothiscompetence:
–
–
–
–
–terminationin20stepsofwhich12automatic;axiom(7)in75steps(42automatic);axiom(8)in99steps(58automatic);axiom(9)in37steps(21automatic);axiom(10)in30steps(21automatic).
These gurescon rmtheabovementionedstatisticof30%proof-automationbyKIV.Noticethatthetraceaxioms(9)–(10)werenothardtoverify,becausetheyre ecttherecursivenatureoftheprogram,andlendthemselvestorathereasyproofsbyin-duction.However, ndingtheseaxiomswasquitedif cult.Weconsideredanumberofalternativeformulationsoftheseaxioms.Althoughthesealternativeformulationswerealllogicallyequivalent,theydidnotre ectasnicelytherecursivenatureofthefilter-trace#program,andwerethereforemuchhardertoprove.
Weconsiderthistobeageneraltrade-off.Ontheonehandwewouldlikecompe-tenceformulationstobeasindependentaspossibleoftheimplementation(leadingusinthedirectionofnaturalspeci cationswhicharehardtoprove).Ontheotherhand,thecompetenceformulationswhichareeasytoproveareoftenveryunnatural,exactlybecausetheyre ecttoomuchoftheimplementation.Inourexperience,thecompetenceformulationswhicharebothnaturalandstilleasytoproveareoftenhardto nd.
Twopointsremaintobenoticedconcerningtheabovecompetencespeci cationof lter-trace: rst,thedynamicbehaviouroftheoriginalfilter#programhasindeed
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
beenspeci edasafunctionalpropertyofthefilter-trace#program.Secondly,thespeci cation lter-trace“inherits”theentireoriginalspeci cationof lterbyvirtueofaxiom(7).Thisensuresthatwhenmodifying lterto lter-traceinordertocapturethedynamicbehaviour,wehavenotinterferedwiththesolutionsetoftheoriginalprogram.
4.3Generalapproachtospecifypropertiesofcontrolknowledge
Fromthecase-studyofthepreviousparagraphswecanagaindistillageneralpatternfordealingwithdynamicpropertiesconcerningcontrolknowledge.Givenacompetencespeci cationandanoperationalisationofaPSM,thestepsinvolvedinformulatingandprovingsuchdynamicpropertiesareasfollows:
1.Choosethe“tracesemantics”:Firstofall,wemustofcoursedecidewhichaspectsofthecontrolknowledgemustbecaptured.Inourexamplethisconcernedtheuseoftheheuristicfunctionindeterminingthesequenceofcandidateclasses.Anotherpossibilityintheabovewouldhavebeentorestrictthetracetoonlythesequenceofsolutionclasses(insteadofthesequenceofallconsideredcandidateclasses).Alternatively,wecouldhavechosenamorere nedtrace,forinstancemodellingforeveryfailedcandidateclasstheobservationsthatcausedittobeexcludedfromthe nalsolution.Ingeneral,the“grainsize”ofthetraceisoneoftheimportantchoicesthatmustbemade.
Asecondchoiceconcernstheorderingofthetrace.Inourexamplewehavechosentomodelthesequenceoftheintermediatestates.Analternativechoicewouldhavebeentoabstractfromthesequenceoftheintermediatestates,treatingallhistoriesthatgothroughthesamesetofstatesasequivalent.Thislatteroptionwouldhavepreventedusfromstating(letaloneproving)therequiredpropertyexpressedinaxiom(9)-(10).Thisillustratesthatingeneral,thesechoicesaredeterminedbythedynamicpropertiesthatonewouldliketoprove.
2.Introduceadditionaloutputparameter(s)forthetrace:Thesemanticchoicemadeinthepreviouspointmustbeencodedsyntacticallybymodifyingtheoriginalprogram.Thisamountstoaddingcodetotheoriginalalgorithmplusadditionaloutputparameterstoreturntheresultsofthisextracode.Inourexample,theboxedlineinFig.3re ectsthedecisiontomodelonlytheclass-selectionstep.Thechoiceofmodellingthehistory-sequenceisre ectedbytheuseofalistforthetraceparameter(insteadofaset).
3.Introduceauxiliaryprogramsforadditionaloutputparameters:Asexplainedabove,auxiliaryprogramsareneededtoside-stepthetechnicallimitationsthatspeci cationsareexpressedinfunctionalterms,andthereforeallowonlyoneout-putparameter(inourexampletheprogramsfilter-trace-1#and-2#).
4.Introduceconservationaxioms:Newaxiomsarerequiredtoenforcethattheorig-inaloutputwillnotbeaffectedbytheadditionalcode(axiom(7)above).
5.Introducebehaviouraxioms:Asa nalstep,addaxiomsthatrepresentthedy-namicpropertiesoftheoriginalprogram.Inourexamplethesewereaxioms(8)–
(10):theoriginalfilter#programconsidersthecandidateclassesindecreasingorderoftheirheuristicvalue.Thispropertyisexpressedasafunctionalpropertyofthemodi edprogramfilter-trace#.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
5Discussion,summaryandconclusion
5.1Discussionofourapproach
Encodingdynamicpropertiesasfunctionalproperties.ThelimitationofDynamicLogicthatanytwoprogramswiththesameinputandoutputstatesareequivalentforcedustoencodedynamicpropertiesofoneprogramasfunctionalpropertiesofamodi edprogram.
Ourexperienceswiththisencoding“trick”inDynamicLogichavebeensurpris-inglypositive.Theoriginalstructureoftheprogramcouldeasilybepreservedwhilemakingtherequiredmodi cations:thedifferencesbetweenthemodi ingtheproof-reusefacilitiesofKIV,manyoftheterminationandcorrectnessproofscouldbeobtainedrathereasily.AutomaticPSMtransformations.Infact,thedifferencesinprogramcodearesosmallthatonecouldeasilyimagineanautomatictransformationfromtheoriginalprogram(Fig.1)totheadjustedanytimeandtracingprograms(Figs.2and3).Furthermore,itshouldbenottoodif culttoprovesomemeta-theoremsthatsuchtransformationsarecorrectnesspreserving5,therebyobviatingtheproofobligationsforthemodi edprograms.
UsingDynamicLogic.InsteadofDynamicLogic,wecouldhavechosentouseanalternativelogicinwhichwecouldhavedirectlyexpressedthedynamicpropertiesinwhichweareinterested.Inparticular,languagessuchasTR[2]andTROLL[16],andlanguageswithatemporalsemanticslikeDESIRE[27]andMETATEM[13]haveatrace-semantics,inwhichprogram-equivalenceisdeterminednotjustbypairsofinput-outputstates,butbytheentirebehaviouraltraceoftheprogram.Weseeanimportanttrade-offhere.Ontheonehandsuchtrace-logicswouldseemtorequirenoadditionalencodingdynamicinformation.However,thisisonlythecaseifthetrace-semanticsprovidedbythelogicisexactlywhatisneededtoexpressthespeci cpropertiesofinterest.Ontheotherhand,logicssuchasDynamicLogicrequireadditionalencodingeffort,butatthesametimethisallowsustodetermineexactlywhichdynamicinformationisrequired.Thus,thetrade-offisbetweeneaseofuseand exibility.
Non-terminatingprograms.Apotentiallyseriouscritiqueisthatwecanonlydealwithterminatingprograms,sincenon-terminatingprogramsdonotgiverisetoanoutputstate.Importantexamplesofsuchnon-terminatingprogramsareagent-systems,andKBSapplicationssuchasmonitoring.Apossiblewayaroundthisproblemresemblesourapproachtoanytimealgorithms.Insteadofdealingwithanon-terminatingprogramα,wewouldprovepropertiesaboutamodi edprogramαnthatterminatesafternsteps.Ifwecanthenprovethatthispropertyholdsforarbitraryvaluesofn,wecanthinkofαasrunningforanarbitrarilylongtime.Ineffect,wehavereplacedthenotionofin niterun-timewiththatofarbitrarilylongrun-time.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
ToynatureofourPSMs.Ourexamplesareunrealisticallysmall,andcannotbeusedinrealisticapplications.Forexample,inmulti-classclassi cation(whereananswerscontainsnclasses,insteadofjustone),thenumberofanswer-candidatesgrowthsex-ponentiallywithn.Insuchacase,ourlinear lteringPSMwouldnotbeveryattractive.Nevertheless,webelievethatthesameresultsaspresentedinthispapercanbeobtainedformorerealisticPSM’s.Wearecurrentlyworkingonobtaininganytime-resultsforacollectionofmorerealisticmethodstakenfromastandardKBStextbook[21]
5.2EvaluationofKIV
Ourcase-studywasnotmeantasaseriousevaluationstudyofKIV.Nevertheless,ourexperienceswithKIVhavebeenquitepositive,forthefollowingreasons.Firstly,KIVallowsthehierarchicaldecompositionofthesoftwaresystem(bothspeci cationsandimplementations).Thisachievestheusualadvantagesofmodularity.Furthermore,KIVallowsustoprovepropertiesofhigherlevelfunctionsandprograms(suchfilter#)withouthavingtoprovideimplementationsoflowerlevelprograms,suchasinsertwhichisusedbyfilter#.Instead,onlyaspeci cationoftheselower-levelfunctionsisrequired,abstractingfromtheirimplementationdetails.
Secondly,KIVperformscorrectnessmanagement,keepingtrackofwhichproofsaredependentonwhichothers(theso-calledlemma-graph).KIValsokeepstrackofwhichproofobligationshavealreadybeenful lledornot,takingthesedependenciesintoaccount.Furthermore,itcalculateswhichproofsmustberedonewhenpartsofspeci cationsandimplementationsarechanged.
Thirdly,KIVisveryuser-friendlyandeasytolearn(certainlyincomparisonwithotherinteractivetheoremprovers).Importantfeaturesareitsgraphicaluser-interface(e.g.proofsdisplayedastrees,whichcanbeusedforproof-navigation,proof-replayandre-use,proof-cut-and-paste),itsuseofnaturalmathematicalnotationinbotheditinganddisplayingformulae,andtheproductionofpretty-printedspeci cations,programsandproofs.
5.3Summaryandconclusions
Inthispaperwehaveshownhowdespiteitslimitations,DynamicLogiccanbefruitfullyusedtoexpressandprovedynamicpropertiesofproblemsolvingmethods.Thiscouldbedonebyencodingdynamicpropertiesofthesemethodsasfunctionalpropertiesofslightlymodi edmethods.Thesemodi cationsweresmallandsystematic,sothattheadditionalencodingeffortremainedsmall.
Wehaveillustratedourapproachintwocasestudies.Inthe rstweprovedany-timebehaviourofasimplelinear lteringmethod,andinthesecondweanalyseditsbehaviourduringcomputationwhenaheuristiccandidate-selectionfunctionwasem-ployed.
Alltheproofobligationsforthesemethods(termination,correctness,dynamicbe-haviour)havebeenful lledviamachineassistedproofsusingtheKIVinteractiveveri- erforDynamicLogic.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
Finally,forbothcasestudieswehavesuggestedageneralapproachthatcouldbeappliedtootherproblemsolvingmethodsinordertoobtainthesameresultsforthosemethods.
References
References
1.J.S.Aikins.Representationofcontrolknowledgeinexpertsystems.InProceedingsofAAAI’80,pages121–123,1980.
2.A.J.BonnerandM.Kifer.Transactionlogicprogramming.InProceedingsoftheTenthInternat.Conf.onLogicProgramming(IPLP’93),pages257–279,1993.MITPress.
3.B.Chandrasekaran.Generictasksinknowledgebasedreasoning:Highlevelbuildingblocksforexpertsystemdesign.IEEEExpert,1(3):23–30,1986.
4.W.Clancey.Theadvantagesofabstractcontrolknowledgeinexpertsystemdesign.InProceedingsofAAAI’83,pages74–78,1983.1983.
5.F.Cornelissen,C.Jonker,positionalveri cationofknowledge-basedsys-tems:acasestudyfordiagnosticreasoning.InE.PlazaandR.Benjamins,editors,Pro-ceedingsofEKAW’97,number1319inLectureNotesinArti cialIntelligence,pages65–80,1997.Springer-Verlag.
6.T.DeanandM.Boddy.Ananalysisoftime-dependentplanningproblems.InProceedingsofAAAI’88,pages49–54,1988.
7.D.Fensel.TheKnowledge-BasedAcquisitionandRepresentationLanguageKARL.KluwerAcademicPubblisher,1995.
8.D.FenselandR.Groenboom.Asoftwarearchitectureforknowledge-basedsystems.TheKnowledgeEngineeringReview,1999.Toappear.
9.D.Fensel,R.Groenboom,andG.R.RenardeldeLavalette.Modalchangelogic(MCL):Specifyingthereasoningofknowledge-basedsystems.DataandKnowledgeEngineering,26(3):243–269,1998.
10.D.FenselandA.Sch¨ingKIVtospecifyandverifyarchitecturesofknowledge-
basedsystems.InProceedingsofthe12thIEEEInternationalConferenceonAutomatedSoftwareEngineering(ASEC’97),1997.
11.D.FenselandA.Sch¨onegge.Inverseveri cationofproblem-solvingmethods.International
JournalofHuman-ComputerStudies,49:4,1998.
12.D.FenselandR.Straatman.Theessenseofproblem-solvingmethods:Makingassumptions
forgainingef ciency.InternationalJournalofHuman-ComputerStudies,48(2):181–215,1998.
13.M.FisherandM.Wooldridge.Ontheformalspeci cationandveri cationofmulti-agent
systems.InternationalJournalofCooperativeInformationSystems,6(1):37–65,January1997.WorldScienti cPublishers.
14.D.Harel.Dynamiclogic.InD.GabbayandF.Guenthner,editors,HandbookofPhilosoph-
icalLogic,Vol.II,pages497–604.Reidel,Dordrecht,TheNetherlands,1984.
15.C.Jonker,J.Treur,positionalveri cationofagentsindynamicenvi-
ronments:acasestudy.InProceedingsofEuropeanV&VWorkshopatKR’98,june1998.
16.R.Jungclaus,G.Saake,Th.Hartmann,andC.Sernades.TROLL-alanguageforobject-
orientedspeci cationofinformationsystems.ACMTransactionsonInformationSystems,14(2):175–211,April1996.
17.V.R.Pratt.SemanticalconsiderationsonFloyd-Hoarelogic.InIEEESymposiumonFoun-
dationsofComputerScience,pages109–121,October1976.
Abstract. In this paper we study dynamic properties of knowledge-based systems. We argue the importance of such dynamic properties for the construction and analysis of knowledge-based systems. We present a case-study of a simple classification method for w
18.W.Reif.TheKIV-approachtoSoftwareVeri cation.InM.BroyandS.J¨ahnichen,editors,
KORSO:Methods,Languages,andToolsfortheConstructionofCorrectSoftware.SpringerLNCS1009,1995.
posingreal-timesystems.InProceedingsofIJCAI’91,
pages212–217,1991.
ponentsofexpertise.AIMagazine,Summer1990.
21.M.Ste k.IntroductiontoKnowledge-BasedSystems.MorganKaufmann,1995.
22.A.tenTeijeandF.vanHarmelen.Exploitingdomainknowledgeforapproximatediagnosis.
InProceedingsofIJCAI’97,pages454–459,1997.
23.J.TreurandTh.Wetter,editors.FormalSpeci cationofComplexReasoningSystems,Work-
shopSeries.EllisHorwood,1993.
24.P.vanEck,J.Engelfriet,D.Fensel,F.vanHarmelen,Y.Venema,andM.Willems.Speci-
cationofdynamicsforknowledge-basedsystems.InB.Freitag,H.Decker,M.Kifer,and
A.Voronkov,editors,TransactionsandChangeinLogicDatabases,volume1472ofLectureNotesinComputerScience,pages37–68.SpringerVerlag,1998.
25.F.vanHarmelenandJ.R.Balder.(ML)2:aformallanguageforKADSmodelsofexpertise.
KnowledgeAcquisition,4(1),1992.
26.F.vanHarmelenandA.tenTeije.Characterisingapproximateproblem-solvingbypartial
pre-andpostconditions.InProceedingsofECAI’98,pages78–82,1998.
27.I.A.vanLangevelde,A.W.Philipsen,andJ.Treur.Formalspeci cationofcompositional
architectures.InB.Neumann,editor,ProceedingsECAI’92,pages272–276,1992.
28.B.J.Wielinga,A.Th.Schreiber,andJ.A.Breuker.KADS:Amodellingapproachtoknowl-
edgeengineering.KnowledgeAcquisition,4(1):5–53,1992.
正在阅读:
Formally Verifying Dynamic Properties of Knowledge Based Systems05-22
建筑给水排水习题库介绍11-07
教你如何保护笔记本电脑(删除无用文件)08-05
小学生交通安全演讲稿 - 文明相伴,幸福相随(完整版)03-14
毛细管电泳法09-03
《大字阴符经》书法摹写帖使用示范03-07
小班语言活动小蛋壳教案反思05-06
- 1A new interface paradigm for motion capture based animation systems
- 2A new interface paradigm for motion capture based animation systems
- 3From Design to Integration of Transitic Systems A Component Based Approach
- 4A Framework for Role-Based Access Control in Group Communication Systems
- 5Measuring Similarity of Large Software Systems Based on Source Code Correspondence
- 6Dynamic Memory Model based Optimization Framework for Computation-intensive Signal Processi
- 7DCTC Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks
- 8Agent Based Maintenance for Modularised Case Bases in Collaborative Multi-Expert Systems
- 9LMI-based robust control of uncertain discrete-time piecewise affine systems
- 102011Consensus of linear multi-agent systems with reduced-order observer-based protocols
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Properties
- Verifying
- Knowledge
- Formally
- Dynamic
- Systems
- Based
- 浅议如何在小学低年级语文教学中引入作文指导
- 社会新闻的价值取向和采写技巧——兼评_中国新闻奖_部分获奖作品
- 会计手工做账和会计电算化做账的区别.34044862
- 基于朴素贝叶斯分类算法实现
- 剑桥雅思6第一套听力Section 3真题 + 解析
- 商业策划书主要作用及撰写技巧
- 略论俄罗斯军人保险制度的特点
- The role of polysemy in masked semantic and translation priming
- 大型设备吊装方案
- 2013年老年人保健实施方案
- PARTsolutions智能化零部件管理系统,三维CAD零部件数据资源平台
- 满忠芝四年级安全教育教案
- 学习胡锦涛总书记建党90周年“七一”讲话心得体会
- 利用ENVI软件处理遥感影像
- 《交通运输专业》综合考试试卷_二_
- 中山大学历年考博英语真题解析及题型分析(绝对干货)育明考博
- 党务例行公开制度
- 一年级数学下册《认识人民币》说课标、说教材
- 月光曲 第一课时 教学设计 教案 原创
- 小学数学应用题解题方法及例题:归一问题和归总问题