Orthogonal polynomial method and odd vertices in matrix models
更新时间:2023-08-21 03:51:01 阅读量: 高等教育 文档下载
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
9
9
9
1
g
Au
8
2
1
v
1
9
1
8
9
/9h
t
-
p
e
:hv
i
X
r
aORTHOGONALPOLYNOMIALMETHODANDODDVERTICESINMATRIXMODELSEttoreMinguzzi1DipartimentodiFisicadell’Universit`a,Pisa56100,ItalyandINFN,SezionediPisaAbstract.Weshowhowtousethemethodoforthogonalpoly-nomialsforintegrating,intheplanarapproximation,thepartitionfunctionofone-matrixmodelswithapotentialwithevenoroddvertices,oranycombinationofthem.1.IntroductionThemethodoforthogonalpolynomialsisapowerfultechniqueforthenonperturbativeintegrationofmatrixmodelsoverone[1]ormorematrices[2]inparticularwithevenpotential,i.e.withverticeswithanevennumberoflegs.Indeed,withevenpotential,thecalculationsim-pli esbothbecausetheintegralsarewellde nedand,asweshallsee,thenumberofequationsneededtosolvetheproblemissmaller.Ontheotherhandthemodelwithoddvertices,inparticularwithcubicverticesismorenaturalinanumberofproblems;e.g.inthedynamicaltriangulationmodelofquantumgravity,wheretherandomsurfaceisgivenbyapolyhedronwithtriangularfaces,theorderoftheverticesappearinginthedualgraphsisalwaysthree.Br´ezinetal.[3]solvedtheproblemwithcubicverticesusingthesaddlepointtechnique.Bessis[4]introducedanalternativemethod(theorthogonalpolynomialmethod)
whichtosomeextentappearsmorepowerfule.g.indealingwithma-trixmodelwithmorethanonematrixvariable[2].Inparticular,theorthogonalpolynomialmethodhasbeenprovedusefulinthetreatmentofacubicvertextwo-matrixmodel[5]inthecontextoftheIsingmodelonarandomplanarlattice.
Thepurposeofthispaperistoshow,inasystematicway,howtoextendtheorthogonalpolynomialmethodtoarbitraryvertices,bothevenandoddandanycombinationofthem.WeshallfollowthearticleofBessisetal.[1]generalizingsomeaspectstothecaseofoddvertices,inparticularweshallrecover,forthesimplestcaseofcubicvertices,theresultof[3]forsphericaltopology.Hopefullysuchatreatmentcanbeextendedtohighergenus.
Theuseofmixedverticese.g.cubicplusquarticvertex,allowsustowriteawellde nedi.e.convergent,partitionfunctionbyaddingtothecubicinteractionaquartictermwhichmakestheactionboundedfrom
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
2ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES
below,andthustheintegralgivingthepartitionfunctionwellde ned.Attheendonecantakethelimitwhenthecouplingconstantofthequarticvertexgoestozero.
Westartfromthepartitionfunction ZN(g)=dMe trS(M)(1)wheretheintegrationisoveranhermitianmatrixoforderNandwheretheactionisgiveningeneralby
1 S(M)=
jNj
Ni
ZN(0)=∞ h=0N2 2heh(g)(4)
where2 2histheEulercharacteristicoftheorientedribbongraphstobesummedintheperturbativeexpansionofthefunctionseh(g).Indeed,denotingsuchgraphswithcapitalletters,eachfunctionehadmitsthefollowingexpansion[1]
vi(G) igie
h
(g)=
Gconnectedofgenush
Anautomorphismofanorientedribbongraphisde nedinthefollowingway.Firstletusidentifytheorientedribbongraphasacommongraphplusacyclicorderingonthesetsofhalf-edgesattachedtoeachvertexandthende neanau-tomorphismoftheorientedribbongraphasanautomorphismofthegraphwhichleavestheorderingofeachvertexunchanged.It’sclearthattheautomorphismmustsendeachvertexintoavertexofequalvalence.2
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES3Figure1.Secondandfourthorderconnectedgraphs
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
4ORTHOGONALPOLYNOMIALMETHODANDODD
VERTICES
Figure2.Firstandsecondorderconnectedgraphs
withquarticvertex.
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES5
2.Themethodoforthogonalpolynomials
Achangeofintegrationvariablesin(1)leadsustotheintegrationovertheeigenvaluesλiofthediagonalmatrixλ trS(M)2 iS(λi)ZN(g)=dMe=kHdλi (λ)e(6)where (λ)=α<β(λβ λα)istheVandermondedeterminant.WeobtainthevalueoftheconstantkHusingtheresultsin[6]:kH=
.AsweseetheargumentoftheintegralistheproductoftheVandermondedeterminantsquaredandafactorizablefunctionoftheeigenvalues,thisfeaturemakestheorthogonalpolynomialmethodapplicable.Letusintroducethemeasuredµ(λ)=dλe S(λ),andtheorthogonalpolynomialsPn(λ)
+∞
dµ(λ)Pn(λ)Pm(λ)=hnδnm(7)j=1π N2 N iNj!
∞
wherePn(λ)isnormalizedbytheconditionthatthecoe cientofthetermwithhighestdegreeequals1
Pn(λ)=λn+....(8)
ThepolynomialsPn(λ)canbeobtainedinaconstructingwaye.g.bytheGram-Schmidtorthogonalizationprocedurefromthemonomials1,λ,λ2,....Asimpleanalysisofthisprocedureshowsthatthepolyno-mialsPjhavethewellde nedparity( 1)jiftheactionS(λ)iseven.Everypolynomialofdegreencanberewrittenasalinearcombina-tionofPmwithm≤n.TheVandermondedeterminantin(6)canberewrittenas
j 1 =det λi =det Pj 1(λi) = σ( 1)p(σ)N iPσ(i) 1(λi)(9)
wherethesecondequalityisduetothefactthataddingtoacolumnalinearcombinationoftheothercolumnsdoesnotchangethedetermi-nantofthematrix;( 1)p(σ)standsforthesignofthepermutationσ.Wecantakeadvantageofthecouplingoftheorthogonalpolynomialsdue 2in(6)toobtainthepartitionfunctionintermsofthenormoftheorthogonalpolynomials
N dµ(λi)Pσ1(i) 1(λi)Pσ2(i) 1(λi)( 1)p(σ1)( 1)p(σ2)ZN(g)=kH
σ1,σ2
=kH
σ1,σ2 i( 1)p(σ1)( 1)p(σ2)δσ1σ2 ihσ1(i) 1=kHN!h0h1...hN 1.
(10)
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
6ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES
Letusrewritethisexpressioninadi erentform.Thefollowingequa-tionisvalid
λPn(λ)=Pn+1(λ)+AnP(λ)+RnPn 1(λ)(11)
wherethetermswithindexlessthann 1areabsentbecauseaftermoltiplicationbyλtheydonotreachthedegreenandthusareorthog-onaltoλPn.ForparityreasonswhenS(λ)isevenAnvanishes.WeshallrefertotheprecedingequationasthestepequationbecauseitsrepeatedapplicationenablesustocalculateλiPn(λ)usingananalogywithallpossiblestaircasesistepslong.Thismethodwillbedevelopedinthefollowing
hn+1= section.Sincedµ(λ)Pn+1λPn(λ)(12)
= dµ(λ)[Pn+2(λ)+An+1Pn+1(λ)+Rn+1Pn(λ)]Pn(λ)=Rn+1hnthepartitionfunctioncanberewrittenas
ZN(g)=kHN!hN0RN1 1...R2
N 2RN 1(13)
whereh0=dλe S(λ).BeforepassingtothelimitforlargeN,wemustcompute
E1
N(g)=Z=1Rn(g)
N(0)N lnNlnh0(g)
(G) FgViii
h0(0)=
Gconnected Nχ
2 1)≤ 1,wehave
1
(0)=O(N 2
h)(16)
whichvanishesforlargeN.Thus
e0(g)=1
Nlim→∞EN(g)=Nlim→∞N lnRn(g)
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES7
3.Thenumberofstaircases
iWeshallneed,inthefollowing,thequantitiesβnde nedby
ihnβn=dµ(λ)Pn(λ)λiPn 1(λ).(18)
Wedevotethepresentsectiontothecalculationoftheaboveintegral.TocomputeλiPn 1wetakeadvantageofananalogywithallstaircasesofisteps;whereeachstepcangoup,comedown,orstayatthesamelevel.Theanalogycomesfromarepeatedapplicationofthestepequation.Aftertheintegrationonlythestaircaseswhichendonestepup,contribute.Eachofthemrepresentsaproductoffactors:ifastepisdownfromlevelntotheleveln 1weadda
factorRn,andifitstaysatthesamelevelnweaddafactorAn.Figure3showsanexampleofthiskindofcalculation.Sinceeverycoe cientAj,Rj,isafunction
iFigure3.βncomputedfromthestaircases.
ioftheindexjitwouldbedi culttohandthe nalexpressionforβn;
luckily,asweshallsee,theplanarlimit(N→∞)willenableustoneglectthedi erencesamongthesequantitiesrelativetodi erentilevels.InthislimitwemustcomputetheexpressionforβnsupposingthateachstepdownyieldsafactorR,andeachstepthatstaysatthesamelevelyieldsafactorA.Thusthequestionis:Howmanyarethestaircasesofistepswhose nale ectistogouponestep?LetjbethestepsoftypeA,thentheotheri jaredividedinpstepsupandp 1steps downsothati=j+2p 1.WithouttheAstepsthere2p 1arepstaircasesof2p 1stepswhose nale ectistogouponestep.InsidethesestaircaseswewanttoinserttheremainingjlevelsoftypeA:thereare2p places wheretheycanbeinserted,and,fora xed2p+j 1staircase,therearechoices.Finallythenumberofstaircasesj
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
8ORTHOGONALPOLYNOMIALMETHODANDODDVERTICESofistepswhose nale ectistogouponestepis
[i+1
(i 2p+1)!p!(p 1)!,(19)
ithecontinuumwhere[]standsfortheintegerpart,and,denotingbyβivalueofβn,wehave
[i+1
i=β(i 2p+1)!p!(p 1)!Ai 2p+1Rp 1(20)
wherethetilderemindsthereplacementAj→A,Rj→R.Thevalues iforthe rstfewiareofβ
2=2Aβ
3=3A2+3Rβ
4=4A3+12AR.β
Analogouslywede ne
ihn+1γn=(21) dµ(λ)Pn+1(λ)λiPn 1(λ).(22)
iBythesametechniqueusedforβnwe nd
[i
γ i=
Finallywede ne(i 2p+2)!p!(p 2)!Ai 2p+2Rp 2.(23)
[i+1
i=β i Rγ i 1=δ i 1 Aβ(i 2p+1)!(p 1)!2Ai 2p+1Rp 1.
(24)
iforthe rstfewiareThevaluesofδ
3=A2+2Rδ
4=A3+6ARδ
5=A4+12A2R+6R2.δ
4.Derivationofthecontinuumequations
InthissectionweshallexaminethecontinuumlimitN→∞,whichwillallowustowriteasimpleexpressionforthegeneratingfunction(25)
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES9e2(g)oftheplanargraphs.ThiswillalsojustifythereplacementAj→A,Rj→Rusedintheprevioussection.Letusconsidertheidentity ′nhn=dµ(λ)λPn(λ)Pn(λ)
′=dµ(λ)Pn(λ)[Pn+1(λ)+RnPn 1(λ)+AnPn(λ)]
′=Rndλe S(λ)Pn(λ)Pn 1(λ)(26) =Rndλe S(λ)S′(λ)Pn(λ)Pn 1(λ)
=(1 k i=3i 1g¯iβn)hnRn,
whereinthelastbutoneequalitywehaveintegratedbypartsandiinthelastequalitywehaveusedthede nitionofβn.Thuswehaveobtainedthe rstrecursionrelation
n=(1 k i=3i 1g¯iβn)Rn.(27)
Fromthisequationweinferinparticularthat:Rn(0)=n.Wewantto ndasecondrecursionrelationwhichrelatesthecoe cientsAnandRn.Weobservethat:
′dλe S(λ)λPn(λ)Pndλe S(λ)Pn(λ)λS′(λ)Pn+1(λ)+1(λ)=
=(An+An+1 k i=3(28)ig¯iβn+1)hn+1.
But ′′dλe S(λ)λPn(λ)Pndλe S(λ)Pn 1(λ)Pn+1(λ)=nAnhn+Rn+1(λ)
=nAnhn+Rndλe S(λ)Pn 1(λ)S′(λ)Pn+1(λ)
=nAnhn hn+1Rn
Asaresult,thesecondrecursionrelationis
(An+An+1 k i=3ig¯iβn+1)Rn+1=nAn Rn+1Rnk i=3i 1g¯iγn.k i=3i 1.g¯iγn(29)(30)
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
10ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES
Now,weextracttheplanarcasetakingthelimitN→∞.Letusintroducethesubstitutionsn
NA →R(x)(32)n
N →A(x)(33)
toobtain,takingintoaccountthepowerofNcontaineding¯i,thetwocontinuumequations
x=R(x) 1 k
giβ i 1(x) (34)
i=3
A(x k
)=gi δi(x),(35)
i=3
whereβ i(x)andδ i(x)areexpressedintermsofA(x)andR(x)asgivenbyeqs.(20,24).One nds,fromeqs.(27,30),thatthecontinuoussolutionA(x),R(x),isrelatedtothecoe cientsAnandRnby
Rn
A +On N 1
N=A Nn
n(g)
N 1R,(37)
n(0)=R
andthefunctione0(g)can
e(g)= berewritten,inthelimitN→1
dx(1 x)ln ∞,asR(x)
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES11su ces.Thequarticcasecanbeexplicitlyintegrated[1]toobtain
∞ 1(2k 1)!e
(g4)=(3g4)k(a 1)(a 9)=24k=1
1 12g4
(k+1)!(k 1)!.(41)
Recallingtheformulaforthetopologicalexpansion(5),onehastheinterestingequation
1(42)k!(k+2)!Gplanar,connected,withkquarticvertices
thatcanbecheckedfork=1andk=2usingthecontentsof gure2.Theradiusofconvergenceis1/12andg4c=1/12isthecriticalpoint.Forg4→g4coneobtainsthecriticalbehavior
e0(g4)~(g4c g4)5
=1 2g3AR
2g3R=A g3A2.
22g3x+σ(1+σ)(1+2σ)=0.(44)Infact,letusintroducethenewvariableσ= g3Arelatedtoxby(45)
2Thefunctionσ(x)=σ¯(g3x)isthesolutionof(45)whichvanishesfor
x=0;indeedwheng3=0thepotentialhasnolongeroddverticesandthenA(x)=0 σ¯(0)=0.Ourfunctione0(g3)mayberewritten,goingoverfromthevariablextothevariableσandintegratingbyparts
e0(g3)= 1
dx(1 x)ln
10 R(x)1+2σ(46)
= 3(1+σ1)(1+2σ1)2
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
12ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES
2whereσ1=σ¯(g3)isthesolutionof
22g3+σ(1+σ)(1+2σ)=0,(47)
whichvanishesing3=0.σ1canbeexpressedasanexpansioninpowersofg3usingLagrangetheorem,obtaining (3k 1)12 .(48)σ1= (k+1)2
Exceptforsomefactors,due
todi erentde nitions,ourresultscoincidewiththoseofBr´ezinetal.[3].Thepowerexpansionseriesfortheplanargeneratingfunctionis
e0(g3)=1
Γ(k+3)Γ(k/2+1)(49)
and,recallingthetopologicalexpansionfore0(g3),wereachtheformula
1Γ(3k/2)
Gplanar,connected,with2kcubicvertices2
Γ(3k/2)
2
√√3)kk 127√
212
weconcludethatthecriticalexponentremainsunchangedfromthequarticcase.
In2D-Gravity,wherethecontinuumsurfacesarereplacedbypoligo-nalizations,sucharesultisacheckoftheindependenceofthepartitionfunction,inthelimitofin nitenumberofvertices,ofthekindofpolig-onalizationonechoosestoapproximatethecontinuumsurfaces[7].
6.Conclusions
Indealingwithmatrixmodelsusuallyoneencountersmatrixmodelswithevenpotentialsothequestionnaturallyarisesifthereissomeobstructiontotheoddvertexcase.Inthispaperwehaveshownthat,evenif,intheoddvertexcase,theoriginalpartitionfunctionisillde ned,themethodoforthogonalpolynomialscanbeoftenappliedinitsmostnaiveform,thatisignoringallconvergenceproblems.Thisisjusti edbyaddingaregulatingevenvertextotheoddone,andtakingeventuallythelimitforitscouplingconstantgoingtozero.Wehaveextendedtheorthogonalpolynomialmethodtoanycombinationofoddandevenvertices,writingthetwoneededcontinuumequation.Theexplicitapplicationtothecubicvertexcasehasbeengiven,recovering
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES13theresultofBr´ezinetal.[3].Anexplicitintegrationof3+4or5vertexcaseappearsfeasiblealongtheselinesandwouldbeausefulcheckoftheuniversalityofthecriticalbehavior.
Thegeneralsettingexplainedherecanbereadilydeveloped,intheplanarcase,alsofortwo-matrixmodelswithcouplingintheformoftheItzykson-Zuberformula[8,2],thecubiccasebeingalreadysolvedin[5].Furtherextensioncanbedevelopedinhighergenuscasese.g.inthecubiccaseforthetorustopology.
Acknowledgements
IamgratefultoP.Menottiforsuggestingthisproblemandforusefuldiscussions.
References
[1]D.Bessis,C.Itzykson,J.B.Zuber,Adv.Appl.Math.1(1980),109
[2]M.L.Metha,Commun.Math.Phys.79(1981),327
[3]E.Br´ezin,C.Itzykson,G.Parisi,J.B.Zuber,Commun.Math.Phys.59(1978),
35
[4]D.Bessis,Commun.Math.Phys.69(1979),147
[5]D.V.Boulatov,V.A.Kazakov,Phys.Lett.B126(1986),379
[6]M.L.Metha,RandomMatrices,NewYork,AcademicPress1967
[7]P.Ginsparg,G.Moore,Lectureson2DGravityand2DStringTheory,preprint
hep-th/9304011(1993)
[8]C.Itzykson,J.B.Zuber,J.Math.Phy.21(1980),411
正在阅读:
Orthogonal polynomial method and odd vertices in matrix models08-21
隐蔽工程验收记(新)03-08
采蘑菇作文500字07-14
自控原理习题解答汇总-201205-17
管理评审计划12-31
事业单位注销登记中的问题及对策03-13
好奇心作文600字02-04
各个年龄阶段消费心理调查报告05-03
12学前教育方向学生实习计划07-04
- 1Risk assessment models and uncertainty estimation
- 2Using the orthogonal array with grey relational analysis to
- 3Polynomial time approximation schemes for geometric k-clustering
- 4质量改进工具—矩阵图法(Matrix Diagram)
- 5Saskatchewan-Descriptive-Mineral-Deposit-Models 2011
- 6Automatic Tuning Matrix Multiplication Performance on Graphics hardware
- 7A Combining Method of Quasi-Cyclic LDPC
- 8《皇帝 龙之崛起》Models修改
- 9admm_slides_Alternating Direction Method of Multipliers
- 10Storage device performance prediction with CART models
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- Orthogonal
- polynomial
- vertices
- method
- matrix
- models
- odd
- 新苏教版一年级数学上册全套单元试题试卷
- 忠言无需逆耳语——谈批评学生的艺术
- 崂山可乐的广告策划与创意
- 中信银行股份有限公司关联交易管理办法
- 金融机构办理应收债权催收作业委外处理要点第三、四点修正
- 2011 微观经济学期末复习 (03版本)
- 高三一轮复习 选修5 第三节 醇 酚 醛学案
- 欧洲杯正规买球app-人教版-认识不等式--浙教版-
- 哈尔滨工业大学毕业论文开题报告范文模板
- 高一必修2英语单词测验Unit 1
- 2018年重庆邮电大学820广播电视艺术理论考研真题试题试卷
- 师德模范事迹汇报材料
- 大学生电子工艺实习总结2000字范文模板
- 计算机数据结构的知识点
- 青岛版2019-2020学年三年级下学期数学期中考试试卷B卷
- 开心部落资料
- 教育扩展对居民收入差距的影响分析
- 高二数学导数及其应用单元测试题
- 价格变动说明
- 内审实务标准(060410完整版)