葡萄逆境胁迫诱导启动子的克隆及其表达载体的构建 - 图文
更新时间:2024-01-13 23:39:01 阅读量: 教育文库 文档下载
- 植物逆境胁迫推荐度:
- 相关推荐
青岛农业大学 毕 业 论 文(设计)
题 目: 葡萄逆境胁迫诱导启动子的克隆
及其表达载体的构建
姓 名: 刘丽雪 学 院: 生命科学学院 专 业: 生物技术 班 级: 2007级4班 学 号: 20072833 指导教师: 薛仁镐
2010年6月17日
目 录
中文摘要···························································································································1 Abstract······························································································································2 1、引言······························································································································3 2、CAN启动子的克隆·······································································································5 2.1 材料····························································································································5 2.2 方法····························································································································5 2.2.1 组培培育葡萄幼苗·································································································5 2.2.2 DNA的提取·············································································································6 2.2.3 目的基因PCR扩增·································································································6 2.2.4 目的基因与T--A载体连接及产物转化································································7 2.2.5 重组质粒的提取及酶切鉴定·················································································8 2.2.6重组质粒测序鉴定···································································································9 2.3 结果与分析··············································································································10 2.3.1 DNA提取鉴定·······································································································10 2.3.2 PCR扩增结果········································································································10 2.3.3 质粒提取鉴定·······································································································11 2.3.4 双酶切鉴定···········································································································11 2.3.5 克隆启动子的序列分析·······················································································13 3、植物表达载体pBI1391Z- CAN的构建·····································································15 3.1材料····························································································································15 3.2方法····························································································································16 3.2.1植物表达载体pBI1391Z- CAN的构建·································································17 3.2.2植物表达载体pBI1391Z- CAN转入农杆菌·························································17 3.3 结果与分析··············································································································17 3.3.1 表达载体pBI1391Z- CAN的酶切鉴定·······························································17 4、农杆菌介导的烟草遗传转化及转基因植株分析·····················································18 4.1 实验材料··················································································································18
4.1.1 供试烟草品种·······································································································18 4.1.2 菌株与载体···········································································································18 4.1.3 培养基···················································································································18 4.1.4 主要生化试剂及其配制·······················································································18 4.2 试验方法··················································································································18 4.2.1 农杆菌活化及菌液制备·······················································································18 4.2.2 根癌农杆菌介导的烟草遗传转化·······································································19 4.3 结果··························································································································19 5、讨论与展望···············································································································20 致谢·································································································································21 参考文献·························································································································22
葡萄逆境胁迫诱导启动子的克隆及其表达载体的构建
生物技术 刘丽雪 指导教师 薛仁镐
摘要:本文以葡萄幼苗为材料,依据基因组序列,设计引物,以叶片基因组DNA为模板,利用PCR技术,对葡萄逆境胁迫诱导型启动子进行了扩增,获得了约1.35 kb的启动子序列,将启动子片段回收后连接到T载体,酶切鉴定结果表明,启动子构建到T-A载体,对重组质粒进行测序,结果表明,测序的启动子序列与预知序列只有少数碱基的差异,同源性达到97%,表明已克隆到葡萄启动子。将克隆到的启动子与pBI1391Z连接,转入大肠杆菌细胞, 提取质粒进行酶切鉴定。结果表明,植物表达载体构建完成并将其命名为pBI1391Z-CAN。将其转入农杆菌细胞内,并利用农杆菌介导法对烟草进行了遗传转化。葡萄逆境胁迫诱导型启动子的克隆对下一步抗逆调控分子机制研究及作物分子育种具有重要理论和实际意义。 关键词:逆境胁迫;启动子;PCR扩增;克隆;表达载体;
1
Cloning of Adversity Stress-Induced Promoter in Grapes
Student majoring in Biotechnology Lixue Liu
Tutor Name Ren-Gao Xue
Abstract: The 1.35 kb promoter of a gene was amplified by PCR technique using genomic DNA of grapes as template in this study. The fragment of promoter was then ligated to the T cloning vector and confirmed by digestion with endonuclease and sequencing. The results of sequencing showed that there were only a few differences between the sequencing promoter sequence and predicted sequence, homology of bases reached to 97%. The fragment of promoter was ligated to vector pBI1391Z and introduced into the E.coli cells, then the construct was extracted and confirmed by digestion with enzyme. The recombined plants express vector was named as pBI1391Z-CAN. The pBI1391Z-CAN was introduced into Agrobacterium cells, and then transformation of tobacco was done using Agrobacterium–mediated transformation method. Cloning of stress-induced promoter has important significance on molecular regulation mechanism of adversity and genetic breeding in crop. Key words: Stress tolerance;promoter;PCR amplification;Cloning;expression vector
2
1. 引言
葡萄(Vitis vinifera L.)在植物学分类中属于葡萄科(Vitaceae Lindley 或 Ampelideae Kunih)葡萄属(Vitis L.)的藤本浆果。葡萄科中有12个属,约600个种[1]。葡萄是最古老的被子植物之一,起源于欧、亚大陆和北美洲的连片地区。主要栽培类型则起源于中亚西亚一带,主要分布于世界的温带、亚热带、热带地区,主要野生于森林、山坡或河谷等地。葡萄科中只有葡萄属有较高的经济价值,并且得到广泛的栽培和较深入的研究。葡萄是一种营养价值较高的浆果,素有水果皇后的美誉,广泛应用于我们的日常生活中,它不但营养丰富、用途广泛:色美、气香,味可口,是果中佳品,既可鲜食又可加工成各种产品,如葡萄酒、葡萄汁、葡萄干等,而且果实、根、叶皆可入药,全身都是宝。是国际市场上重要的商品[1]。
长期以来,葡萄栽培面积和产量一直居于世界各类水果前列。全世界葡萄栽培面积以欧洲为最多,占68.0%;其次是亚洲,占17%;再次是美洲和非洲分别占 9.7%和 4.4%;最少的是大洋洲,仅占 0.9%。栽培面积的国家和地区大多集中在欧洲。在世界葡萄总产量中,约 80%用于酿酒,13%用食,其余约 7%用于制干、制汁等[2]。近几年,我国的葡萄生产发展速度非常快,产量已居世界首位。然而,我国的葡萄生产与全世界相比,存在产量低、果实品质差和育种落后等问题。生产上应用的主要品种打多是从国外引进的, 总体而言,中国葡萄的质量低、售价廉、效益不高是普遍和主要的,因此难以在国际果品市场上形成强有力的竞争优势和自己的特色 [2-3]。从长远来看,选育适合我国种植的抗逆性强、品质好,果实粒重大的新品种,是提高经济效益使我国葡萄生产产业化进一步发展的出路所在。
葡萄在我们的现实生活中已经成为最重要的水果之一。在世界范围内,绝大多数食用和酿酒葡萄都来源于一种被称为欧洲葡萄的亚欧葡萄。尽管这个品种的葡萄已培育了6000个不同的栽培品种,但他们都来源于同一祖先,因此其遗传可变性非常有限。这种葡萄大部分栽培品种易感染细菌、病毒、真菌,对不良环境的耐受能力和抵抗较差。葡萄在自然条件下的生长过程中不可避免地遭受到各种逆境因子如:干旱、低温、病虫害等的侵袭。经研究表明,选育具有良好抗逆性的葡萄品种已经是解决问题的关键[3]。
植物启动子RNA聚合酶特异性识别和结合的DNA序列。启动子是基因(gene)
3
的一个组成部分,控制基因表达(转录)的起始时间和表达的程度。启动子(Promoters)就像―开关‖,决定基因的活动。植物基因的转录起始位点通常位于翻译起始密码子(ATG)上游-40--70bp处,转录起始的保守序列为CTCATCA,中间的A为转录的起始点(编号为+1)[4]。启动子是确保基因转录精确而有效起始的一段DNA5’端的调控序列。启动子与RNA聚合酶Ⅱ以及其他反式作用因子的相互作用是基因表达的启动子调控模式的本质所在[5]。启动子决定着基因时空表达的特异性,目前通常采用分子生物学手段对生物反应器进行遗传改良,希望插入的外源目的基因能够限定在某一特定的组织或部位进行高效表达,在不影响该生物反应器其它特性的条件下,能集中在靶组织收集表达产物[6]。植物启动子由核心元件和上游元件构成,如TATA-box和起始因子(initiator)。在与逆境相关基因的启动子序列中还存在一些参与基因转录调控的与逆境诱导相关的顺式作用元件。由于信号测激雨具有转录活性的启动子称为诱导型启动子。该类启动子可以快速有效地诱导转录基因的―开、关‖:可根据需要在植物特定发育阶段、组织器宫或生长环境下接受诱导蕾号,诱导基因表达;也可以随时解除胁迫,停止表达[7]。
盐碱、干旱、极端温度(低温和高温)等是制约植物生产的主要逆境因子,逆境胁迫会使植物因缺少水分的供应而抑制植物的生长。解除盐碱、干旱、极端温度等对作物生产的约束,培育抗逆性高的作物品种,一直是各国科学家研究的焦点之一[8-15]。作物对极端环境的抵抗抗机理十分复杂,但现在科学研究对植物抗逆胁迫的机理认识还不够,利用传统的育种方法进行种内或种间得杂交等方法提高作物对逆境胁迫的抗性能力是有限的。随着植物分子遗传育种研究的发展,对与作物抗逆胁迫分子机理中与抗逆相关的位点进行分子标辅助育种[16],并利用作物在抗逆胁迫中产生的与作物产量相关的膜稳定性、生理生化代谢、渗透调节其它的一些调控基因对作物的抗逆性进行基因工程改良分子育种取得重大进步[17-18],但是由于作物对逆境的抵抗机制非常复杂,所以很难从整体上把全面掌握作物对逆境胁迫的抵抗机理,使得这些分子改良育种手段的利用未得到全面发挥。水稻、拟楠芥等基因组序列测序的完成,使科学家们进一步深入的认识到植物的基因组中仅有2%左右的基因序列编码mRNA从而翻译成蛋白质等生命物质,大部分的基因续写为内含子和重复序列[19],因而对编码基因序列及其功能的研究成为热点,
4
生命科学的研究进入了后基因组时代,即功能基因组时代。目前,对功能基因组的研究日益成熟,可以从整体上对作物的抗逆机理进行研究,为全面发挥分子标记辅助育种和转基因改良植物的抗逆性提供了新的理论基础和技术[20]。
2. CAN启动子的克隆 2.1 材料
将继代培养的葡萄幼苗用于总DNA的提取。
菌种和载体:大肠杆菌DH5α由本实验室提供,T-A载体购于TaKaRa公司。 酶及化学试剂:各种限制性内切酶SacⅠ、HindⅢ、均购于TaKaRa公司。其他所需药品均为分析纯。
2.2 方法
2.2.1 组培培养葡萄幼苗 1、 1/2MS生根培养基
1)根据培养基配方,分别加入下列溶液
混合液成分 大量元素(10×) 微量元素(100×) 铁盐(100×) 有机物(100×) CaCl2(50×) 2)加入蔗糖30g、肌醇0.1g。
3)加入IAA至终浓度为1mg/mL充分搅拌溶解后,定容至1L。 4)用1M NaOH或0.1M HCL调节pH值到5.8。 5)加入琼脂8g,煮沸溶解。
6)将培养基分装至20~23个培养瓶中封口。
7)将分装好的培养基置于高压蒸汽灭菌锅中121℃灭菌20min。
2、在超净工作台上把葡萄幼苗剪切带芽幼茎接到1/2MS生根培养基上进行培养,完成后放入恒温箱中保存,定期观察花生的生长情况,培养至幼茎生根发芽并发
加入体积(1L) 50 mL 10 mL 10 mL 10 mL 10 mL 5
育成小苗,即进行试验。 2.2.2 葡萄基因组DNA提取:
1) 新鲜叶片在液氮冷冻下加石英砂迅速研磨成粉末。
2) 加入500μL 65℃预热的CTAB和1%β-巯基乙醇5μL,65℃水浴20min,间隔混匀。
3) 加入等体积的氯仿抽提(去除掉细胞内的蛋白质,如与DNA结合的组蛋白),缓摇10min,混匀,12000r/min离心5min。
4) 剪枪头,取上清至新离心管中,加等体积的(约400μl)异丙醇,缓摇5min,静置5min(异丙醇的作用是用来沉淀DNA),10000rpm离心5min,弃上清。 5) 加入500μL 75%乙醇洗涤,倒掉乙醇,快速离心吸收(共洗2次)。 6) 加入200μL含有RNase的TE重悬沉淀, 37℃(金属浴)放置,20-30min。 7) 200μL苯酚/氯仿/异戊醇,混匀抽提,12000rpm离心5min。重复两次。 8) 剪枪头,取上清,二合一至新管中。
9) 加1/40体积NaAc(约35μL),2.5倍体积的无水乙酮(冰),约800μL混匀。 10) 12000rpm,离心5min。弃上清,75%冰乙醇洗涤,400-600μL,倒掉,快速离心吸干,静置7min。取适量的ddH2O溶解(50-100μL),取2μL电泳鉴定。 2.2.3 目的基因的PCR扩增 1 引物序列的设计
利用已知的基因序列找到其逆境胁迫诱导型启动子的序列并由此设计引物,设计的引物序列如下:
VVESTPF1: ACACTCGTCCCATCTCCCATC VVESTPR1: TCCAAGTCTTTCCTAGTTGCTC
2、以提取的葡萄基因组总DNA为模板,利用设计好的引物进行PCR扩增,以获得目的片段。 (1)反应体系
混合液成分 10×buffer(Mg2+) dNTP(2.5mM) 加入体积(25μl) 5μL 4μL 6
引物1 (20μM) 引物2 (20μM) LA Taq (5U/μl) DNA ddH2O Total (2) 反应程序:
0.5μL 0.5μL 0.25μL 6μL 11.25μL 25μL PCR扩增各个DNA片段的条件:扩增CAN启动子反应条件:94℃预变性5分钟,94℃变性40秒,57.3℃退火40秒,72℃延伸2分钟,30个循环后,72℃延伸10分钟,反应产物4℃保存。同时设置不加基因组DNA的空白对照。 3琼脂糖凝胶电泳检测PCR产物
1.0%的琼脂糖凝胶的制备:称取0.4g琼脂糖放在三角瓶中加入40mL TAE缓冲液,放入微波炉中加热至溶解,轻轻摇动几次,充分溶解,冷却至约55℃,加入4μL EB,摇动三角瓶,使加入的EB充分混匀,倒入准备好的制胶槽中,待其充分凝固。取6μL PCR产物加入1μL 6×loading buffer混合,点样于1%的琼脂糖凝胶中,同时点样 1kb Marker Labber,4μL,在电压100V条件下,电泳30min后在紫外检测仪上观察电泳结果,并拍照。 2.2.4 基因片段的回收
PCR 产物经琼脂糖凝胶电泳后,切下目的基因片段用凝胶回收试剂盒进行回收纯化。使用OMEGA柱式回收试剂盒,操作步骤如下: 1、 1) 2) 3) 2、 1) 2) 3)
层析柱的平衡:
在层析柱中加入200μL buffer GPS,室温放置3-5min 将层析柱12000rpm,离心2min
在层析柱中加入加700μL水,12000rpm离心2min,放置待用。 试剂盒进行回收纯化
取两个灭菌的EP管称量并标记。
将切下的含有目的基因片段凝胶放入离心管中,再次称量。 按每增加1g加1mLBinding Buffer的量等量加入Binding Buffer。
7
小片段和一条大片段时,启动子是以正义连接到载体上,而若得到约602bp片段和另一条大片段时,说明是反义载体。结果表明,即得到了正义(1号)和反义(2号)两个载体。
2.3.5 克隆的启动子序列测定:
为了进一步验证所克隆的启动子片段的正确性,将正义连接的载体送到公司进行了序列测定。
Query 1 TATTTGTTAAACATTTTTTATTATGAGTGGAACATAACAAATTTAGGAGTTGAAACTTTT 60 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1391 TATTTGTTAAACCTTTTTTATTATGAGTGGAACATAACAAATTTAGGAGTTGAAACTTTT 1332
Query 61 atttaaaGAGTGGTATAATTTTTAAAACAAAATCCGAAACTCGTCTTAATCTTGATTAAA 120 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1331 ATTTAAAGAGTGGTATAATTTTTAAAACAAAATCCGAAACTCGTCTTAATCTTGATTAAA 1272
Query 121 AGGCaaaaataatttttaaataaaatttatttcattttatatataatctaataacataat 180 ||||||||||||||||||||||||||||||||||||||||||| | |||||||||||||| Sbjct 1271 AGGCAAAAATAATTTTTAAATAAAATTTATTTCATTTTATATACATTCTAATAACATAAT 1212
Query 181 tttatttttcccaagaatttgtatttatgaattacatattttatatGTTGAAAGGTGAAA 240 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1211 TTTATTTATCCCAAGAATTTGTATTTATGAATTACATATTTTATATGTTGGAAGGTGAAA 1152
Query 241 ACACTCGTCCCATCTCCCATCCTTCCatttatttactaatttttttaataattaaattta 300 |||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1151 ACACTCGTCCCATCTCCCATCCTTCCATTTATTTACTAATTTTTTTAATAATTAAATTTA 1092
Query 301 AGTTCTTTGAAAGGAACTAGGAAGCTCAAGTGGCTCAGCGAACACATGAGCATAGAAAAG 360 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1091 AGTTCTTTGAAAGGGACTAGGAAGCTCAAGTGGCTCAACGAACACATGAGCATAGAAAAG 1033
Query 361 CGTTCTTACAACCTTGAACTCGATAATATCAGGCaaaaaatggaaattaattacaaaaat 420 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 1032 CGTTCTTACAACCTTGAACTCGATAATATCAGGCAAAAAATGGAAATTAATTACAAAAAT 973
Query 421 aaattgaaatggaaaattcaaaGGTGTTTttattattattattattTTCTTTTCTTAAAA 480 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 972 AAATTGAAATGGAAAATTCAAAGGTGTTTTTATTATTATTATTATTTTCTTTTCTTAAAA 913
Query 481 TCTTGAGGGTATAGAATTGGTAAAAAGGTAAAATCGGGTTTGGCTGGTGGGTCGTGTATG 540 |||||||||||||| |||||||||||||||||||||| ||||||||||||||||||||||
13
Sbjct 912 TCTTGAGGGTATAGAATTGGTAAAAAGGT-AAATCGGGTTTGGCTGGTGGGTCGTGTATG 853
Query 541 TCTCGGAGGAGACTGGCTAGTGGATGATACACAATTCATAATCTCTGACAGAGATAATGA 600 ||| ||||||||||||||||||| ||||||||||||||| |||||||||||||||||||| Sbjct 852 TCTTGGAGGAGACTGGCTAGTGGGTGATACACAATTCATCATCTCTGACAGAGATAATGA 793
Query 601 CAAGTCTTTTCTT--CTC-T---CTT-TC-GCTTATCACATTCAAAATTATCATCAATGA 652 ||||||||| ||| ||| | ||| || | |||||||||||||||||||||||||||| Sbjct 792 CAAGTCTTTGCTTCCCTCTTGCGCTTATCAG-TTATCACATTCAAAATTATCATCAATGA 734
Query 653 TACAACACCCCTTTTAACCACAAAAGTTAAAAATGAGAGGCCTATTGGCTATACATTTCA 712 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 733 TACAACACCCCTTTTAACCACAAAAGTTAAAAATGAGAGGCCTATTGGCTATACATTTCA 674
Query 713 AATTGTACCATCATCATCATGGGGTCGATATTAATGCAAATGGGAGGAGATTCCACATAA 772 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 673 AATTGTACCATCATCATCATGGGGTCGATATTAATGCAAATGGGAGGAGATTCCACATAA 614
Query 773 AAATTTGTATGAAATATGTGCattaaaattaattttaaaatacatactaaatttacaaaa 832 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 613 AAATTTGTATGAAATATGTGCATTAAAATTAATTTTAAAATACATACTAAATTTACAAAA 554
Query 833 ataatttgagaataattcaaaaattattttctaatattttgtaaaacaaatGCTAGtttg 892 |||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||| Sbjct 553 ATAATTTGAGAATAATTCAAGAATTATTTTCTAATATTTTGTAAAACAAATGCTAGTTTG 494
Query 893 aaaatctaaaatatttttaccttattttttatatttttaaatatgttttaaaaataaatt 952 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 493 AAAATCTAAAATATTTTTACCTTATTTTTTATATTTTTAAATATGTTTTAAAAATAAATT 434
Query 953 ttatatgtagtattttagttttaattatttttcatatttatataattattttttaaaaca 1012 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 433 TTATATGTAGTATTTTAGTTTTAATTATTTTTCATATTTATATAATTATTTTTTAAAACA 374
Query 1013 atgttcaaaaaataaaacaagtcaaaataatttaaaaaaaattattttttaattattaaa 1072 |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||| Sbjct 373 ATGTTCAAAAAATAAAACAAGTCAAAATAATTAAAAAAAAATTATTTTTTAATTATTAAA 314
Query 1073 tatatatattttaaaattttattttaaaaaatgaaaaactgtttttgaaaaCACTCACCA 1132 ||||||| | | ||||| ||||| | |||||| |||||||||||||||||||| Sbjct 313 TATATATGT---A---TTTTA----AAAAA-TCAAAAACCGTTTTTGAAAACACTCACCA 265
14
Query 1133 GGAGTAGCATAGAAATTCAATTTACTATTACATTGGGTTTTGTAGACCCTTTGAGGGTTG 1192 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Sbjct 264 GGAGTAGCATAGAAATTCAATTTAGTATTACATTGGGTTTTGTAGACCCTTTGAGGGTTG 205
Query 1193 AACAGGTAATATCCCCTAAAAAGAGAGAAGACAAACCAATATAATATTACAGCTATATGG 1252 |||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||| Sbjct 204 AACAGGTAATATCCCCTAAAAAGAGAGAAGACAAACCAATATAATATTACAGCTATATGG 145
Query 1253 AAGACTTGGAAATTTCCTAGAAAGTGGATTTGTAAatatatatatatata--CTAATACT 1310 ||||||||||||||||||||||||||||| |||||||||||||||||||| |||||||| Sbjct 144 AAGACTTGGAAATTTCCTAGAAAGTGGATCTGTAAATATATATATATATATACTAATACT 85
Query 1311 ATATTTTGGTTTCTTAAATAAGGAGCAACTAGGAACCACATGAA 1354 ||||||||||||||||||||||||||||||||||||||||||||
Sbjct 84 ATATTTTGGTTTCTTAAATAAGGAGCAACTAGGAACCACATGAA 41
图3-6克隆的启动子序列与已知启动子序列的比对图
测序结果表明,所克隆的启动子片段的长度为1354 bp,其序列与基因bank公布的已知序列同源性极高,达到97%,表明已克隆到葡萄CAN基因的启动子。
3、 植物表达载体pBI1391Z- CAN的构建 3.1 试验材料
3.1.1 菌株与载体
农杆菌菌株EHA105、大肠杆菌菌株DH5α为本实验室保存;表达载体为pBIA1391Z质粒pMD19-T- CAN 3.1.2 酶和试剂
限制性内切酶EcoR I、Pst I、1Kb Marker、DL12000Marker、Rif、Kar;T4-DNA Ligase、PCR试剂均购自宝生物工程(大连)有限公司;质粒DNA提取和琼脂糖凝胶回收试剂盒均购自OMEGA生物有限公司。
PCR引物由北京三博远志有限公司合成,宝生物工程(大连)有限公司完成
15
测序;其它化学试剂均为国产分析纯。
LB培养基:蛋白胨10g/L,酵母粉5g/L,NaCl 10g/L。 3.1.3 仪器耗材
台式离心机、制冰机、微型旋涡混合仪、恒温摇床、超净工作台、电子天平、pH 计、微波炉、立式自动电热压力蒸汽灭菌器、磁力加热搅拌器、电热恒温鼓风干燥箱、电泳仪、水平凝胶电泳槽、紫外分析仪、恒温金属浴、10mL、50mL离心管、移液枪(1000μL、200μL、20μL、2.5μL)等。
3.2 试验方法
3.2.1植物表达载体pBI1391Z- CAN的构建 (1)大肠杆菌质粒DNA的提取
1)在1.5mL离心管中加入1mL菌液,4℃,12000rpm离心1min,弃上清液。 2)加100μL预冷的溶液I,剧烈振荡后于室温下放置5min。 3)加200μL新配制的溶液II,温和地颠倒数次,放冰上3min。 4)加150μL冰上预冷的溶液III,温和地颠倒数次,冰上放置5min。 5)4℃,12000rpm离心10min,上清液转到新管中。
6)加入等体积冰预冷的苯酚氯仿异戊醇(25:24:1),振匀后于4℃,12000rpm离心5min,上清液转到新管中。重复一次。
7)加入2 倍体积无水乙醇,混匀后于4℃,12000rpm 离心5min,弃上清液。 8)加入1mL70%乙醇洗涤沉淀,离心5min,弃上清。 9)吹干后每管加20μLTE溶解。
(2)用限制性内切酶PstI和EcoRI分别双酶切质粒pBIA1391Z和质粒质粒pMD19-T- CAN酶切体系如下:15μL质粒,2.5μL 10×T buffer,5μL 1%BSA,两种内切酶各1μL,25.5μL ddH2O,总反应体积为50μL。30℃酶切3h,用1%琼脂糖凝胶电泳40min,用DNA 凝胶回收试剂盒纯化回收pBIA1391Z 的大片段,记为片段1,回收pMD19-T- CAN70200 的小片段,记为片段2。 (3)片段1和片段2的连接
连接体系如下:1μL片段1,2μL片段2,1μL 10×T4 DNA ligase buffer,1μL T4 DNAligase,5μL ddH2O。总反应体系为10μL,16℃连接4h。
16
(4)将连接产物转入制备好的大肠杆菌感受态细胞中,提取质粒酶切验证。 3.2.2. 植物表达载体pBI1391Z- CAN转入到农杆菌 (1). 农杆菌(EHA105)感受态细胞的制备
1)挑取农杆菌EHA105单菌落,接种于LB液体培养基中,28℃振荡培养两天。 2)取2mL培养好的菌液接种于50mL液体LB培养基中,继续培养至0D值约0.5。 3)将活化好的菌液放在冰上30min,然后4℃,5000rpm,离心10min,弃上清。 4)加入10mL0.15mol/L NaCl悬浮菌体,4℃,5000rpm,离心10min,弃上清。 5)加入1mL 20mmol/L冰冷的CaCl2悬浮,分装在EP管中200uL/管,加入等体积的甘油,置于液氮中速冻lmin,取出于-80℃保存 (2)冻融法转化农杆菌
1)将制备好的农杆菌EHA105感受态细胞放在冰上待其融化。
2)加入1ug表达载体pBI1391Z- CAN质粒DNA,冰浴30min,液氮中冷冻lmin,然后在37℃水浴锅中水浴5min。
3)加入1mL不含抗生素的LB液体培养基,28℃、120rpm,振荡培养3h。 4)3000rpm离心1min浓缩菌液,用100uL LB重悬菌体。
5)将菌体涂布于含有50mg/L Kar和50mg/LRif的固体LB培养基,28℃培养2天。
3.3 结果与分析
3.3.1 表达载体pBI1391Z- CAN的构建
Marker 1
图 3.1表达载体pBI1391Z- CAN70200的酶切鉴定图
左侧为1kb Marker,右侧1号泳道为表达载体pBI1391Z- CAN的双酶切电泳图
1500bp 1000bp 10000bp
17
经琼脂糖凝胶电泳检测,如图3.1 所示。结果显示, pBI1391Z- CAN经EcoR?和Pst?双酶切后产生了约为1.4 kb和pBI1391Z约为11kb的两条条带。上述结果与预期结果相同。表明植物表达载体pBI1391Z- CAN构建完成。
4 农杆菌介导的烟草遗传转化及转基因植株分析 4.1 试验材料
4.1.1 供试烟草品种
烟草 4.1.2 菌株和载体
农杆菌菌株:根癌农杆菌菌株EHA105为本实验室保存。 构建好的载体pBI1391Z- CAN。 4.1.3 培养基
LB培养基:LB Medium(上海生工),液体(25g/L),固体(40g/L) pH7.0。 预培培养基:MS+1.0 mg/L 6-BA+0.1 mg/L NAA 共培培养基:MS+1.0 mg/L 6-BA+0.1 mg/L NAA 生根筛选培养基:1/2 MS+250 mg/L Car+ 10 mg/L Hyg
以上培养基均添加3%蔗糖,0.7%琼脂,pH值为5.8,121℃高温高压灭菌20min。
4.1.4 主要生化试剂及其配制 1.抗生素的配制
卡那霉素(Kna)、潮霉素(Hyg)、羧苄霉素(Carb)均购自生工生物有限公司,卡那霉素(Km)用无菌水配成50mg/mL的母液,潮霉素(Hyg)用无菌水配成10mg/mL的母液,头孢霉素(Cef)用无菌水配成100mg/mL的母液,三者均用0.22μm滤膜过滤灭菌后分装于无菌离心管,–20℃保存。
4.2 试验方法
4.2.1 农杆菌的活化及菌液制备
挑取含有pBI1391Z- CAN 载体的EHA105 单菌落,接种到LB(Rif 50mg/L,Km50mg/L)培养基中,28℃ 180rpm培养至OD600=0.5-0.8 时,取2mL菌液转
18
移到50mL LB(Rif 50mg/L,Km 50mg/L)培养基中,培养到OD600=0.6-0.8。将菌液于5000rpm离心15min后,用同体积共培养基悬浮备用。 4.2.2 根癌农杆菌介导的烟草遗传转化
采用叶盘法进行烟草的遗传转化,将切割的烟草叶片预培养2d后,置于含有重组质粒的根癌农杆菌侵染液中浸泡15min左右,期间不停轻轻摇晃,使叶盘切面充分接触菌液。取出叶盘,用无菌滤纸吸去多余菌液,将叶盘置于共培养基上,(26±2)℃,黑暗培养2-3d,然后将叶片转至含有潮霉素的筛选培养基上进行筛选的同时,诱导不定芽发生。
4.3 结果
将叶片放在含有30 μg/mL潮霉素的筛选培养基上进行培养,培养2周左右时,农杆菌侵染的叶片上诱导出抗性不定芽(图4.1右),而没有转化的对照叶片未能诱导出任何不定芽(图4.1左)。
图4.1抗性不定芽
19
5、讨论展望
植物表达载体中应用最广泛的是CaMV35S组成型启动子,它导致外源基因在转基因植物中的所有部分和所有发育阶段都表达,不但造成能源浪费,还会引起植物的形态发生改变,影响植物生长。诱导型启动子是指由信号刺激而有转录活性的启动子。该类启动子可以快速有效地诱导转录基因的―开、关‖:可根据需要在植物特定发育阶段、组织器宫或生长环境下接受诱导信号,诱导基因表达;也可以随时解除胁迫,停止表达,使外源基因的表达处于人们的控制之下,既保证了外源基因在植物体内的有效发挥又减少了对植物的不良影响。
本文实验以同源序列法克隆了葡萄CAN启动子,经测序,克隆到的启动子序列与预知序列只有少数碱基的差异,同源性达到97%,表明已克隆到葡萄启动子。将克隆的启动子与pBI1391Z连接,转入大肠杆菌细胞, 提取质粒进行酶切鉴定。结果表明,植物表达载体构建完成并将其命名为pBI1391Z-CAN。将其转入农杆菌细胞内,并利用农杆菌介导法对烟草进行了遗传转化。下一步的目标是进行筛选,并对抗性植株进行染色,观察其是否表达,然后进行组织表达分析,以确定其在生长发育过程中对逆境起到的具体作用。从而研究葡萄逆境胁迫诱导型启动子对植株生长发育的调控及在育种中的应用。
干旱、盐碱和极端温度(低温和高温)等是制约植物生长的主要逆境因子,逆境的存在会对植物产生水分生理产生影响从而制约植物的生长。克服干旱、盐碱和极端温度等在自然界中对植物造成的严重影响,选育具有拥较强的抗逆性的新品种,一直是各国研究学者努力的方向。
植物逆境胁迫抗性的功能基因经过多年的研究,技术和方法体系已趋于成熟,并研究得到了很多与植物抵抗逆境胁迫有关的基因位点和相关基因,几个转录因子、一些调节因子,随着研究的深入,我们将会对植物抵抗逆境胁迫的生理生化机理和分子机理有一个更为全面的认识,进一步掌握与抗逆相关的基因及其在代谢过程中和调控过程中的作用,更好的地选择植物在极端环境胁迫的抗性中在调控过程和代谢过程中重要的基因,应用在作物抵抗逆境胁迫的分子标记辅助育种和基因工程改良育种中。目前,对功能基因组的研究的更加成熟,可以从整体把握作物的抗逆机理的研究,为充分发挥分子标记辅助选育的优势,为转基因改良
20
植物的抗逆性提供了新的理论基础和技术。
致谢
感谢青岛农业大学生命科学学院四年来的培养,在此,我真诚地向我尊敬的老师们和母校表达我深深的谢意!
这篇论文是在我的导师薛仁镐老师的多次指导下完成的。从选题到实验的安排以及实验细节,从论文内容到论文修改,都凝聚了他大量的心血。在这篇论文的写作过程中,薛仁镐老师不辞辛劳,多次对我就论文中许多核心问题作深入细致地讲解,教给我许多实验技巧,并全面细致的地修改了我的论文。薛仁镐老师对本论文从立题、实验安排、查阅文献到最后论文修改的每个细节都做了细致的讲解,并帮助多次修改论文,对此,我衷心表示感谢。薛老师丰富的知识以及诲人不倦的师者风范是我们毕生的学习楷模。在此,请允许我向尊敬的薛仁镐老师表示真挚的谢意!
其次,我要感谢魏璇师姐。在百忙之中抽出时间指导我做实验,帮助我搜集文献资料,帮助我理清论文写作思路,对我的论文提出了诸多宝贵的意见和建议。对师姐的帮助表示真挚的感谢。
在论文的写作过程中,也得到了许多同学的宝贵建议,同时还得到实验室其他师姐的支持和帮助。
最后,衷心感谢所有老师对我的栽培、支持和鼓励,感谢所有朋友的关心和帮助。向在百忙中抽出时间对此论文进行评审并提出宝贵意见的各位专家表示衷心地感谢!
21
参考文献:
[1] 孔庆山主编.中国葡萄志.中国农业科学技术出版社.2004. [2] 李杨汉主编.植物学[Z] .上海科学技术出版社出版.1984. [3] 贺普超主编.葡萄学[Z].中国农业出版社出版.1999.
[4] Backhaus R A.Rubber formation in plants1 mini-review.Israel J Bor,1985.34:283-293. [5] Joshi C P.An inspection of the domain between putative TATA box and translation start site in 79 plant genes[J].Nucleic Acids Res,1987,15:6643.
[6] Uno Y,Furihata T,Yoshida H A R,et a1.Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J].PNAS,2000, 97: 11632-11637.
[7] Liu S,Kriz A,Duncan D,et a1.Abscisic acid-regulated Glbl transient expression in cultured maize P3377 cells[J].Plant Cell Rep, 1998, 17: 650-655.
[8] Chung H J,Fu H Y,Thomas T L.Abscisic acid-induciblenuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene [J].Plants,2005, 220: 424-433.
[9] Jung H W,Kim K D,Hwang B K.Identification of pathogen-responsive regiou8 in the promoter of a pepper lipid transfer protein gene(GALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses[J].Plant Cell Rep,2005,221:361-373.
[10] Hong J K.Lee S C.Hwang B K.Activation of pepper basic PRI gene promoter during defense signaling to pathogen,abiotic and environmental stresses[J].Gene,2005,356:169-180. [11] Endt D V,Silva M S,Kijne J W.et a1.Identification of a bipartite jasmonate-responsive promoter element in the Catharanthusroseus ORCA3 transcription factor gene that interacts specifically with AT,Hook DNA-binding proteins[J].Plant Physiol,2007,144:1680-1689. [12] Yamaguchi-Shinozaki K,Shinozaki K,Organization of cis-acting regulatory elements in osmotic-and cold-stress responsive promoters[l].Trends in Plant Science,2005,10(2):88-94. [13] Yamaguchi—Shinozaki K,Shinozaki K.A novel cis-acting elementin¨Arabidopsis gene is involved in responsiveness to drought.Low-temperature,or high-salt stress[J].The Plant Cell,1994,
22
6(2):251-264.
[14] Bastola D R,Pethe V V, Winicov A. A novel zincfinger protein in alfalfa roots that binds to promoter elements in the saltinducible MsPRP2 gene[J].Plant Mol Biol,1998,38: 1123-1135. [15] Holtorf S,Apel K,Bohlmann H.Comparison of different constitutive and inducible promoters for the transgenes in Arabidopsis thaliana[J].Plant Mol Bi01.1995,29:637-646.
[16] Kasuga M,Liu Q,Miura S,el al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-in-ducible transcription factor[J] .Nat Biotechnol,1999,17:287-291.
[17] Brown A P C,Dunn M A,Goddard N J,et al .Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vnlgare L)gene blt101 .I [J] .Plants,2001,213:770-780.
[18] Takumi S,Koike A,Nakata M,et al.Cold-specific and light-stimulated expression of a wheat(Triticun aestivum L.)Cor gene WcorI5 encoding a chloroplast-targeted protein [J] .Journal of Experimental Botany,2003,54:2265-2274.
[19] Park H C,Kim M L,Kang Y H, et al.Pathogen-and NaCl-in-duced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interactis with a GT-1-like transcription factor[J] .Plant Physiol,2004,135:2150-2161.
[20] Khush G. Green revolution:preparing for the 21st century [J]. Genome, 1999, 42: 646-655.
23
6(2):251-264.
[14] Bastola D R,Pethe V V, Winicov A. A novel zincfinger protein in alfalfa roots that binds to promoter elements in the saltinducible MsPRP2 gene[J].Plant Mol Biol,1998,38: 1123-1135. [15] Holtorf S,Apel K,Bohlmann H.Comparison of different constitutive and inducible promoters for the transgenes in Arabidopsis thaliana[J].Plant Mol Bi01.1995,29:637-646.
[16] Kasuga M,Liu Q,Miura S,el al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-in-ducible transcription factor[J] .Nat Biotechnol,1999,17:287-291.
[17] Brown A P C,Dunn M A,Goddard N J,et al .Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vnlgare L)gene blt101 .I [J] .Plants,2001,213:770-780.
[18] Takumi S,Koike A,Nakata M,et al.Cold-specific and light-stimulated expression of a wheat(Triticun aestivum L.)Cor gene WcorI5 encoding a chloroplast-targeted protein [J] .Journal of Experimental Botany,2003,54:2265-2274.
[19] Park H C,Kim M L,Kang Y H, et al.Pathogen-and NaCl-in-duced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interactis with a GT-1-like transcription factor[J] .Plant Physiol,2004,135:2150-2161.
[20] Khush G. Green revolution:preparing for the 21st century [J]. Genome, 1999, 42: 646-655.
23
正在阅读:
葡萄逆境胁迫诱导启动子的克隆及其表达载体的构建 - 图文01-13
2013年烟台市初中学生学业考试物理试题2013(含答案) - 图文06-14
发电厂继电保护管理制度汇编05-25
商业保理现状及发展趋势04-05
2012执业医师考试答案10-26
重点监管的危险化工工艺目录(2013版)11-10
道县城市建设投资开发有限责任公司章程05-18
工地最全考勤表格式09-01
现代礼仪心得体会05-20
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 胁迫
- 逆境
- 诱导
- 克隆
- 载体
- 葡萄
- 构建
- 表达
- 及其
- 启动
- 图文
- 部编版八年级上册语文月考试卷
- 机械制造行业2014校园招聘大礼包目录
- 采油工技师和高级技师理论知识试题及答案 - 图文
- 18年6月考试《计算机应用基础(专科)》期末大作业
- 2010年05月高级人力资源管理师考试真题及答案(一级)
- 最新九年级数学上第二十一章 一元二次方程单元测试题含答案 doc
- 工程造价课程标准 - 图文
- 电解质溶液-学生
- 郑州市新科中等专业学校-教学楼门窗及屋面工程会议纪要
- 国内外企业信息化状况研究报告
- 不同时相的遥感图像镶嵌处理
- 五年级语文上学期1-8单元复习
- 附录B管道工程
- 八极拳内功五法
- 谈如何做一名有积极影响力的班主任
- 浅谈在小学英语课堂中寻找“信息差”策略-2019年教育文档
- 毛概1-11章课件大纲(简)
- 2008-2009博客市场及博客行为研究报告
- 机械设计习题
- 四氯化钛可研报告 - 图文