化学奥赛自学资料—无机化学全部知识要点及配套练习

更新时间:2024-06-12 08:06:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

奥赛自学资料—无机化学全部知识要点及配套练习 一.无机化学(理论部分)知识点应用归纳 1、无机物(分子或离子)构型:

(1)简单分子(或离子): (2)配合物:

2、物质的熔、沸点(包括硬度):

(1)晶体类型:原子晶体,离子晶体,金属晶体,分子晶体 (2)离子晶体: (3)分子晶体

(4)金属晶体:金属键(与价电子、价轨道有关) 3、物质的稳定性:

(1)无机小分子: (2)配合物: 4、物质的磁性:

(1)无机小分子:MO (掌握双原子分子轨道能级图) (共价双原子分子) (2)配合物: 5、物质的颜色:

(1)无机小分子:极化理论 (2)配合物: 6、无机物溶解度:

(1)离子晶体: (2)共价化合物:

7、物质的氧化还原性:影响因素

(1)溶液酸、碱度 (2)物质的聚集状态 8、化学反应方向:

(1)热力学数据: (2)软硬酸碱理论

9、分子极性、键的极性、键角、键长等: 10、推导元素在周期表中的位置:能级组取值,

选择—组合理量子数:四个量子数取值规则 11、溶液中有关质点浓度计算:

化学平衡,电离平衡,沉淀—溶解平衡,氧化—还原平衡,配合解离平衡:

1

利用多重平衡规则,K是关键 12、常见的基本概念:

对角线规则;惰性电子对效应;Lewis酸、碱;质子酸、碱;缓冲溶液;屏蔽效应;钻穿效应;同离子效应;盐效应;镧系收缩;电负性;电离势;电子亲合势;晶格能;键能;有效核电荷及求法等。 二.无机化学(元素部分)

(1)结构 (2)性质: 重点是化学性质

第一讲 分子结构(molecular structure)

1-1 离子键理论

一、基本要点

活泼金属和活泼非金属的原子反应时,生成的化合物如NaCl等都是离子型化合物,它们具有一些固有的特征,如它们都以晶体的形式存在,具有较高的熔、沸点,在熔融态或水溶液中可导电等。

这种由于原子间发生电子转移,生成正负离子,并通过静电库仑作用而形成的化学键称为离子键。通常,生成离子键的条件是两原子的电负性差大于1.7以上,由离子键形成的化合物叫做离子键化合物。 二、离子特征 1、离子电荷:

是指原子在形成离子化合物过程中失去或获得的电子数。正离子电荷通常是+1、+2、+3或+4;阴离子:-1、-2,而-3、-4的负离子一般都是含氧酸根离子或配阴离子。 2、离子的电子构型:

(1)2e构型:1s2,如Li+,Be2+

(2)8e构型:(n-1)ns2(n-1)p6:Na+,Mg2+,Ba2+等 (3)9~17e构型:(n-1)ns2(n-1)p6(n-1)d1~9:Fe2+,Mn2+等 (4)18e构型:(n-1)ns2(n-1)p6(n-1)d10:Cu+,Ag+,Zn2+等 (5)18+2e构型:(n-1)ns2(n-1)p6(n-1)d10ns2:Sn2+,Pb2+等 3、离子半径:(变化规律):

同一元素:负离子>原子>低价正离子>高价正离子 同族元素同价离子:从上→下,半径增大 同一周期:从左→右,半径r↓ 三、晶格能(U)

2

1、定义:指相互远离的气态正离子和负离子结合成1mol离子晶体时所释放的能量绝对值,或1mol离子晶体解离成自由气态离子所吸收的能量的绝对值。 2、计算:晶格能不能用实验直接测量,通常有两种方法计算:

(1)库仑作用能模型理论计算:

A为马德隆(Madelung)常数,与晶格类型有关;n是与原子的电子构型有关的因子;Z1Z2为正负离子的电荷数。上式看出,U与离子的带电荷数成正比,与正负离子核间距r0成反比,与配位数有关,配位数增加,A增大,U增大。

(2)玻恩—哈伯(Born—Haber)循环间接计算:

例:已知NaF(s)的生成焓,金属Na的升华热,Na的电离热,F2的离解热, F的电子亲合能,试计算NaF的晶格能U。 四、离子极化 1、基本概念

离子间除了库仑力外,诱导力起着重要作用,因为阳离子具有多余的正电荷,半径较小,它对相邻的阴离子会起诱导作用;阴离子半径较大,在外壳上有较多的电子,容易变形,在被诱导过程中能产生瞬时的诱导偶极。阴离子中产生的诱导偶极又会反过来诱导阳离子,阳离子如果易变形(18e-,18+2e- or 9~17e-构型半径大的离子),阳离子中也会产生偶极,使阳离子和阴离子之间发生了额外的吸引力。当两个离子接近时,可能使两个离子的电子云重叠,趋向于生成极性较小的键。由离子键向共价键过渡。 2、极化力(极化作用):

(1)电荷: 阳离子电荷越高,极化力越强

(2)半径: 外壳相似电荷相等时,半径小,极化力强。 (3)离子构型(阳离子):

18e-,2e-,18+2e-,(Ag+、Li+、Pb2+等)>9~17e-(Fe2+、Ni2+、Cr3+)>8e-(Na+、Mg2+等)

(4)电荷高的复杂阴离子也具有一定极化作用,如SO42-、PO43- 等 3、离子的变形性

(1)结构相同的阳离子,正电荷高变形性小 O2->F->Ne>Na+>Mg2+>Al3+>Si4+

(2)对于外壳结构相同的离子,电子层数越多,变形性越大 Li+

(3)电荷和半径相近时;18e-,18+2e-;9~17e->>8e- 变形性:Ag+>K+;Hg2+>Ca2+等

(4)对于相同或类似的结构的离子,半径越大,变形性越大

3

(5)复杂阴离子变形性通常不大,中心离子氧化数越高,变形性越小 ClO4-

小结:最易变形是体积大阴离子和18e-,18+2e-,9~17e-的少电荷阳离子,如:Ag+、Pb2+、Hg2+等; 最不易变形是小半径高电荷稀有气体外壳阳离子,如Be2+、Al3+、Si4+等

4、相互极化(附加极化)作用

实际上,每一个离子一方面作为带电体,会使其他异号离子发生变形,另一方面,在周围离子作用下,本身也会产生变形,这种阴阳离子相互极化作用结果,使产生的诱导偶极矩加大,从而进一步加强了它们相互作用,这就是附加极化作用。

显然,,每个离子的总极化作用应是它原有极化作用与附加极化作用之和。 5、离子极化理论的应用:

(1)晶体类型转变:离子晶体→分子晶体; 如AgF→AgI;NaF→SiF4→PCl5 (2)键型转变:离子型→共价型

(3)结构转变:共价性增强,配位数减小。如AgF(NaCl型)→AgI(ZnS型) (4)熔、沸点变化:降低 (5)溶解性变化: 减小 (6)颜色变化: 颜色加深

例题1:解释现象(1)MgO的熔点高于Mn2O7;(2)AgCl,AgBr,AgI颜色依次加深;(3)HgS在水中溶解度很小

1—2 价键理论(VB法)

一、价键理论的基本要点: 1、共价键的本质:

价键理论认为共价键的本质是由于原子相互接近时,由于原子轨道的重叠,原子间通过共用自旋方向相反的电子对结合,使体系能量降低而成键。共价键的本质也是电性的。 2、共价键形成原理

(1)电子配对原理:根据成单电子数配对,共价单键、双键等 (2)能量最低原理: (3)原子轨道最大重叠原理: 3、共价键的特点

(1)共价键结合力的本质是电性的,但不能认为纯粹是静电作用,一般用键能表示共价键强度。

(2)共价键形成是由于原子轨道重叠,两核间电子云几率密度最大。不意味着仅在两核之间。

(3)共价键具有饱和性。

4

(4)共价键具有方向性。 (5)共价键的键型:

1σ键。2π键。 3配位键。4δ键:由两个原子的dxy—dxy;dxz—dxz,dyz—dyz,or dx2-y2—dx2-y2,轨道面对面的重叠而成。如在Re2Cl82-中δ键是dxy—dxy面对面(沿z轴)重叠: 二、杂化轨道理论

1、杂化轨道的概念:在形成分子时,由于原子间的相互作用,若干不同类型的、能量相近的原子轨道混合起来,重新组成一组新的轨道,重新组合过程叫做杂化,所形成的轨道叫杂化轨道。

2、杂化轨道理论的基本要点:

(1)原子间的微扰作用,使某一原子内能量相近的原子轨道重新组合构成新的轨道,其能量、形状和空间伸展方向皆发生了变化。

(2)形成杂化轨道数,等于参加杂化的原子轨道数。

(3)杂化轨道满足“最大重叠原理”,成键能力更强,构成分子更稳定。 (4)杂化轨道空间构型决定形成分子或离子的空间构型:

如sp(直线);sp2(平面三角);sp3(正四面体);dsp2(sp2d平面方形);dsp3(sp3d三角双锥);d2sp3(sp3 d2八面体)

(5)杂化轨道有等性和不等性杂化轨道之分

原子轨道杂化后,如果每个杂化轨道所含的成分完全相同,则称为等性杂化,等性杂化轨道空间构型与分子的空间构型是一致的,如CH4分子

原子轨道杂化后,杂化轨道所含的成分不完全相同,称为不等性杂化,在有孤对电子占据时,杂化轨道空间取向与分子的空间构型就不相同了,如NH3,H2O等 3、杂化轨道理论的应用

例1:试用杂化轨道理论推断下列分子的空间构型:(1)SnCl2;(2)CF2Cl2;(3)NF3;(4)SF6.

1—3.价电子对互斥模型(VSEPR)

一、基本要点:

1、概念:在共价分子中,中心原子价电子层电子对的排布方式,总是尽可能使它们之间静电斥力最小,分子(或离子)的几何构型总是采取电子对相互排斥力最小的那种结构。 2、价电子对之间的斥力大小

(1)电子对之间的夹角越小,排斥力越大; (2)孤对~孤对>孤对~键对>键对~键对

(3)三键>双键>单键,如HCHO中,CHCH(118o)

5

NF3 SF4 IF3 XeF4 10、如何用价层电子对互斥理论判断键角的相对大小? 11、大π键形成的条件是什么? 12、讨论NO3-的结构。

13、从结构上讨论为什么SOCl2能表现为路易斯酸,又能表现为路易斯碱? 14、什么是奇电子化合物?它有哪些特征? 15、什么叫等电子体?什么叫等电子原理? 16、将卤素单质沸点由低到高的顺序排列。 17、试析二氯乙烯顺反异构体沸点的差异。 18、氢氟酸随浓度的增大酸性增强。试解释原因。 19、用氢键形成说明NH3(aq)为什么表示弱碱性?

20、比较NaCl、MgO、CuO、BaO,哪一种离子晶体的熔点最高? 21、分析Na2O、CaO、Y2O3、ThO2中哪种氧化物的熔点最高? 22、试确定Sc(OH)3、Y(OH)3、La(OH)3、Eu(OH)3碱性相对强弱顺序。 23、在Sc3+、Y3+、La3+、Eu3+中,哪种离子最易水解?

24、填空:阳离子的极化能与-------------有关,电荷越高,极化作用越--------------,半径越大,极化作用越-----------------。半径越大,阳离子的变形性越---------------------,阳离子电子构型以

-------------和----------------变形性最大,-------------------次之,最差的为-------------------。阴离子极

化和变形性对简单离子来说和阳离子类似,复杂阴离子的变形性在电荷相等时,半径越大则变形性越------------------,相对复杂的阴离子变形性较-----------------,中心原子氧化数越高,则整个阴离子变形性越----------------。

25.试根据晶体的构型与半径比的关系,判断下列AB型离子化合物的晶体构型。 MgO,BeO, NaBr,CaS,RbI,CsBr,AgCl, CsI。

26.BF3是平面三角形的几何构型,但NF3却是三角锥形的几何构型,试用杂化轨道理论加以说明。

27.试用价层电子对互斥理论讨论COCl2分子的构型与键角。 28.试用价层电子对互斥理论判断下列分子或离子的空间构型:

HgCl2,I3+,I3-,SO2Cl2,IO2F2-,ClF3,IF5,ICl4-,PO43-,SO32-,ClO2-, SF6,PCl5,O3。

29.已知NO2,CO2,SO2分子中键角分别为132°,180°,120°,判断它们的中心原子轨道的杂化类型,说明成键情况。

11

30.在下列各对化合物中,哪一种化合物的键角大?说明原因。 ⑴CH4和NH3 ⑵OF2和Cl2O ⑶NH3和NF3 ⑷PH3和NH3 31.判断下列各对化合物中键的极性大小。

⑴ZnO和ZnS ⑵HI和HCl ⑶H2S和H2Se ⑷H2O和OF2

32.已知:ΔfHmO(N,g)=472.20 KJ· mol-1,ΔfHmO(H,g)=217.97 KJ· mol-1,Δ

fHm

O(NH,g)=-46.11 KJ· 3

mol-1。试计算NH3分子中N—H键的键能。

33.根据分子轨道理论判断各组物质中稳定性和磁性大小。

⑴ NO+,NO,NO-; ⑵ O2+,O2,O2-,O22- 。

34. 已知CO2,NO2-,BF3分别为直线形,V形和平面三角形。试用等电子原理说明下

列分子或离子的成键情况和几何构型。O3; NO2-; NO3-; N3-; CO32-

35.比较化合物的熔沸点高低,并说明原因。(1)CH3CH2OH和CH3OCH3;(2)O3和SO2;(3)HgCl2和HgI2;(4)邻羧基苯酚和对羧基苯酚。

36.判断下列各组分子之间存在什么形式的分子间作用力。(1)苯和四氯化碳;(2)氦和水;(3)二氧化碳气体和溴化氢气体;(5)甲醇和水。

37.比较下列各组物质的热稳定性,并说明原因。(1)Na2CO3和NaHCO3 (2)CaCO3和MnCO3;(3)Li2CO3和K2CO3;(4)NaNO2和NaNO3

第二讲 原子结构

2—1 核外电子运动状态 一、玻尔(Bohr)理论要点

1、氢原子核外电子运动取一定轨道,电子不放出也不吸收能量,离核越远,能量E越高,正常情况下,e-尽可能处于最低轨道上,处于稳定状态,称基态。

2、在一定轨道上运动的电子有一定的能量E,由某些量子化(指某一物理学的变化是不连续的<跳跃式的>;原子中电子的能级是量子化的,所以原子光谱呈线状)的条件决定(E整数值)。

在玻尔(Bohr)原子结构理论基础上,推得类氢原子(单电子原子或离子)多原子轨道半径r和能量E。

3、*电荷数(氢原子Z=1);B=52.9pm;A=2.179×10-18J n为正整数,成为量子数。 3、玻尔(Bohr)理论及存在的问题

(1)解释氢光谱(2)提出能级概念(3)提出量子化特征

(4)未考虑波粒二象性(5)无法解释多电子原子光谱和在磁场中分裂

二、核外电子运动的特点

12

1、波粒二象性。量子化

——爱因斯坦方程

1924年德布罗依(de Broglie L)提出:微观粒子也是有波粒二象性 ——德布罗依关系式,此关系式1927年戴维逊电子衍射实验证实。 2、测不准原理

由于电子有波动性,不可能像宏观物体那样可以精确测定它们在原子核外运动的位置和动量。1927年,海森堡(Heisonberg W)推导出如下测不准关系式:或(普朗克常数)

三、核外电子运动状态的描述 1、波函数和原子轨道:

由于电子运动具有波动性,量子力学用波函数ψ来描述它的运动状态。Ψ是求解薛定谔(Schr?dinger)方程所得的函数式,它是包含三个常数项(n,l,m)和空间坐标(r,θ,φ)的函数,记为:Ψ(r,θ,φ)。 2、四个量子数及取值。

(1)主量子数(n):决定原子中电子云出现概率最大区域、离核的远近。n越大,e-里核平均距离越远,能量越高。所以n是决定能量高低的主要因素。氢原子多*电子层能量为:

取值:n= 1,2,3,4,5…… 电子层符号:K,L,M,N,O……

(2)角量子数(l):决定电子在空间不同角度的分布情况,即决定了原子轨道或电子云的角度分布图的形状;对多电子原子来说,电子的能量除与n有关外,与l也有关,当n相同时,l越大,能量越高。

在同一电子层中,L相同的电子归并为一“亚层” 取值l=0 1 2 3 4……,(n-1) S p d f g……

球型 哑铃型,花瓣型……

(3)磁量子数(m):决定了原子轨道或电子云在空间的取向(伸展方向) 取值:m=0,±1,±2,±3……±l 取(2l+1)个值。

(4)自旋量子数(ms):代表电子两种“自旋”状态。(自旋方向) 取值:+1/2和-1/2 四个量子数取值规则: 相互制约关系:

每个n,l可取0到(n-1)个值,共n个值,且n>l

13

每个l,m可取+l到-l,共(2l+1)个值,且l≥m 每一套(n,l,m),ms可取±1/2两个值。 例题1:

在下列n套量子数中,试指出(1)哪些是不可能存在的?为什么?(2)用轨道符号表示可能存在多套量子数。

1(2,1,0,0) 2(2,2,-1,-1/2) 3(3,0,0,+1/2) 4(7,1,+1,-1/2) 5(4,0,-1,+1/2) 6(2,3,+2,-1/2) 7(3,2,+3,-1/2) 8(2,-1,0,+1/2) 9(6,5,+4,+1/2) 例题2:写出氖原子中多电子的四个量子数表达式

四、屏蔽效应和穿透效应 1、屏蔽效应

(1)概念:在多电子原子中,对于某一指定的电子来说,它除了受到核的吸引外,还要受到其余电子对它的排斥作用。利用中心力场模型的近似处理,把其余电子对其指定电子的排斥作用近似地看作抵消一部分核电荷对该指定电子的吸引,而核电荷由原来的Z变为(Z-σ)。σ称为屏蔽常数,(Z-σ)称为有效核电荷,用Z*表示。Z*=(Z-σ)

这种由核外其余电子抵消部分核电荷对指定电子吸引的作用,称为屏蔽效应。因此,多电子原子某指定电子的能量公式变成:

电子越靠近核,它对外层电子屏蔽作用越大,σ值由可斯莱特(Slater)规则进行近似的计算。

(2)σ的计算:将原子电子按内外次序分组:

1s;2s2p;3s3p3d;4s4p4d4f;…… 1外层电子对内层电子,没有屏蔽作用,多组的σ=0 2同一组,σ=0.35(但1s, σ=0.30)

3如果被屏电子为ns或np,(n-1)组对ns、np, σ=0.85,至内组σ=1.0 4如果被屏电子为nd或nfe-,位于它左边多轨道电子对它的σ=1.0 例:求锂原子(Z=3)的第一电离能。 2、钻穿效应:

由电子云径向分布图可以看出,n值较大的电子在离核较远的区域出现几率大,但在离核较近的区域也有出现的几率。这种外层电子向内层穿透的效应称为钻穿效应。

钻穿效应主要表现在穿入内层的小峰上,峰是数目越多,穿透效应越大,因峰的数目为n-l,所以n相同,l越小的电子穿透效应越大。穿透效应大的电子可回避部分内层对它的屏蔽效应,使σ值变小,所以该电子的能量便下降。对多电子原子来说,n相同l不同的电子亚层,其能量高低:Ens

14

值小l值大的轨道反而比n值大l值小的轨道能量大。如E3d>E4s,发生能级交错现象,当n≥6时,Ens

例:计算Pt原子4s及3d电子的有效核电荷。 五、原子核外电子排布: (遵循三个原则)

1.保里(Pauli)不相容原理: 在同一原子中,不可能存在所处状态完全相同的电子。或在同一原子中不可能存在四个量子数完全相同的电子。

2.能量最低原理: 电子在各轨道上的排布方式应使整个原子能量处于最低状态。

1Pauling能级图 2徐光宪:(n+0.7l)

3.洪特(Hund)规则: 在能量相同的轨道(自旋轨道)上排布电子时,总是优先分占不同的轨道,且自旋平行。作为洪特规则的特例,简并轨道处于全满或半满状态,能量较低稳定。

例1:写出下列原子的核外电子排布和价电子构型

24Cr 47Ag 82Pb

注: 1核外电子排布按电子层由内到外逐层书写,先由Pauling图写好,再重排 2原子失电子先后顺序np,ns,(n-1)d,(n-2)f 六、原子结构和元素周期表 1、各周期元素数目

各周期元素数目等于ns1~np6结束多能级组所能容纳的电子数目。由于能级交错的存在,所以产生了长短周期的分布。 周期 元素数目 容纳电子总数 2、周期和族

(1)周期数=电子层数

(2)主族元素的族数=最外层电子数

副族元素的族数=最外层电子数+次外层d电子数 注: 1稀有气体过去称为零族,现在为ⅧA族;

2副族ⅠB、ⅡB和ⅧB例外,ⅠB和ⅡB算得电子分别为11和12,ⅧB族为8,9,10 3、元素分区

s区:价电子构型ns1~2 ⅠA→ⅡA p区:价电子构型ns2np1~6 ⅢA→ⅧA d区:价电子构型(n-1)d1~8ns2(少数例外) ⅡB→ⅧB

15

1 2 2 2 8 8 3 8 8 4 18 18 5 18 18 6 32 32 7 未满 ……

ds区:价电子构型(n-1)d10ns1~2 ⅠB→ⅡB f区:价电子构型:(n-2)f1~14ns1~2(有例外) La系、Ac系 例1:具有下列价电子的元素是属于哪一类或哪一种元素?

(1)具有3个p电子;(2)3d全满,4s有2个e-(3)有2个n=4和l=0的电子,8个n=3和l=2的电子。

七、原子结构和元素基本性质

1、原子半径:由相邻原子核间距测出的,同种元素的两个原子以共价单键连接时,其核间距的一半为该原子的(单键)共价半径。

原子半径在周期表中变化规律:

(1)同一族:主族元素由上到下半径增大,副族元素由上到下半径增大,但不明显。第五、六周期受到La系收缩的影响。

(2)同一周期:由左到右半径减小,主族比副族减小幅度大。因为主族元素有效核电荷增加幅度大;另外ⅠB、ⅡB原子半径比左边相邻元素大,这是因为d轨道电子填满屏蔽效应增大的缘故。 2、电离能

(1)概念:气态原子失去一个e-成为+1价气态离子所需的能量,称为该元素的(单一)电离能(I1)。气态+1价离子再失去一个e-所需的能量称为第二电离能(I2)……一般I1

(2)在周期表中变化规律(主要指主族元素) 1同一族比较:从上到下,I↓,原子半径增大的缘故。

2同一周期比较:从左到右,I↑,原子半径减小的缘故,有效核电荷渐增。但在ⅢA和ⅥA出现两个转折。即电离能ⅡA>ⅢA,ⅤA>ⅥA。前者是因为ⅡA失去的se-,ⅢA失去pe-,pe-能量比se-高,易失去,后者是由于ⅤA族p轨道已半满,较稳定,而ⅥA的最后一个e-要填入p轨道,必然受到原来已占据轨道的那个电子排斥,要额外消耗电子的成对能,故较易失去。 3、电子亲合能

(1)概念:气态原子获得一个e-成为气态-1价离子所释放的能量称为该元素(单一)电子亲合能(E)

(2)周期表中变化规律:与电离势变化规律基本相同。 1电子亲合能数据难以测准,多类书中出入较大。

2ⅤA、ⅥA、ⅦA电子亲合能最大不是在第二周期,而是在第三周期。如:Cl>Br>F>I S>O 因为第二周期元素半径小,获得1个电子后电子间斥力大增。

3同一周期电子亲合能在 ⅡA、ⅤA出现反复。 4、电负性

16

(1)概念:电负性是指分子内原子吸引电子的能力。元素电负性越大,原子在分子内吸引成键电子的能力越强。

(2)变化规律:类同电离能和电子亲合能

对主族元素:同一族上→下减小(ⅢA有些例外);同以周期从左→右增加。

例1.试用原子结构理论解释。

(1)稀有气体在每周期元素中具有最高的电离能 (2)电离能Mg>Al;P>S (3)电子亲合能 S>O;C>N

例2:利用适用于单电子的玻尔理论计算:

1B4+离子的电子处于n=3时轨道半径和能量。 21mol处于该状态下B4+的电离能,是多少? 3 B4+电子从n=3跃迁到n=2放出的光波长和频率。

例3:为什么原子的最外层,次外层和外数第三层依次最高只能有8,18和32个电子?

例4:试依据原子结构理论预测:

1原子核外出现第一个电子(l=4)电子的元素的原子序数是多少?

2第七周期为未满周期,若填满后应有多少种元素?第八周期有多少种元素? 3有人经过理论研究发现,第114号元素应该有一定的稳定性。试指出它属于哪一周期?哪一族? 习题:

1、玻尔理论的要点是什么?这一理论对原子结构的发展有什么贡献?存在什么缺陷? 2、几率和几率密度有何区别?

3、说明四个量子数的物理意义和取值要求。 4、电子云图和电子云角度分布图两者有何区别? 5、什么叫做中心势场模型?

6、在元素周期表中,元素按外围(亦称价壳层)电子构型可分为几个区域?各区域价电子构型有何特征?什么叫过渡元素? 7、元素的电离能的变化有何变化规律?

8、为什么电离能都是正值?而电子亲合能却有正有负?电子亲合能的大小与哪些因素有关?在周期表中元素的电子亲合能有何变化趋势?

9、鲍林是如何标度电负性的?电负性有何递变规律?试计算氢原子的电负性(已知:H-H键的键能为436kJ·mol-1;F-F键的键能为155kJ·mol-1;H-F键的键能为565kJ·mol-1)。 10、质量为10克的子弹运动,若它的位置准确测定到0.01cm,其速度的测不准情况如何? 11、计算铁(Z=26)原子中和3d电子相关联的σ、Z*和E3d

17

12、求锂原子(Z=3)的第一电离能。

13.计算波长为401.4nm(相当于钾的紫光)的光子所具有的质量和能量。

14.假如电子在一万伏特加速电压下的运动速度是5.9×107m·s-1。计算电子的波长,并与可见光波长进行比较。

16.设子弹的质量为0.01kg,速度为1.0×103m·s-1。试通过计算说明宏观物体主要表现为粒子性,其运动服从经典力学规律(设子弹速度的不确定程度为10-3m·s-1)。 17.什么是屏蔽效应和钻穿效应?怎样解释同一主层中能级分裂及不同主层中的能级交错现象?

18.请写出原子序数为24的元素的名称,符号及其基态原子的电子结构式,并用四个量子数分别表示每个价电子的运动状态。

19.通过计算说明,原子序数为12,16,25的元素原子中,4s和3d轨道哪个能量高? 20.请解释原因:

⑴ He+中3s和3p轨道的能量相等,而在Ar+中3s和3p轨道的能量不相等。 ⑵ 第一电子亲和能为Cl>F,S>O;而不是F>Cl,O>S。 21.已知M2+离子3d轨道中有5个电子,试推出: ⑴ M原子的核外电子排布;

⑵ M原子的最外层和最高能级组中电子数各为多少; ⑶ M元素在周期表中的位置。

22.判断下列各对元素中哪一种元素的第一电离能大,并说明原因。

S与P Al与Mg Sn与Sb Cu与Zn Cs与Au 23.判断半径大小并说明原因:

⑴Sr与Ba ; ⑵Ca与Sc; ⑶Ni与Cu; ⑷Zr与Hf; ⑸S2-与S ; ⑹Na+与Al3+ ; ⑺Sn2+与Pb2+ ; ⑻Fe2+与Fe3+

24.为什么原子的最外,次外层,和外数第三层依次最多只能有8,18和32个电子? 25.某元素原子M层电子比最外层的N层电子多8个,它为何周期何族元素,用四个量子数表明每个价电子的状态.

26.原子结构理论预测:(1)原子核外出现第一个g(l=4)电子的元素的原子序数是多少?(2)第七周期为未满周期,若添满后应有多少种元素? 第八周到期有多少种元素?(3)有人通过理论研究发现,第114号元素应该有一定的稳定性,试指出它属于哪一周期?哪一族? 27.比较下列各对原子或离子半径的大小,并申述理由.

(1) 原子半径:Ca和Sc;Ni和Cu;Zr和Hf;Cs和Sr;K和Ag

(2) 离子半径:Mg2+和Al3+;La3+和Ce3+;F-和Na+;S2-和Cl-;K+和Cu+ 28.将下列原子按指定性质大小的顺序排列, 并申述理由. (1)电离能:Mg Al P S

18

(2)电子亲合能:F Cl N C (3)电负性:P S Ge As

第三讲 配位化合物 3-1配位化合物的命名

一般服从于无机化合物的命名原则,内界与外界之间叫“某化某”;“某酸某”;“氢氧化某”等。 一、内界命名:

1、次序:配位体数→配位体名称→合→中心离子或原子(氧化数<罗马数字>) 2、配位名称顺序:

无机简单离子→复杂离子→有机离子→NH3-H2O→有机分子。如:[Co(NH3)3H2OCl2]+

(1)多类配体如果不只一个时,按配位原子元素符号的英文字母顺序命名,如: [CoClNO2(NH3)4]+:一氯·一硝基·四氯合钴(Ⅲ)离子 [Co(CO)4(NH3)2]+:四羰基·二氨合钴(Ⅲ)离子

(2)配位原子相同,配体中原子数目也相同,则按结构式中与配位原子相连的原子的元素符号字母顺序排列,如:[Pt(NH2)(NO2)(NH3)2]:氨基·硝基·二氨合钵(Ⅱ)

(3)多核配合物命名:在桥联基前冠以希腊字母μ-,桥基多于一个时,用二(μ-),三(μ-)。如:

[(NH3)5Cr-OH-Cr(NH3)5]Cl5 五氯化·μ-羟·十氨合二铬(Ⅲ) 五氯化·μ-羟·二(五氨合二铬(Ⅲ))

3、电中性配体:一般保留原来命名,而CO、NO、O2和N2作为配体时,为羰基、亚硝基、

双氧、双氮。

4、同一配体若配位原子不同,则名称不同,如-NO2硝基、-ONO亚硝酸根、-SCN硫氰酸根、-NCS异硫氰酸根 5、常见配体缩写:

乙二胺(en)、吡啶(py)、硫脲(tu)、草酸根(ox-)、乙酰丙酮根离子(acac-)、乙二胺四乙酸根离子(edta-) 例

1、[CrCl2(NH3)4] Cl·2H2O 2、[Pt(NO2)(NH3)(NH2OH)(py)]Cl

3-2 配合物的异构现象

1、构造异构:配合物的实验式相同,但中心原子于配体间连接的方式不同而引起的异构。

主要有:

(1)离解异构:如[Co(NH3)5Br]SO4和[Co(NH3)5SO4]Br

19

(2)水合异构:如[CrCl(H2O)5]Cl·H2O和[CrCl2(H2O)4]Cl·2H2O (3)配位异构:如[Co(en)3][Cr(CN)6]和[Cr(en)3][Co(CN)6] (4)键合异构:如[Co(ONO)2(NH3)4]Cl和[Co(NO2)2(NH3)4]Cl

(5)聚合异构:如[Co(NH3)6][Co(NO2)6]和[Co(NH3)4(NO2)2][Co(NH3)2(NO2)4] 2、立体异构: 配合物的实验式和成键原子连结方式都相同,但配体在空间排列方式不同而引起的异构。又分为:

(1)几何异构:配体在空间相对位置不同而产生的异构现象。如:[Pt(NH3)2Cl]有两种异构体——顺式和反式

橙黄色,μ>0,溶解度大 亮黄色,μ<0,溶解度小

[CrCl2(NH3)4]+也有2种异构体,顺式和反式八面体Ma3b3存在面式、径式,如:[Co(CN)3(NH3)3].

常见化合物类型与几何异构体数关系

平四方形 MX4 异构体数 1 八面体

MX6

异构体数 1

MX3Y 1 MX5Y 1

MX2Y2 2 MX4Y2 2

MX2Y2 2 MX3Y3 2

MXY2K 3 MX4YZ 2

MX3Y2Z 3

MX2Y2Z2 5

(2)旋转异构:若一个与其镜像不能叠合,则该分子与其镜像像互为旋光异构,如[Pt(NH3)2(NO2)2Cl]的旋光异构体为:

例:画出下列配合物可能存在的立体异构体。 (1)[PtClBrNH3Py] (2)[PtCl2(NO2)(NH3)2] 3—3 配合物价键理论 一、基本要点

1、中心原子M和配体之间的结合是由M提供空轨道,L提供孤电子对而形成的配位键。有σ配键、π配键。

2、中心原子(或离子)提供的空轨道,必须进行杂化,杂化轨道的类型决定了配离子的空间构型和稳定性。如:

sp(直线)、sp2(平面三角)、sp3(正四面体)、dsp2(平面正方)、dsp3(三角双锥)、d2sp2(d4s,四方锥)、d2sp3(sp3d2,八面体)

3、中心原子由(n-1)dnsnp轨道杂化而形成的配合物称内轨型配合物;而由nsnpnd轨道杂化而形成的配合物称外轨型化合物,内轨型配合物稳定性大于外轨型化合物。 4、高自旋和低自旋配合物

1与自由离子比较,形成配合物后,体系成单电子数未变,而磁矩(μ)未变,称为高自旋配合物,一般为外轨型配合物,而主量子数相同的价轨道杂化成键。

20

2、氧化还原性:

(1)同一周期主族元素和过渡元素最高价含氧酸氧化性随原子序数递增而增强。如: H4SiO4

如: BrO4->MnO4-; SeO42->Cr2O72-

(3)同一元素不同氧化态的含氧酸中,低氧化态的氧化性较强。

如: HClO>HClO2;HNO2>HNO3(稀)

(4)在同一主族中,各元素的最高氧化态含氧酸的氧化性,大多是随原子序数增加呈锯齿形升高;

HNO3 >H3PO4 H6TeO6 ;HClO4H5IO6 低氧化态则自上而下有规律递减. HClO>HBrO>HIO

(5) 浓酸的含氧酸氧化性比稀酸强;含氧酸的氧化性一般比相应盐的氧化性强;同一种含氧酸

盐在酸性介质中比在碱性介质中氧化性强. 3. 影响含氧酸(盐)氧化能力的因素:

(1) 中心原子结合电子的能力: 含氧酸(盐)的氧化能力系指处于高氧化态的中心原子在它转变为低氧化态的过程中获得电子的能力,这种能力与它的电负性、原子半径及氧化态等因素有关。若中心原子半径小,电负性大,获得电子的能力强,其含氧酸(盐)的氧化性也就强,反之,氧化性则弱。

同一周期的元素,自左往右,电负性增大,半径减小,所以它们的最高氧化态含氧酸的氧化性依次递增。

同一族元素,从上至下,电负性减小,原子半径增大,所以低氧化态含氧酸(盐)的氧化性依次递减。高氧化态氧化性锯齿形变化,则是由于次级周期性引起的。

(2) 含氧酸分子的稳定性: 含氧酸的氧化性和分子的稳定性有关,一般来说,如果含氧酸分子中的中心原子R多变价,分子又不稳定,其氧化性越强。含氧酸分子的稳定性与分子中R-O键的强度和键的数目有关。键的数目越多,R-O键强度越大,要断裂这些键,使高氧化态的含氧酸还原为低氧化态甚至为单质,就比较困难,所以,稳定的多变价元素的含氧酸氧化性很弱,甚至没有氧化性。

R-O键的强度和数目与R的电子构型、氧化态、原子半径、成键情况以及分子中带正电性的H原子对R的反极化作用等因素有关。

例如:在HClO、HClO2、HClO3、HClO4系列中,由于酸分子中R-O键数目依次增加,R-O键键长减小,稳定性依次增加,因而,氧化性随氯的氧化态增加而依次减弱。HClO>HClO2>HClO3>HClO4

低氧化态含氧酸氧化性强还和它的酸性弱有关,因为在弱酸分子中存在着带正电性的氢原子,对酸分子中的R原子有反极化作用,使R-O键易于断裂,同理可以解释:①为

31

什么浓酸的氧化性比稀酸强?因为在浓酸溶液中存在着自由的酸分子,有反极化作用。②为什么含氧酸的氧化性比含氧酸强?因为含氧酸盐中Mn+反极化作用比H+弱,含氧酸盐比含氧酸稳定。

(3) 其他外界因素的影响: 溶液的酸碱性、温度以及伴随氧化还原反应同时进行的其他非氧化还原过程(如水的生成、溶剂化和反溶剂化作用、沉淀生成、缔合等)对含氧酸的氧化性有影响。

三、含氧酸盐的热稳定性规律 1、同一盐及其酸稳定性次序是:

正盐 > 酸式盐 > 酸

Na2CO3 > NaHCO3 > H2CO3

分解温度Co ~1800 270 室温以下 2、同一酸根不同金属的含氧酸盐,热稳定性次序是:

碱金属 > 碱土金属 > 过渡金属 > 铵盐

K2CO3 CaCO3 ZnCO3 (NH4)CO3 分解温度Co 1800 825 300 58

3、同一酸根同族金属离子盐,热稳定性从上到下依次递增:

BeCO3 MgCO3 CaCO3 SrCO3 BaCO3

分解温度Co 100 350 825 1350 1450 4、同一成酸元素其高氧化态含氧酸盐比低价态稳定

KClO4> KClO3> KClO2> KClO

5、不同价态的同一金属离子的含氧酸盐,其低价比高价稳定:

Hg2(NO3)2>Hg(NO3)2

6、酸不稳定其盐也不稳定,酸越稳定,其盐也较稳定,碳酸盐,硝酸盐,亚硫酸盐,卤酸盐的稳定性都较差,较易分解,而硫酸盐,磷酸盐较稳定。其酸也较稳定,难分解。

如:盐 Na3PO4 > Na2SO4 > Na2CO3 > NaNO3 分解温度Co 不分解 不分解 1800 380

用离子极化理论可以对上述规律做出定性解释,金属离子的反极化作用越大,该盐的热稳定性就越差。

四、含氧酸的热分解产物

热分解产物,不仅与酸有关,与其正离子的性质也有关,多数情况下分解为酸酐和金属氧化物或其他产物:CaCO3=CaO+CO2↑ (一)对于硝酸盐的热分解有三种情况:

1、碱金属,碱土金属的硝酸盐分解,产生亚硝酸盐和O2, 如:

2KNO3=2KNO2+O2↑

32

2、电化学序在Mg-Cu之间的金属,因亚硝酸盐不稳定,其分解产物为M氧化物,NO2和

O2,如:2Pb(NO3)=2PbO+4NO2↑+O2↑

3、电位顺序Cu以后的M,因其M氧化物不稳定,分解产生M单质,如:

2AgNO3=2Ag+2NO2+O2↑

(二)对于铵盐的热分解产物与含氧酸根是否具有氧化性密切相关,若无氧化性,分解成酸

酐和其他产物,有氧化性要进一步分解为低价产物。

2(NH4)2CO3=2NH3↑+CO2↑+H2O 4NH4ClO4=2N2↑+6H2O+4HCl+6O2↑ 2NH4NO3=N2↑+4H2O+O2

(三)对于稳定酸的酸式盐,热分解失水,形成偏酸盐或焦酸盐。如:

NaH2PO4=NaPO3+H2O 2Na2HPO4=Na4P2O7+H2O 五.P区元素的次级周期性

次级周期性是指元素周期表中,每族元素的物理化学性质,从上向下并非单调的直线式递变,而是呈现起伏的”锯齿形”变化.对于P区元素,主要是指第二.第四.第六周期元素的正氧化态,尤其是最高氧化态的化合物所表现的特殊性. 1.第二周期P区元素的特殊性

(1)N.O.F的含氢化合物容易形成氢键,离子性较强。

(2)它们的最高配位数为4,而第3周期和以后几个周期的元素可以超过4。 (3)多数有生成重键的特性。

与同族元素相比,除稀有气体外,B、C、N、O、F内层电子少,只有1s2,原子半径特别小(同一族中,从第二周期到第三周期原子半径增加幅度最大),价轨道没有d轨道等特点,所以第二周期元素的电子亲和能(EA)反常地比第三周期同族元素的小。在形成化合键时,在键型、键数和键能等方面也有不同于同族元素的特殊性,影响到这些元素的单质和化合物的结构和性质。 2.第四周期P区元素的不规则性

最突出的反常性质是这些元素最高氧化态化合物(如氧化物;含氧酸及其盐)的稳定性小,而氧化性则很强.

第四周期p区元素,经过d区长周期中的元素,此外成增加了10个d电子,次外层结构是3s23p63d10,由于d电子屏蔽核电荷能力比同层的s、p电子的要小,这就使从Ga→Br,最外层电子感受到有效核电荷Z*比不插入10个d电子时要大,导致这些元素的原子半径和第三周期同族元素相比,增加幅度不大。由原子半径引起的这些元素的金属性(非金属性)、电负性、氢氧化物酸碱性、最高氧化态含氧酸(盐)的氧化性等性质都出现反常现象,即所谓“不规则性”。最突出反常性质是这些元素最高氧化态化合物(如

33

氯化物、含氧酸及其盐)的稳定性小,而氧化性则很强。如ⅦA高溴酸(盐)氧化性比高氯酸(盐)、高碘酸(盐)强得多。ⅥAH2SeO4的氧化性比H2SO4(稀)强,中等浓度的H2SeO4就能氧化Cl-→Cl2,而浓H2SO4和NaCl反应→HCl;ⅤAH2AsO4有氧化性,在酸性介质中能将I-氧化为I2,而H3PO4基本上没有氧化性,浓H3PO4和I-反应只生成HI。

导致第四周期p区元素性质不规则性的本质因素是因为第三周期过渡到第四周期,次外层电子从2s22p6变为3s23p63d10,第一次出现了d电子,导致有效核电荷Z*增加得多,使最外层的4s电子能级变低,比较稳定。 3.P区金属6S2电子的稳定性

周期表中P区下方的金属元素,即第六周期的Tl;Pb;Bi;Po在化合物中的特征氧化态应依次为+Ⅲ;+ Ⅳ;+Ⅴ和+Ⅵ,但这四种元素的氧化态表现反常,它们的低氧化态化合物,既Tl(Ⅰ);Pb(Ⅱ);Bi(Ⅲ);Po(Ⅳ)的化合物最稳定.长期以来,学者们认为这是由于这四种元素存在6S2惰性电子对之故,这种现象为西奇威克最先注意到,并称之为”惰性电子对效应”.

产生惰性电子对效应,原因是多方面的,仅从结构上考虑主要有:从第四周期过渡到第五周期,原子的次外层结构相同,所以同族元素相应的化合物性质改变较有规律。从第五到第六周期,次外电子层虽相同,但倒数第三层电子结构发生改变,第一次出现了4f电子,由于f电子对核电荷的屏蔽作用比d电子更小,以使有效电荷Z*也增加得多,6s2也变得稳定,所以第六周期p区元素和第五周期元素相比,又表现出一些特殊性。

六.无机化合物的水解性

无机物的水解是一类常见且十分重要的化学性质。在实践中我们有时利用他的水解性质(如制备氢氧化铁溶胶等),有时却又必须避免它的水解性质(如配置SnCl2溶液等)。

无机化合物中除强酸强碱盐外一般都存在着水解的可能性。众所周知,一些典型盐类溶于水可发生如下的电离过程:

M+A-+(x+y)H2O≒[M(OH2)x]++[A(H2O)Y]-

上式中[M(OH2)x]+和[A(H2O)Y]-表示相应的水合离子,这个过程显然是可逆的,如果M+离子夺取水分子中的OH—离子而释放出H+,.或者A—离子夺取水分子中的H+而释放出OH—离子。那将破坏水的电离平衡,从而产生一种弱酸或弱碱,这种过程即盐的水解过程。 1.影响水解的因素 (1)电荷和半径

从水解的本质可见:MA溶于水后是否发生水解作用,主要决定于M+和A-离子对配位水分子影响(极化作用)的大小,显然金属离子或阴离子具有高电荷和较小的离子半径时,他们对水分子有较强的极化作用,因此容易发生水解,反之低电荷和较大离子半径的离子在水中不易发生水解,如:AlCl3,SiCl4遇水都极易水解:

AlCl3 +3H2O=Al(OH)3+3HCl

34

SiCl4+4H2O=H4SiO4+4HCl

相反,NaCl, BaCl2在水中基本不发生水解。 (2)电子层结构

我们知道Ca2+,Sr2+和Ba2+ 等盐一般不发生水解,但是电荷相同的Zn2+,Cd2+ Hg2

等离子在水中却会水解,这种差异主要是电子层结构不同而引起的。Zn2+,Cd2+,Hg2+

等离子是18e-离子,他们有较高的有效核电荷,因而极化作用强,容易使配位水发生水解。而Ca2+,Sr2+和Ba2+等离子是8e-离子,它们具有较低有效核电荷和较大的离子半径,极化作用较弱,不易使配位水发生分解作用,即不易水解。

总之,离子的极化作用越强该离子在水中就越容易水解。有人找到了水解常数的负对数PKh同表示离子的极化能力的Z2/R之间的关系, Na+的Z2/R=2.2×1028C2.M_,PKh=14.48,它基本上不水解,Al3+的Z2/R=43.6×1028C2.M_,PKh=5.14它显著水解,其水解反应式如下:

Al3++6 H2O→[Al(H2O)6] 3+→H3O++[Al(H2O)5OH] 2+

生成的配离子[Al(H2O)5OH] 2+还可以逐级水解。此外还可以看到非稀有气体构型(18e-,9—17e-,18+2e-)的金属离子,他们的盐都容易发生水解。 (3)空轨道

我们知道碳的卤化物如CF4和CCl4遇水不发生水解,但是比碳的原子半径大的硅其卤化物却易水解,如:

SiX4+4H2O= H4SiO4+4HX

对于四氟化硅来讲,水解后所产生的HF与部分四氟化硅生产氟硅酸: 3SiF4+4 H2O= H4SiO4+4H++2SiF62—

这种区别是因为碳原子只能利用2S和2P轨道成键,这就使其最大共价数限制在4,并阻碍水分子中氧原子将电子对给予碳原子,所以碳的卤化物不水解。然而硅不仅有可利用的3S和3P轨道形成共价键,而且还有空的3d轨道,这样,当遇到水分子时,具有空的3d轨道的Si4+接受水分子中氧原子的孤电子对,而形成配位键,同时使原有的键削弱,断裂。这就是卤化硅水解的实质,由于相同的理由,硅也容易形成包含SP3d2杂化轨道的SiF62—配离子。

NF3不易水解,PF3却易水解也可以用同样的理由解释。

硼原子虽然利用2S和2P轨道成键,但是因为成键后在2P轨道中还有空轨道存在,所以硼原子还有接受电子对形成配位键的可能,这就是硼的卤化物为什么会强烈水解的原因。如:BCl3的水解反应可认为是从氧原子的孤电子对给予硼原子开始的;

H2O+BCl3→[H2O→BCl3] →HOBCl2+HCl

↓2 H2O

B(OH)3+2HCl

除结构因素影响水解反应以外,增高温度往往使水解加强,例如,

35

本文来源:https://www.bwwdw.com/article/c7p6.html

Top