14种策略7大模型绝杀排列组合

更新时间:2024-01-25 23:41:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

重庆市万州二中 孙宇 专题复习——排列、组合的应用

14种策略7大模型“绝杀”排列组合

排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握模型和解题方法,识别并化归到模式,熟练运用,是解决排列组合应用题的有效途径。

第一部分——组合的常见技巧

策略一:合理分类与准确分步策略

分类相加:每类方法都能独立地完成这件事 ;分步相乘:只有各个步骤都完成了,才能完成这件事。 【例1】有11名外语翻译人员,其中5名是英语译员,4名是法语译员,另外两名是英、法语均精通,从中找出8人,使他们可以组成翻译小组,其中4人翻译英语,另4人翻译法语,这两个小组能同时工作,问这样的8人名单可以开出几张?

44314224【解析】:按只会英语的有4名、3名、2名分类C5C6?C5C2C5?C5C2C4

【例2】见后面【例19】

【特别提醒】 在解排列组合问题时,一定要以两个原理为核心。按元素的性质分类,按事

情发生的过程分步。综合题通常是整体分类再局部分步。

【类题演练】

1、360的正约数(包括1和360)共有 个。 (答案24) 2、工厂实验生产中需依次投入2种化工原料,现有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放. 那么不同的实验方案共有____种 (答案15); 3、公司招聘进8名员工,平均分给下属的甲、乙两个部门.其中两名英语翻译人员不能同给一个部门;另三名电脑编程人员也不能同给一个部门,则不同的分配方案有______种 (答案36); 4、f是集合M??4,5,6?到集合N???1,0,1?的映射。 (答案①7;②9) ①若f(4)?f(5)?f(6),则映射共有 个 ; ②若xf(x)?3为奇数,则映射共有 个。 5、(2010湖南卷理科7)在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) (答案B) (A)10 (B) 11 (C)12 (D)15

6、(2010浙江卷17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复。若上午不测“握力”项目,下午不测“台阶”项目,其余项目上下午都各测试一人,则不同的安排方式共有 种(用数

- 1 -

重庆市万州二中 孙宇 专题复习——排列、组合的应用

字作答)。 ( 答案264)

策略二:不同元素可重复的分配求幂法

不同元素重复的分配问题要区分两类元素:一类可以重复,另一类不能重复,从不可重复的一类进行分配,“人选一个房间,房间不是住一个人”。

【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) (A)8 (B)3 (C)A8 (D)C8

【解析】:冠军不能重复,但同一个学生可获得多项冠军,因此共有8种不同的结果。所以选A 【类题演练】

1、有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(答案3) 2、有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (答案4) 3、将3封不同的信投入4个不同的邮筒,则有多少种不同投法? (答案4)

33433833策略三:相邻问题捆绑法

题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

高☆考♂资♀源

本文来源:https://www.bwwdw.com/article/c69w.html

Top