Correspondence Transfer for the Registration of Multimodal Images
更新时间:2023-08-12 03:16:01 阅读量: 外语学习 文档下载
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
CorrespondenceTransferfortheRegistrationofMultimodalImages
ZhaoYiStefanoSoatto
ComputerScienceDepartment,UniversityofCalifornia
LosAngeles,CA90095
{zyi,soatto}@cs.ucla.edu
Abstract
Geneexpressiondataprovideinformationonthelo-cationwherecertaingenesareactive;inorderforthistobeuseful,suchalocationmustberegisteredtoananatomicalatlas.Becausegeneexpressionmapsareconsiderablydifferentfromeachother–theydisplaytheexpressionofdifferentgenes–andfromtheanatomicalatlas,thisproblemiscurrentlyaddressedeitherman-uallybytrainedexperts,orbyneglectingallimagein-formationandonlyusingthepre-segmentedboundaries.Inthismanuscriptweconcentrateondatadiscrepancymeasuresthattakeintoaccountimageinformationwhenthisispresentinboththetargetandtemplateimages.Weexploitsuch“bi-lateral”structurestodrivethecor-respondenceprocessinregionswheretheintensityin-formationisinconsistent,analogouslytoa“motionin-painting”task.Althoughnogroundtruthcanbeestab-lished,andpriorinformationclearlyplaysakeyrole,weshowthatourmodelachievesdesirableresultsonsubjectivetestsvalidatedbyexpertsubjects.
1.Introduction
Establishingcorrespondencebetweendifferentim-agesiskeyforustoinferpropertiesoftheunderlyingscene.Thebasicassumptionisthatthereissomethingcommonbetweentheimages,modulodomaindeforma-tions(e.g.inducedbyviewpointchangesorbyscenede-formations)andrangedeformations(e.g.contrasttrans-formationsinducedbychangesinillumination,orbychangesofimagingmodality).Suchcommonalitymaybeabstract,ratherthanphysical,forinstancewhentheimagesportrayobjectsinthesamecategory,say“hip-pocampus,”eventhougheachimageportraysadifferentphysicalobject.Acrucialcomponentofanyapproachtoregistrationisthemechanismusedtocomparetwo(de-formed)images:Whilerange(intensity)similarityisa
naturalchoice,forinstancemeasuredinthesenseofL2[30]orTotalVariation[26],extremecontrastchangeshavebeensuccessfullytackledusingMutualInforma-tion[22].
Themostrecentdevelopmentsinmedicalimag-ing,however,arechallengingthesepremisesaltogether:Geneexpressiondataaregeneratedwithdifferentstains,highlightingdifferentgenes,withtheexpressgoalofmakingeachresultingimageasdifferentaspossiblefromtheothers,inordertomaximizetheirinformationcontent.Nevertheless,thepractitionerrequiresregister-ingsuchimagestoanatomicalatlases,inordertoascribetheactivityofagenetoaparticularanatomicalstruc-ture(Fig.1).Thesamegoesforregisteringfunctionalimaging(e.g.F-MRI)toanatomicalatlases,ataskthatisbyandlargeperformedmanuallybytrainedphysicians.Whilethisisdoableforahandfulofsubjects,system-aticstatisticalstudiesofgeneexpressiondatainlargepopulationscallforsomedegreeofautomation.Butwhatdoesitmeantoestablishcorrespondence,whenthereisnocommonunderlyingstructure,andwhenthedataaredesignedtobeasdifferent(“indepen-dent”)fromeachotheraspossible?Clearlyexpertpriorknowledgeofanatomyandbiologicalfunctionalityisin-dispensable,andseveralresearchgroupsareactivelyen-gagedinmodeling,learningandenforcingshapepriorsinsegmentationandregistration[16,25].Nevertheless,anyregistrationalgorithmmustalsotakeintoaccounttheavailabledata,andthisproblemhasbeenlargelyoverlookedintheliterature,wheremostlystandarddatatermsareused[15,24],orwhereonlytheboundaryin-formationistakenintoconsiderationandtherestofthedeformation eldisdeterminedbygenericregulariza-tion[8,20,27].Therefore,inthismanuscriptwefocusourattentionondevisingsuitabledatatermsforregister-ingmulti-modalimages.Ourgoalistodesignaschemetotakevisiblegeometricstructures(onecouldcallthem“landmarkregions”)intoaccountwhentheyarepresent
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
Figure1.Geneexpressiondata(top-right)andamanuallyse-lectedanatomicaltemplate(top-left).Detailedcorrespondenceiscurrentlyperformedlargelybyhandbytrainedphysicians.Syntheticphantoms(bottom):Certainregionsarevisibleinboththetargetandthetemplate,althoughdeformed,whereasotherregionsarevisibleonlyinoneofthetwo.Thegoalistoexploit“bilateral”regionstodrivethecorrespondenceprocessfor“unilateral”regions.
inbothimages,andusetheirregistrationasboundaryconditionto“guide”thestructuresthatarepresentinoneimage(e.g.geneexpression),butnottheother(e.g.theatlas).Theproblemisbestillustratedwithaphantom,or“cartoon”(Fig.1).Atemplateimage(left)exhibitssomevisiblestructures(e.g.greyregiononthetopleft),andoneisinterestedindeterminingwheresuchstruc-tureislocatedonanatlas(right).Unfortunately,suchastructureisabsentintheatlas!Therefore,weneedto“transfer”correspondenceinformationfromcommon(or“bilateral”)structuresinordertoinferthemotionanddeformationof“unilateral”ones.Onecouldthinkofthisproblemas“motioninpainting”[3],althoughonewheredomainknowledgeplaysaconsiderablerole.Anyapproachthatreliesonrawintensityinformationfailsthistaskbecause,bydesign,oneassumesthatim-agesareequivalentuptodiffeomorphicdomaintrans-formations[2,16].InFig.2weshowtheeffectsofacommonintensity-basedalgorithmonregisteringthephantomsofFig.1:Bilateralstructuresaremappedcor-rectly,butunilateralonesshrinktoapoint,inducingasingularity(sink)inthewarpingthatisnotphysicallyplausibleinthiscontext(althoughitwouldbeappropri-ateina“growth”model[10]).Thisproblemis
mostly
Figure2.CorrespondenceforthephantomsinFig.1usingonlyintensityinformation(top),usingonlygeometricinfor-mation(middle),andusingthecombinedmodelwepropose(bottom).Ineachcaseweshowthedeformation eld(left)andthemappedtemplate(right).Inthecaseofintensityin-formationalone,unilateralregionsdisappear(top).Inthecaseofgeometricinformationalone,bilateralregionsarenotde-formedcorrectly(middle).Inthecombinedmodel,bilateralregionsaredeformedaccordingtothedata,whereasunilateralregionsaremappedaccordingtogeometricinformation(bot-tom).
addressedincurrentliteraturebyneglectingintensityin-formationaltogether,usinginsteadtheouterboundaryoftheslice.Inthiscase,thedeformationissmooth,butbilateralstructuresarenotmappedcorrectly(Fig.2).Ourgoalistobridgethisgap:Wherebilateralstructuresarepresent,wewanttousethemtoguideourwarping.Unilateralstructures,ontheotherhand,shouldbepre-servedandmappedontotheatlas.Whatweneedisaspatially-varyingcriterionthatusesintensityinforma-tiononlywhereavailable.Wewillformulatethisprob-lemasaprobabilisticinference,wherethelikelihoodofthedataisweightedateachpointbytheprobabilityof
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
therebeingabilateralstructure.2.Formalizationoftheproblem
LetI1,I2:D R2→R+betwoimagesx→Ij(x),j=1,2,andw:D→Dadiffeomorphismofthedomainofoneontotheother.Withinthedomainofeachimageliesaregionofinterest j D,whereasthe“background”D jisassumedsegmented(orequiva-lentlyIjcanbeassumedtohavezerovalueoutside j.)Werepresentregions Dusingthesigneddistance
functionφ(x| )=.
±miny∈ (|x y|),x∈Dwiththepositivesignforx∈ andnegativeotherwise.ThefunctionφisatleastLifschitzcontinuous[19].
Withineachdomain j,assumethatthereareregionsBj j,j=1,2(notnecessarilysimplyconnected)thathaveadistinctphotometricsignaturesothattheycanbedetectedbyalow-levelimageprocessingalgo-rithm.Wewillmakethisprecise,andindeedwewillrelaxthisassumptionlater;fornow,assumethattheregionsBj,j=1,2areknown.Wecallthesebilat-eralregions,inthesensethattheyaredetectedinbothimages(Fig.1).Ontheotherhand,thereareregionsU jthataredetectedinoneimagebutnottheother,whichwecallunilateral.ForthesakeofillustrationwewillassumethatU 1.ThisscenarioisdisplayedinitsmostelementaryforminFig.1.
Ourmodelisbasedonthepremisethat,locallyaroundbilateralregions,thewarpingwisdeterminedbyintensityinformation,whereasawayfrombilateralregions,whereintensityisconstantorinconsistentbe-tweenthetwoimages(e.g.aroundunilateralregions),thediffeomorphismisdeterminedbythegeometryoftheregions 1, 2,aswellasbygenericregularizers.Theseassumptionscanbetranslatedintoasimplegen-erativemodel
I1(w(x))=I2(x),x∈ 2∩Bσ(B2)
B1=w(B2)
(1)φ(w(x)| 1)=φ(x| 2),x∈DwhereBσ(C)isaregionincludingCbyamarginσ>0(e.g.theunionofCwithacoveringofballsofradiusσaround C).Wewill rstreviewcriteriatoinferthediffeomorphismwbasedongeometricinformationonlyinSect.2.2(i.e.neglectingthevalueofIj(x),x∈ j);thenbasedonphotometricinformationonly(i.e.ontheintensityvalueoftheimages)inSect.2.3,and nallydiscussourmodelinSect.2.4,forwhichwewillprovideaprobabilisticinterpretationinSect.2.5.Beforedoingso,however,wediscusstheissueofvalidation.
2.1.Onvalidation
Naturally,becausethereisnodatatosupportcor-respondenceofunilateralstructures,theresultwillbeadirectconsequenceofourassumptions(or“model”,“prior”or“regularizers”,dependingontheparlanceofthescienti cdomainofpreference).Inthissense,theproblemisbothscienti callyill-de ned(i.e.non-falsi able),andmathematicallyill-posed(therearein- nitelymanysolutionsthatarenon-continuouslyde-pendentontheinitialconditions).Asaconsequence,“groundtruth”cannotbeestablished–similartoIn-painting[3]–andtheproblemistautologicallyde nedbyitssolution.Ultimately,thequalityofourresultcanonlybejudgedsubjectivelyonexperimentsperformedbyhighlytrainedanatomiststhatcanestablishsuchacorrespondencebasednotontheavailabledataalone(aswedo),butbasedonhigh-levelknowledgethatisnotavailabletotheuntrainedeye,re ectingtheclinicalvalueofaproposedscheme.
2.2.Geometry-drivencomponentcost
Thesimplestmodeltoperformregistrationbasedonlyontheshapeoftheregions jcrepancytermbetweenφ1(x)=.istominimizeadis-φ(x| 1)andφ2(x)=.
φ(x| 2),forinstancetheL2norm.Becausethedif-feomorphismisin nite-dimensional,theproblemisill-posed,henceweneedtoimposesomeregularization,forinstancetheL2normofitsgradient:
w =.argminΦ.
w
geom+βΦreg=
=.1|φβ1(w(x)) φ2(x)|2+| w(x)|2(2)
D2
2dx
whereβ>0isatuningparameterand|v|2=.
vTvde-notesthesquaredtwo-normofavector.Ofcoursemoreelaboratemodelsandtechniquescanbeemployed,andthereaderisreferredtotheliterature,forinstance[1].However,thissimpleonesuf cesforustointroduceourmodeltocombinegeometricwithintensityinformation.Wereviewthesole-intensitymodelnext.
2.3.Intensity-drivencomponentcost
Correspondencebasedonintensityinformationisa eldalmostasbroadasComputerVisionitself,soobvi-ouslynofairreviewoftheliteraturecanbeprovidedinthisvenue.Wewillchooseoneofthesimplestmodelsthatcanserveourpurpose,namelytheL2matchingcri-terionthatcorrespondstorestrictingtheclassicalHorn
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
andShunk ow[11]totheregionsofinterest:
w =argmin.
w
Φint+βΦreg=
=.
1|Iβ1(w(x)) I2(x)|2+| w(x)|2dx.
2∩Bσ(B2)2
2(3)Thismodelisratherrestrictive,inthatitdoesnotal-lowintensityvariationsamongthetwoimagesandas-sumesthattheyaresimplydiffeomorphicallyequiva-lent[10,16].Itcanberelaxedbyallowingsimple(global)changesincontrastandscaling,eitherviapre-processing,orbyaugmentingthemodelwithadditionalparametersthatcanbeinferredalongwiththewarpingw .Moregenerally,thecostfunctioncanbemodi edbyallowingtheintensitiestobedifferent,solongasthemutualinformationbetweenthetwoimagesismax-imized[15,24,29].OfcourseothervariationsusingotherLpnorms[12,28],totalvariation[26],Kullback-Lieblerdivergence[6],Bhattacharyadistancesbetweenregionhistograms[7],oramyriadofdifferentregular-izerscanalsobeemployed.Also,thefunctionalabovecanbemadesymmetricwithrespecttowhichimage(inourcaseI1)ismappedtowhich,byallowingtwodiffeo-morphismstowarpbothimagestoacommontemplate[17].
binedfunctionalandbilateralregion
detection
Aswehaveanticipated,ourapproachconsistsofus-ingintensityinformation(orotherintensitystatistics,forinstancegradienthistograms)wheresalientregionsaredetectedinbothimages.Followingthemodelabove,thissimplytranslatesintoafunctionaloftheform
Φ(w)=
1
2
|I1(w(x)) I2(x)|2χ D
2∩Bσ(B2)(x)++α
2
|φ1(w(x)) φ2(x)|2χ c2∪Bcσ(B2)(x)++β
2
| w(x)|2dx(4)
whereχS(x)isthecharacteristicfunctionofasetS,α>0isatuningmultiplier,andthesuperscriptcde-notesthecomplementinD.
Now,theuseofthecharacteristicfunctionsaboveas-sumesthatthebilateralregionsBjhavebeendetected,andthisisusuallyaccomplishedbyalow-levelvisionalgorithm.Likeanyotherdecisionproblem,thiswillin-volveselectingathresholdonsomestatisticoftheimageintheneighborhoodofBj,involvingtheprobabilitythat
xbelongstoit.Forinstance,onecancomputelikelihoodratiosbasedonthegradientoftheimage,orbetteryetlookforextremaofoperatorsinscale-space[14].Ratherthanassumingthatthisdecisionhasbeenmadeforus,wewillsimplyweightthegeometricandintensitytermsatapointxbytheprobabilitythatsuchapointbelongstoa“structure,”usingthesamecriterionthatalow-levelstructurecriterionwoulduse.Forthesakeofillustra-tion,wewillusethenormalizedgradientofGaussianscale-spaceoftheimage,following[14],thatisequiva-lenttoassumingP(x∈B2)=| normI2(x)|∈[0,1].Naturally,forB2tobeabilateralregion,itwillhavetohaveacorrespondenceinimageI1,soitisnotsuf -cienttoevaluatethegradientatI2,wemustalsoevalu-ateitatI1,warpedviaw,sothatthecriterionbecomes| normI1(w(x))|·| normI2(x)|.Wewillwritethisintermsofprobabilitiesinthenextsubsection,anddiscusshowtoextendittomoregeneraldiscrepancyfunctionssuchasmutualinformationinSect.3;fornowwejustnoticethatthecostfunctionalabovebecomes
Φ(w)=
1
|I1(w(x)) I2(x)|2| normI1(w(x))|·D2
·| x)|+α
normI2(2
|φ1(w(x)) φ2(x)|2·
·(1 | Iβ
norm1(w(x))|·| normI2(x)|)+| w(x)|22
dx.
(5)Thisfunctionalonlyconsidersintensitywherethenor-malizedscale-spacegradientislargebothinthetargetimageandinthewarpedtemplate.Thisonlyhappensonandaroundbilateralregions,toanextentthatdependsonthescaleofsuchregions(see[14]fordetailsonau-tomaticscaleselection).Wheresuchconditionsarenotsatis ed,thegeometrictermandthegenericregularizerdrivetheenergy.Anaddedbene tisthat,becausewehaveassumedthattheimageshavebeenmaskedsothatthebackgroundiszero,wecansimplyperformtheinte-gralonDwithoutrestrictingportionsofitto 2.
TominimizeΦ(w),variationalcalculusyieldsthe rstvariation(forsimplicityweonlyconsiderU 1)δΦ
δw
=(I1(w(x)) I2(x)) I1(w(x))··| normI2(x)|+α(φ1(w(x)) φ2(x)) φ1(w(x))·
·(1 | normI2(x)|) β 2w(x)
(6)
with 2theLaplacianoperator.Bygradientdescentwithbacktrackinglinesearch[23]weobtaintheasso-ciatedEuler-Lagrangeequations,parameterizingthede-
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
scentdirectionbyanarti cialtimet≥0:
w t= δΦ
δw
.(7)Thetemporalandspatialgradientsareapproximatedby nitedifferencemethods.
Again,thismodelonlyusesthesimplestintensityterm,andthesimplestgeometricterm.Ouremphasisisinhowtocombinethetwo.Onecanconceivewaysinwhichthisapproachcanbeextendedtomorecomplexfunctionals,anissuewediscussinSect.3.
2.5.Probabilisticinterpretation
Informalterms,ourgoalcanbestatedasseekingthemaximuma-posterioriprobabilityofadiffemorphicwarping,thatis
w =.arginfw
logp(w|I1,I2)=
=arginfw
logp(I1,I2|w)p(w).
(8)
Thesecondterm,logp(w),canbeeasilyrecog-nized, inthemodel(5),asthegenericregularizer
12likelihoodD| w(x)|dx.Soweconcentrateonthelog-termlogp(I1,I2|w).Thiscanbeobtainedviap(I1,I2|w)=p(I1|I2,w)p(I2).Tothisend,themod-elsproposedby[18]couldbeemployed,inprinciple,sowhatweneedtocomputeisp(I1|I2,w).Now,againinpurelyformalterms,wecouldrepresenttheprobabil-ityofmatchingbilateralregionsasP(B1 B2);thenwhatwewishtocomputeis
p(I1|I2,w)=p(I1|I2,w,B1 B2)P(B1 B2)+
+p(I1|I2,w,U )(1 P(B1 B2)).(9)Now,thisisjustformalnotation.Thedif cultycomesinwhenwetrytowriteexplicitlytheprobabilitiesabove,becausetheconditionB1 B2isspeci ctoeachpointx∈D,soagainwehavetospecifythespatialstatisticsoftheimage,whichwouldleadtoaninferenceproblemwhereallpossiblecombinationsofstatesarepossibleandtime-consumingMarkov-ChainMonteCarlometh-odsbecomenecessaryratherthansimplelocaldescentalgorithms.
So,insteadofattemptingtocomputetheabovelike-lihood,wewillapproximateitbyassumingthatallpix-elsareindependent,andcomputinganaverage(expec-tation) overpixelsoftheprobabilitye 1|I1(w(x)) I2(x)|2 e 1
)) φ2(x)|2|φ1(w(xB1 B2
U
(10)
which,modulotechnicalities,shouldconvergeto(4),the“stiffversion”ofourfunctional(5).
3.Extensions
Whiletheapproachdescribedintheprevioussec-tioncanbeapplieddirectlytosimplesyntheticphantomssuchasthoseinFig.1,applicationtorealmulti-modalimagesrequiresamorepowerfulmodel.
Speci cally,ratherthanL2,weusemutualinforma-tion[21]betweenthedeformedtemplateI1 wandthetargetI2,denotedby
Φp(I1,I2|w)
MI(w)=
log
p(I(IdP(I1,I2|w).(11)
1|w)p2)
Estimationforthejointimageintensitydistribution
p(I1,I2|w)iscarriedontheregionofoverlapAofbothimagesbyusing2-DParzenwindowingwithGaussiankernelGσ:
p(I1
1(w(x)),I2(x)|w)=|A|Gσ(I1(w(x))
A
I1(w(y)),I2(x) I2(y))dy.(12)Itisequivalenttoconvolvingthejointintensityhis-togramwithadiscreteapproximationofGσ.ThejointhistogramsofI1 wandI2withintheirregionofoverlapareconstructedbybinningthecorrespondingintensitypairs(I1(w(x)),I2(x)),andthemarginalhistogramsareobtainedbyintegratingoverrowsandcolumns,re-spectively.
Substituting(12)into(11)andrearrangingfollowing[4,9],yieldsthe rstvariationofΦMI:δΦMI
=1 δw |A|·I1,I ·G Lσ w
2
I(I1(w(x)),I2(x)) I1(w(x))
(13)
1
with theconvolutionoperator,andLIw1,I2
givenby
LI(I1,I2|w)
w1,I2
=1+log
pp(Iw)p(I.
(14)
1|2)
InplaceofanL2regularizer,weusea uidmodel[5]wherethedeformationvelocityv(x,t)isgovernedbythesimpli edNavier-Stokesequations
µ 2v+(µ+λ) ( ·v)+f=0
(15)
withµandλviscosityconstants.Herefistheforce eldwhichdrivesthewarpingwintheappropriatedi-rection.Itisderivedfromimageinformation,usuallyset
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
tothe rstvariation.Inthecombinedmodel,wehavef(x,w(x))= δΦMIδΦgeom
δw δw
=
=1|A|G LI1,I2
σ w
I(I1(w(x)),I2(x)) I1(w(x))·1·P(x∈B2) α (φ1(w(x)) φ2(x)) φ1(w(x))·
·(1 P(x∈B2)).(16)Thedeformationu(x)=x w(x)issuccessivelyaccu-mulatedthrough
u
t
=v (v· )u.(17)
Thisextensionisratherstraightforward,theonlysigni cantchangebeingtheexpressionoftheweightP(x∈B2).Sincemutualinformationbetweentwoim-agesisrelatedtopixellocationsthroughintensitydistri-butions,weneedtonotonlyconsidertheintensitygra-dients,butalsothespatialgradientsofintensitydistribu-tions.Adirectextensionoftheargumentfor(5)leadstomultiplyingthetargetintensitygradientsbythespatialgradientofaParzenwindow-basedjointdensityestima-torfromthesamplehistogramsofthetwoimages,i.e.,P(x ∈B2)=| normI· 2(x)|·
LI1,I2 Gσ w I(I1(w(x)),I2(x)) .(18)
2
norm
4.Experiments
Inthissectionwereportasubsetoftheexperimentswehaveconductedtovalidatethemodelproposed.AsdiscussedinSect.2.1,ground-truthcannotbeestab-lishedforcorrespondencetransfersincethereisnocor-respondenceforunilateralregions,sovalidationisper-formedsubjectivelybydomainexperts,andultimateperformancewillhingeonhowourapproachisinte-gratedwithshapepriorsandotherhigh-levelinforma-tion.
Fig.2showstheresultsofapplyingourapproachtothesimplesyntheticphantomsshowninFig.1.Itispatentthatourapproachhasthedesirablepropertyofnotmakingtheunilateralregionsdisappear,andatthesametimeofproperlydeformingbilateralregions.
InFig.3weillustrateourapproachonrealdata.Inordertodoso,wemustuseamoreelaboratediscrep-ancymeasure,asdiscussedinSect.3.Inthetoprowweshowtheresultsobtainedusingonlyanintensitytermwherediscrepancyismeasuredusingmutualinforma-tion.Asitcanbeseen,thedeformationgridis
rather
parisonwithMutualInformation:(top)warping
andregistrationusingmutualinformation,and(bottom)usingourapproach.Noticethatthedarkregioninthetemplateismappedinahighlyirregularfashiontothetarget,andtheitsgeometricstructureisnotpreserved.Ourcombinedmodel,displayedinthebottompartoftheimage,showsamoreplau-sibledeformation eld,withunilateralregionsbeingsmoothlymappedintotheanatomicaltemplate,andbilateralregionscor-rectlydeformed.
irregular,andinparticularthedarkregionoftheleftbe-comes“turbulent”inawaythatisnotcompatiblewithhigh-levelknowledgeofanatomy.Ourapproach(bot-tom),ontheotherhand,showsthatunilateralregionsaremappedsmoothlywhilebilateralfeaturesaredeformedconsistently.AdditionalexamplesondifferenttestdataarereportedinFig.4.
InFig.5weshowsomerepresentativeexperimentswhereourapproachfailstoyieldameaningfulcorre-spondence.Asitcanbeseen,thetemplateisdeformedlocally,sothefoldvisibleinthetargetisnotcorrectlymapped.Thiskindofbehavioristobeexpectedsinceouralgorithmisbasedonadatadiscrepancytermalone,whichencodesbottom-up,low-levelinformationandisoblivioustoanyknowledgeoftheanatomyorphysicsoftheunderlyingstructures.Thiscanbeobviatedbytakinghigh-levelpriorinformationintoaccount,anissuethatisbeyondourscopeinthispaper,whereconsiderableef-fortsareundergoinginthemedicalimagingcommunity.
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
Figure4.Somemorerepresentativeexampleswhereourcom-binedmodelyieldssubjectivelysuccessfulcorrespondenceofunilateralregions.Thetemplate(top-left),andtarget(top-right)aremappedoneontotheotherbyadeformation eld(bottom-left)thatyieldsthedeformedtemplate(bottomright).
4.1.Validationanddiscussion
AswehavediscussedinSect.2.1,nogroundtruthcanbeavailablefortheproblemweaddress.Thatis,unlesshigh-levelpriorknowledgeisbroughttobearthatouralgorithmdoesnotexploit.Ultimately,ouralgo-rithmwillhavetobecomplementedwithshapepriors,similarlytowhatdoneby[13].Fornow,however,welimitourselvestosubjectiveevaluationofourresultsbyexpertanatomists.Atthisstage,cross-validationandotherstatisticaltestscannotbeperformedbecause
there
Figure5.Exampleoflimitationsofourmodel.Fine-scalege-ometricfeatures(e.g.thesmallgaponthetoprightportionoftheatlas)arenotmappedcorrectlybecauseourmodelonlyuseslow-levelinformationandisnotcognizantofanatomicalstructureandconstraints.Itisclearthatpriorknowledgeofthegeometryoftheunderlyinganatomyhastobeenforcedtoachievethereliabilityandprecisionofhumanexperts.
isnosecondarytask(e.g.classi cation)forwhichwecouldhavegroundtruth.Itispossiblethatthesewillbecomeavailableinthefuture(e.g.post-mortemstud-iesofeachindividualsubject),butthatwouldnotbepractical.Ourhopeisthatourmodel,integratedwithsuitableshapepriors,canhelpsciencebyautomatingmulti-modalregistrationtasks.Ourexperimentsshowthatincludinganexplicitmodelofthecorrespondencehypothesisforbilateralversusunilateralregionsthereareimprovementsoverbothtraditionalintensity-basedregistration,aswellasovermutualinformation-basedapproaches.
Acknowledgements
ThisworkwassupportedbyAFOSRFA9550-06-1-0138.WethankGregorioGuidiandAndreaVedaldifortheircommentsandsuggestions,andErh-FangLeeandIvoDinovforprovidingdataandfeedback.
References
[1]M.A.Audette,F.P.Ferrie,andT.M.Peters.Anal-gorithmicoverviewofsurfaceregistrationtechniquesformedicalimaging.MedicalImageAnalysis,4:201–217,2000.3
Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
[2]M.F.Beg,M.I.Miller,A.Trouve,-putinglargedeformationmetricmappingsviageodesic owsofdiffeomorphisms.IJCV,61:139–157,2005.2[3]M.Bertalmio,L.Vese,G.Sapiro,andS.Osher.Simul-taneousstructureandtextureimageinpainting.IEEETrans.ImageProcessing,12:882–889,2003.2,3[4]C.Chefd’Hotel,G.Hermosillo,andO.Faugeras.A
variationalapproachtomulti-modalimagematching.InIEEEWorkshoponVariationalandLevelSetMethodsinComputerVision,pages21–28,2001.5[5]G.E.Christensen,R.D.Rabbitt,andM.I.Miller.De-formabletemplatesusinglargedeformationkinematics.IEEETrans.ImageProcessing,5:1435–1447,1996.5[6]A.C.S.Chung,W.M.WellsIII,A.Norbash,and
W.E.L.Grimson.Multi-modalimageregistrationbyminimisingkullback-leiblerdistance.InMICCAI,pages564–571,2002.4[7]aniciuandP.Meer.Meanshift:arobustap-proachtowardfeaturespaceanalysis.PAMI,24(5):603–619,2002.4[8]C.M.Cyr,A.F.Kamal,T.B.Sebastian,andB.B.Kimia.
2d-3dregistrationbasedonshapematching.InMath-ematicalMethodsinBiomedicalImageAnalysis,pages198–203,2000.1[9]E.D’Agostino,F.Maes,D.Vandermeulen,and
P.Suetens.Aviscous uidmodelformultimodalnon-rigidimageregistrationusingmutualinformation.Med-icalImageAnalysis,7:565–575,2003.5[10]U.Grenander,A.Srivastava,andS.Saini.Characteriza-tionofbiologicalgrowthusingiterateddiffeomorphisms.IEEEInt.Symp.BiomedicalImaging:NanotoMacro,pages1136–1139,2006.2,4[11]B.K.Horn.RobotVision.MITPress,1986.4
[12]D.P.Huttenlocher,G.A.Klanderman,paringimagesusingthehausdorffdistance.PAMI,15:850–856,1992.4[13]M.E.Leventon,W.E.L.Grimson,andO.Faugeras.Sta-tisticalshapein uenceingeodesicactivecontours.InCVPR,volume1,pages316–323,2000.7[14]T.Lindeberg.Principlesforautomaticscaleselection.
Technicalreport,RoyalInstituteofTehnology,Stock-holm,ComputationalVisionandActivePerceptionlabo-ratory,1998.4[15]F.Maes,A.Collignton,D.Vandermeulen,G.Marchal,
andP.Suetens.Multimodalityimageregistrationbymaximizationofmutualinformation.IEEETrans.Med-icalImaging,16:187–198,1997.1,4[16]putationalanatomy:shape,growth,and
atrophycomparisonviadiffeomorphisms.NeuroImage,23:S19–S33,2004.1,2,4
[17]M.I.MillerandL.Younes.Groupactions,homeo-morphismsandmatching:ageneralframework.IJCV,41:61–84,2001.4[18]D.MumfordandB.Gidas.Stochasticmodelsforgeneric
municationsinPureandAppliedMathe-matics,54(1):85–111,2001.5[19]S.OsherandJ.Sethian.Frontspropagatingwith
curvature-dependentspeed:putationalPhysics,79:12–49,1988.3[20]N.Paragios,M.Rousson,andV.Ramesh.Matchingdis-tancefuctions:ashape-to-areavariationalapproachforglobal-to-localregistration.InECCV,pages775–789,2002.1[21]J.P.W.Pluim,J.B.A.Maintz,andM.A.Viegever.Im-ageregistrationbymaximizationofcombinedmutualin-formationandgradientinformation.IEEETrans.Medi-calImaging,19:809–814,2000.5[22]J.P.W.Pluim,J.B.A.Maintz,andM.A.Viegever.Mu-tualinformationbasedregistrationofmedicalimages:asurvey.IEEETrans.MedicalImaging,22:986–1004,2003.1[23]W.H.Press,B.P.Flannery,S.A.Teukolsky,andW.T.
Vetterling.NumericalRecipesinC.CambridgeUniver-sityPress,1988.4[24]A.Rangarajan,H.Chui,andJ.S.Duncan.Rigidpoint
featureregistrationusingmutualinformation.MedicalImageAnalysis,3:425–440,1999.1,4[25]M.RoussonandN.Paragios.Shapepriorsforlevelset
representations.InECCV,pages78–92,2002.1[26]L.I.Rudin,S.Osher,andE.Fatemi.Nonlineartotalvari-ationbasednoiseremovalalgorithms.Physica,60:259–268,1992.1,4[27]R.Stefanescu,mowick,G.Malandain,P.-Y.Bon-diau,N.Ayache,andX.Pennec.Non-rigidatlastosub-jectregistrationwithpathologiesforconformalradio-therapy.InMICCAI,pages704–711,2004.1[28]B.C.Vemuri,J.Ye,Y.Chen,andC.M.Leonard.Image
registrationvialevel-setmotion:Applicationstoatlas-basedsegmentation.MedicalImageAnalysis,7:1–20,2003.4[29]P.ViolaandW.M.WellsIII.Alignmentbymaximization
ofmutualinformation.IJCV,24:137–154,1997.4[30]B.ZitovaandJ.Flusser.Imageregistrationmethods:
asurvey.ImageandVisionComputing,21:977–1000,2003.1
正在阅读:
Correspondence Transfer for the Registration of Multimodal Images08-12
五、我和妈妈逛商场08-19
只好妥协作文600字07-12
课程设计报告语音数字信号处理01-20
四川统计数据采集处理平台统计数据审核评估流程管理办法试行10-28
生命,邂逅一份淡然11-03
2016同学录搞笑留言02-10
夏天语句02-11
- 1LHC Project Note 153 Preliminary study Powering the Transfer
- 2Kinetics and Mass Transfer of Free Fatty Acids Esterification with Methanol in a
- 3Skin-pass rolling II—Studies of roughness transfer under combined normal and tangential loading
- 4Wireless Power Transfer无限能量传输的理论核心分析总结 - 图文
- 5TKQ2 双电源自动切换开关Series Dual Power Automatic Transfer Switches
- 奶牛焦虫病的诊断与防治 - 医学期刊频道--首席医学网
- 外包工程发包流程
- 管理信息系统(路晓丽版)课后题答案(1-12章全)
- 小学语文课题研究方案
- 企业内部培训师管理制度
- 《史记》拓展阅读设计
- 入口广场铺装施工方案
- 附录B塔式起重机安装验收记录表
- 云南省昆明三中2014-2015学年高二下学期期中考试物理试卷 (Word版含答案)
- 郑州大学毕业设计附件
- 民俗学视野下的中国百年歌谣研究
- 巩固练2020统编版(2019)高二选择性必修上册第一单元阶段复习 第一单元仿真模拟训练
- 量化研究学习书单
- 给尾注编号加方括号超级简单方法
- 第1课《放大镜》
- 定价的步骤及新产品定价策略(1)
- 八年级英语下册第六单元基础知识
- 全省地方志工作会议综述
- An Investigation of Tightly Coupled Time Synchronous Speech Language Interfaces Using a Uni
- 新目标英语八年级(上)单元测试题(Units6-7)
- Correspondence
- Registration
- Multimodal
- Transfer
- Images
- 燃料电池汽车加氢站技术规程
- 2012ENR_TOP225_项目位于国外
- 中国历代国土面积
- 2014年云南省公务员招聘考试基础知识测试习题
- 2014最新5.2人民代表大会制度:我国的根本政治制度
- 执业医师法试题1
- 2021年大学生报社暑期社会实践报告
- 钢板超声波探伤认识误区解析
- 新版部编人教版六年级语文上册期末水平测试卷及答案
- 张家集镇中心小学比访迎检工作汇报
- 电子技术基础与技能教学大纲
- 养仓鼠的乐趣
- 软件工程1-3章补充知识点
- 论泰罗科学管理理论的基本特点和借鉴意义
- linux缩印版
- 2014上海银行招聘考试每日一练(7.20)
- PBL教学法在局部解剖学教学中的应用
- 探索神秘的波涛谷
- 原子STM32开发板例程用新版本的MDK编译不通过解决办法
- 2011中国企业500强、2011中国制造业企业500强钢铁企业排名