数学八年级上北师大版7.1为什么要证明同步训练B

更新时间:2023-09-25 13:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

为什么要证明(B)

一、选择题

1.下列说法不正确的是( ) A.若∠1=∠2,则∠1,∠2是内错角 B.若∠1,∠2都是直角,则∠1=∠2 C.若∠1=∠2,则∠1+∠3=∠2+∠3

D.若∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2

2.王颖发现旗杆的影子与旁边树的影子好像平行,但她不敢肯定,此时她最好的 办法是( )

A.找来三角板、直尺,通过平行移动三角板验证两个影子是否平行 B.相信自己,两个影子就是平行的 C.构造几何模型,用已学知识证明

D.作一直线截两条影子,并用量角器测出同位角的度数,若同位角相等,则影子平行 3.如图中的长方形被分成甲和乙两部分,则甲和乙的周长相比,结果是( )

A.甲的周长比乙的周长大 B.甲的周长比乙的周长小 C.甲的周长和乙的周长一样大 D.无法比较

4.下列说法中,①锐角都相等;②大于90°且小于平角的角是钝角;③互为相反数的两数和为0;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中正确的有( ) A.①② B.②③ C.③④ D.②④

5.若P(P≥5)是一个质数而且P2﹣1除以24没有余数,则这种情况( ) A.绝不可能 B.只是有时可能 C.总是可能 D.只有当P=5时可能

第1页

6.下列说法正确的是( )

A.经验、观察或实验完全可以判断一个数学结论的正确与否 B.推理是科学家的事,与我们没有多大的关系 C.对于自然数n,n2+n+37一定是质数

D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个 7.小明和小华在手工制作课上用铁丝制作楼梯模型,如图,那么他们两个人用的铁丝( )

A.小华用的多 B.小明用的多 C.两人用的一样多

D.不能确定谁用的多

8.如图,利用所学的知识进行逻辑推理,工人盖房时常用木条EF固定矩形门框ABCD,使其不变形这种做法的根据是( )

A.两点之间线段最短 B.矩形的对称性 C.矩形的四个角都是直角 D.三角形的稳定性 二、填空题

9.“小明7点40分到火车站,他能赶上8点出发的火车”,这个判断________(填“正确”或“不正确”).

第2页

10.当a=1时,a4-3a2+9是质数;当a=2时,a4-3a2+9也是质数.由此可判断:a4-3a2+9对所有自然数a都是质数,这个判断________(填“正确”或“错误”). 11.用符号“f”表示一种运算,它对一些数的运算结果如下: (1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,? (2)f()=2,f()=3,f()=4,? 利用上面的规律计算f(

)-f(2014)=________.

12.若n是整数,2n+5(n是整数)是_______,2n-8是______. (填“奇数”或“偶数”) 三、解答题

13.甲、乙、丙三位同学讨论关于两个质数之和的问题.甲说:“两个质数之和一定是质数.”乙说:“两个质数之和一定不是质数.”丙说:“两个质数之和不一定是质数.”他们当中,谁说得对?

14.(8分)观察下列各式:×2=+2;×3=+3;×4=+4;×5=+5;?

想一想:什么样的两个数之积等于这两个数的和?设n表示正整数,用关于n的代数式表示这个规律,并说明理由.

第3页

15. (能力拔高题)已知正数a和b,有下列结论: ①若a+b=2,则≤1; ②若a+b=3,则≤; ③若a+b=6,则

≤3.

(1)根据以上三个结论提供的规律猜想:若a+b=9,则

≤________.

(2)从以上四个式子中,你发现的规律是_____________________, 简要证明你发现的规律.

16.观察下列等式: 12×231=132×21;

13×341=143×31,23×352=253×32; 34×473=374×43,62×286=682×26; ?

根据上述等式填空:

①52× 275 = 572 ×25; ② 63 ×396=693× 36 .

参考答案

一、选择题

第4页

1.【解析】选A.相等的角不一定是内错角. 2.【解析】选D.这里用实验验证的方法最合适.

3.【解析】选C.因为长方形的两条对边相等,甲的周长为两邻边加中间一条曲线,乙的周长为另外两邻边加中间一条曲线.故甲和乙周长相等. 4.【解答】解:①锐角都相等,错误; ②大于90°且小于平角的角是钝角,正确; ③互为相反数的两数和为0,正确;

④若l1⊥l2,l1⊥l3,则l2⊥l3,错误,故选B.

5.【解答】解:因为P(P≥5)是一个质数,则P是奇数, 设P=2a+1(a=1,2,3)

∴p2﹣1=(2a+1)2﹣1=4a2+4a=4a(a+1), 因为a,a+1一定有一个可以被2整除, 所以p2﹣1是8的倍数, ∵P(P≥5)是一个质数, ∴P不是3的倍数,

P=3b+1或3b+2(b=1,2,3?), ∴p2﹣1=(p+1)(p﹣1), 当p=3b+1时,p﹣1是3的倍数, 同样p=3b+2时,p+1是3的倍数. ∴p2﹣1也是3的倍数, ∴p2﹣1是24的倍数, ∴P2﹣1除以24没有余数. 故选C.

6. 解:A,错误,不能完全这样判断,还要有严格的逻辑证明;B,错误,生活中也有推理的存在;

第5页

本文来源:https://www.bwwdw.com/article/c4nd.html

Top