整理版 金属材料热处理

更新时间:2024-07-09 01:48:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一部分:真题

2013年复试529《金属材料与热处理》

一、 名词解释(30分)

蠕变极限 ;晶间腐蚀;二次淬火;红硬性;淬透性与淬硬性;过冷奥氏体 二、简答(20分)

(1)为什么4Cr13为过共析钢,Cr12MoV为莱氏体钢?

(2)奥氏体不锈钢和高锰钢固溶处理后放在水中冷却的目的与一般钢的淬火的目的有何区别?作用是什么?

三、碳钢淬火后回火过程中的组织转变(20分)

四、画Fe-C组织组成相图,计算Wc=0.5%的碳钢冷却到室温各组织组成物的相对量。讨论含C量从低到高的碳钢按用途分类及相应的典型产品型号。(20分) 五、用T12制作锉刀,HRC60以上,请设计预备热处理、最终热处理的工艺方案,并说明原因。(20分)。

六、第一类、第二类回火脆性的定义、原因、如何避免或减轻?(20分) 七、 40Cr钢的Φ50mm零件,经以下三种热处理后,表面及中心硬度相近(HRC25-30),问哪种工艺的综合力学性能最好,说明原因。(1)Ac3以上 30-50℃,水淬,550℃回火,空冷。(2)Ac3以上30-50℃,油淬,550℃回火,空冷。(3)Ac3以上30-50℃,空冷。(20分)

2012年复试529《金属材料与热处理》

一 名词解释

Ac3 ;Ms ;CCT、淬透性曲线;奥氏体;白口铸铁;实际晶粒度;热硬性;球化退火;应力腐蚀 二

1)含碳量大于0.2%的淬火马氏体和先恭喜铁素体在成分与晶体结构上的区别。 2)上贝氏体和下贝氏体的金相组织形态及组成相之间的区别, 3)半条马氏体和片状马氏体亚结构不同及含碳量的关系 4)回火索氏体和所试题金相组织形态及形成过程的区别。

三 奥氏体化过程。 四 退火态45号钢如何获得 1)马氏体

2)屈氏体+马氏体 3)马氏体和铁素体 4)回火马氏体 在c曲线画出热处理工艺并分析,

五 40cr经过三种热处理过程 问那一种的综合力学性能好,(淬火+高温回火)解释

六 20号钢 t10 20crmnti 三种钢材中,制作削铅笔用的小刀,使用哪种???分析说明原因

2011年复试529《金属材料与热处理》

一、名词解释(每题三分)

1.马氏体;2.莱氏体;3.二次渗碳体;4.腐蚀的基本类型;5.TTT曲线;6.淬透性 7.调质处理;8.二次硬化;9.正火;10.带状碳化物

二、珠光体、贝氏体、马氏体形成条件、组成相、典型组织形态。(20分) 三、9Mn2V材料,要求硬度HRC53~58,第一种工艺:在790度,充分加热奥氏体化后,油淬,在180~200度回火,发现材料经常脆断。后改变为第二种工艺:同样790度奥氏体化后,迅速放入260~280度的槽中等温处理4h,空冷。之后测得硬度为HRC50,但寿命大大提高了,试分析原因。(20分) 四、球化退火态T8钢,经何种热处理可得到以下组织: (1)粗片状组织 (2)细片状组织 (3)球化组织

在C曲线上画出热处理工艺曲线。(20分)

五、试写出45,40Cr,T8钢的典型热处理工艺,如淬火温度,淬火介质,回火温度等。(20分)

六、2006年,最后一题,暂不赘述。几个温度是:900 850 800 750 700 650 600 550 500。(20分)

七、画出按组织区分的Fe-Fe3C相图。计算出含碳量3.5%的铁碳合金冷却至室温

时的各组织相对量。并讨论含碳量由低到高的铁碳合金用途分类情况,及相应的典型产品型号。(20分)

2010年复试529《金属材料与热处理》

一 名词解释(5分/每题,共30分)

1.珠光体与莱氏体;2.灰口铸铁;3.TTT曲线;4.钢的淬透性和淬硬性 5.腐蚀的基本类型;6.镇静钢和沸腾钢

二 讨论渗碳热处理的目的,举例说明一个典型钢种的渗碳工艺.渗碳热处理后的组织与性能特点。(15分)

三 讨论常见退火.正火.淬火和回火热处理工艺概念.目的和应用范围。(20分) 四 确定高速钢W18Cr4V的合金成分范围,讨论合金元素的作用,并制定相应的热处理工艺。(15分)

五 画出相图,确定钢号分别为45和T8的典型热处理工艺,如:淬火温度.淬火介质和回火温度等,并说明确定工艺的依据。(20分)

2009年复试529《金属材料与热处理》

一.名词解释(每个5分,共30分)

1. 偏析;2. 网状碳化物;3. CCT曲线;4. 淬透性;5. 晶间腐蚀;6. 变态莱氏体

二.讨论淬火钢回火过程中的组织转变过程(20分)

三.讨论40Cr、T8钢的热处理工艺,如淬火温度、淬火介质和回火温度等。(15分)

四.讨论完全退火、不完全退火和球化退火的概念或划分依据,以及各自的目的。(15分)

五. 画出按组织组成分区的铁碳相图,写出三个三相反应,并写出含碳量3.5%的铁碳合金冷却到室温时的组织组成,计算各组织的相对含量。(20分)

2008年复试529《金属材料与热处理》

一.名词解释(每个5分,共30分)

1. 区域偏析;2. 魏氏组织;3. 过冷奥氏体; 4. 热稳定化;5. 应力腐蚀; 6. 二次淬火

二.简述热变形钢的组织形式(20) 三. 钢回火转变后的组织有哪些?(15) 四.合金元素对铁碳相图的影响(15)

五.列出结构钢、轴承钢、工具钢、耐蚀钢、耐热钢的具体热处理工艺(20) 六.画出铁碳相图,并按C含量分类,并计算0.35%的C室温组织的含量(15)

2007年复试529《金属材料与热处理》

一名词解释:

1,CCT曲线; 2,贝氏体;3,红硬性;4,二次渗碳体;5,偏析 二 解释碳钢回火脆性的定义、原因及消除或改善的方法。 三 介绍几种常见的退火工艺,目的及应用等。

四 综述合金元素(包括C)在各种钢的作用,结合钢种详细说明要具体到某一型号的钢,如工具钢16Mn中C和Mn的作用,

列出具体热处理工艺,至少涉及四个钢种如:工具钢,结构钢,耐热钢,耐蚀钢。

五 画出铁碳相图,并按C含量分类,并说出对应合金钢的热处理方式,如工具钢16的正火处理。

2006年复试529《金属材料与热处理》

一:名词解释(20分)

1:沸腾钢,镇静钢 2:钢中夹杂物 3:莱氏体和变态莱氏体 4:马氏体组织形态

二:讨论45,45Cr,T8钢的热处理工艺,如淬火温度,淬火介质和回火温度等(20分)

三:讨论淬火钢回火时的组织转变过程(20分)

四:高速钢(某某,具体记不起来了)和合金钢(某某,具体记不起来了)中各合金元素的作用(20分)

五:讨论片状珠光体组织在760度时组织转变过程(20分)

六:退火态45钢在900,~~~500(之间有好几个温度)等温足够时间后在水中快速冷却,画出:硬度(Y)----温度(X)曲线,并说明其组织形态和温度范围;同样对于T8钢在900,~~~500(之间有好几个温度)等温足够时间后在水中快速冷却,画出:硬度(Y)----温度(X)曲线,并简要说明一下。(20分)

第二部分:经验

1):名词解释,CCT曲线,我首先把英文缩写写出来,怎么生成的写出来,用途,甚至TTT曲线的英文缩写也写啦,注意英文缩写还有

TTT曲线不写可能不扣分,但写了就可能加分,这是得分点,和政治里评析一句话一样,题目肯定不会告诉你谁说的,但你把谁说的,在

什么时间地点,哪篇杂志发表的写出来,哪怕你没评析那句话,老师都没理由不给你满分,呵呵,扯远啦!

2):2题让写几种退火工艺,我把知道的全写啦。

3)4,5有些相通的地方,有的东西我就两边都写写,写多了有好处! 4 )最后一道题,铁碳相图越详细越好,你能把原图搬上去最好,呵呵兄弟就是这么干的,图上放不下,我列了个表格,把数据全搬上去拉。

[url=http://bbs.kaoyan.com/misc.php?action=viewratings&tid=1883754&pid=18865025][/url]

师兄,你好,复试参考书的作者是。。。是哪本书啊?一定要帮帮忙啊 ??? <金属材料及热处理>参考书有两本: 宋维新的<金属学>的热处理部分

冶金工业出版的吴承建 ,陈国良,强文江的<金属材料学>第一篇钢铁材料 就是1-7章

我建议以一本为主,同时参考其它教材,其实各教材内容都差不多,就是《材料科学基础》,

很多内容,甚至文字都一样的。我的意思是看一本宋维新的金属学,有地方不是

很明白,就看下其他的教材,曲线救国,多看几本就懂了,我经常是饶个圈子再回来看宋维新的。

2.大纲很重要,大纲要求的每个点都不要放过

3.笔记作用不是很大,可能心理上感觉好点,多看下笔记不如多看几遍书, 4.历年试题很重要,去年100多分都是原题,就是贝壳把分压低了,整体压,不用担心

记住3个重要就行了,课本、大纲、历年试题

第三部分:资料

名词解释

沸腾钢:

1 只用一定量的弱脱氧剂锰铁对钢液脱氧,因此钢液含氧量较高。

2 在沸腾钢的凝固过程中,钢液中碳和氧发生反应而产生大量气体,造成钢液沸腾,这种钢由此而得名。

3 沸腾钢钢锭宏观组织的特点是,钢锭内部有大量的气泡,但是没有或很少有缩孔。钢锭的外层比较纯净,这纯净的外层包住了一个富集着杂质的锭心。 4 沸腾钢钢锭的偏析较严重,低温冲击韧性不好,钢板容易时效,钢的力学性能波动性较大。 镇静钢:

1 镇静钢在浇注之前不仅用弱脱氧剂锰铁而且还使用强脱氧剂硅铁和铝对钢液进行脱氧,因而钢液的含氧量很低。

2 强脱氧剂硅和铝的加入,使得在凝固过程中,钢液中的氧优先与强脱氧元素铝和硅结合,从而抑制了碳氧之间的反应,所以镇静钢结晶时没有沸腾现象,由此而得名。

3 在正常操作情况下,镇静钢中没有气泡,但有缩孔和疏松。与沸腾钢相比,这种钢氧化物系夹杂含量较低,纯净度较高。镇静钢的偏析不像沸腾钢那样严重,钢材性能也较均匀。 树枝状偏析:(枝晶偏析)

1 依据相图,钢在结晶时,先结晶的枝干比较纯净,碳浓度较低,而迟结晶的枝间部分碳浓度较高。

2 研究指出,在钢锭心部等轴晶带中枝晶偏析的特点是,在枝干部分成分变化很小,这部分占有相当宽的范围,在枝晶或者两个相邻晶粒之间,富集着碳、合金元素和杂质元素,而且达到很高的浓度。枝干结晶时,在相当宽的范围内造成碳

和合金元素、杂质元素的贫化(选择结晶),这种贫化成了枝晶间浓度特高的前提。

3 为减少枝晶偏析的程度,可对铸钢和钢锭进行扩散退火。 区域偏析: 在整个钢锭范围内发生的偏析

因为选择结晶,杂质元素和合金元素被富集在晶枝近旁的液相中。在凝固速度不是很高的情况下,枝晶近旁液相中杂质元素能够借扩散和液体的流动而被转移到很远的地方。随着凝固的进展,杂质元素在剩余的钢液中不断富集,各种元素在整个钢锭或铸件的范围内发生了重新分布,即产生了区域偏析。

带状偏析:在钢锭中,有时在某些局部地区,化学成分与周围有差异,形成所谓的带状偏析。

1 在镇静钢钢锭轴心纵剖面的试片的酸侵蚀面上,能观察到成V型和A型分布的偏析条带。称为V偏析或A偏析。

2 A偏析有两种形式,一种是偏析带比较粗,多出现在大钢锭中,尤其是当浇注温度比较高时。另一种形式是一条宏观的偏析带由许多细的条纹构成。 纤维状组织:

钢凝固时所产生的枝晶偏析具有相对稳定性。由枝晶偏析显示的“初生晶粒”随钢坯外形改变而延伸。处于原枝晶间的范性夹杂物也一起形变。随着形变量的加大,“初生晶粒”从最初的柱状或等轴形逐渐变成条带状或者纺锤形。被延伸拉长的枝晶干和枝晶间就构成了形变钢中的“纤维”。 带状组织:

1 热变形钢试样磨片用含CuCl2的试剂浸蚀后放在显微镜下观察,发现原来在肉眼观察时所看到的那些纤维经过放大以后变成黑白交替的条带,称之为原始带状组织,它是由树枝状结晶(偏析)所引起的。其中黑色条带相当于原树枝状晶较纯的枝干,白色条带相当于原富含杂质的枝间区域。

2 在热变形钢中还会出现另外一种形式的带状组织。这种带状组织使用普通硝酸酒精试剂侵蚀的情况下就能显露出来。这里所看到的交替相间的条带是由不同的组织构成,称为“显微组织带状”。这些不同的组织是固态相变的结果,所以也把这种带状组称为二次带状。二次带状组织的形成意味着碳在固态相变中发生了不均匀的重新分布(二次碳偏析) 魏氏组织:

凡新相从母相中脱溶析出,新旧相之间有一定的位向关系,同时新相的中心平面与母相的一定结晶学平面重合时,这样一种具有纹理特征的组织可统称为魏氏组织。

“反常”组织:

1 在原奥氏体晶界分布着粗厚的网状渗碳体,在此粗厚渗碳体的两边有很宽的游离铁素体,这样的组织称为“反常”组织。

2 研究指出,钢在奥氏体相区加热温度越低(特别是在Acm-A1温度区间加热时),奥氏体就越不均匀,其中含有大量未溶的碳化物或氮化物。越是在这种加热条件下,越容易形成“反常”组织。就冷却条件来说,冷却越缓慢,以致Ar1温度非常接近A1温度时,越容易产生“反常”组织。钢的含碳量与共析含碳量相聚越远时,形成“反常”组织的倾向就越大。此外,“反常”组织的出现也与钢中的含氮量和加铝量有关。所有这些条件都是和离异共析体形成的基本原理相一致。 网状碳化物:

1 过共析钢轧后冷却过程中沿奥氏体晶界析出先共析渗碳体。依钢的含碳量、形变终止温度和冷却速度不同,先共析渗碳体呈半连续或连续网状。网状碳化物的厚度随停轧(锻)温度的提高和冷却速度的减小而增大。

2 形变终止温度过高,会使奥氏体晶粒粗化,这种晶粒粗大的奥氏体在随后冷却时沿晶界形成粗厚的渗碳体网,后者在随后的热处理过程中难以得到改正。 钢的热处理:

1 钢的热处理是通过加热、保温和冷却的方法,来改变钢内部组织结构,从而改善其性能上的一种工艺。影响钢的热处理的主要因素是温度和时间。

2 钢的热处理工艺通常分为退火、正火、淬火、回火、表面淬火、化学热处理以及形变热处理。

3 为随后的机械加工或进一步热处理做好组织准备的热处理,称为预备热处理,常采用退火或正火工艺;直接赋予工件所需要的使用性能的热处理,称为最终热处理。 起始晶粒度:

指珠光体刚刚全部转变成奥氏体时的奥氏体晶粒度,一般情况下奥氏体的起始晶粒度总是比较细小。加热前原始组织越弥散,加热速度越快,则起始晶粒越细小。 实际晶粒度:

在某一具体加热或热加工条件下所得到的奥氏体晶粒度。 本质晶粒度:

它表示在临界温度以上加热过程中,奥氏体晶粒长大倾向的强弱。研究指出,随加热温度升高,钢中的奥氏体晶粒长大倾向分两类,一类是随温度升高,奥氏体晶粒迅速长大的钢,称为本质粗晶粒钢;另一类是奥氏体晶粒长大倾向较小,直到超过某一温度后,奥氏体晶粒才会急剧长大的钢,称为本质细晶粒钢。 组织遗传现象:

加热后钢的粗大奥氏体晶粒,经淬火后得到粗大的马氏体,再次快速或慢速加热至稍高于临界温度,奥氏体仍保留了原来的粗大晶粒,甚至保留了原来的位向和原来的晶界,这种现象称为组织遗传。 过冷奥氏体:

奥氏体冷至临界温度以下,处于热力学不稳定状态,称为过冷奥氏体。

马氏体转变的特点:

1 不会引起化学成分的变化,只产生结构类型的改变,但有时会发生有序度的变化。

2 马氏体可能是亚稳平衡相,也可是稳定平衡相。

3 马氏体转变也可划分为形核和长大两个元过程,但与扩散转变不同,马氏体成长速度非常快。

4 马氏体转变不需要原子扩散,原子协同做小范围位移,以类似孪生切变的方式形成新相。新相与母相之间的界面必须保持切变式的共格关系,因此有浮凸现象。 5 应力也可以诱发马氏体发生转变。 6 在一些合金系中,马氏体转变是可逆的。 热稳定化:

1 淬火过程中由于慢冷或中间停留所造成的奥氏体稳定化,称为热稳定化。 2 奥氏体热稳定化的原因是由于慢冷或中间停留,碳或氮原子在位错附近偏聚,形成柯氏气团,强化奥氏体,使切变阻力增加,从而引起奥氏体的稳定化。 机械稳定化:

在Md点以上,对奥氏体进行大量范性形变,使随后的马氏体转变发生困难,Ms点降低,马氏体转变量减少,这种现象称为奥氏体的机械稳定化。 渗碳:

将低碳钢件放入增碳的活性介质中,在900~950℃加热保温,使活性碳原子渗入钢的表面已达到高碳,这种热处理工艺称为渗碳。渗碳后院必须进行淬火和低温回火,使钢件表面具有高硬度和高的耐磨性,而心部具有一定的强度和较高的韧性。渗碳过程是由渗碳剂分解出活性碳原子,被钢表面吸收,并向钢内部扩散三个阶段组成。 热机械处理:

在近于Ac3的温度强烈形变,恒温或慢冷一段使形变奥氏体再结晶,快速冷却阻止再结晶的晶粒长大。 低温韧性:

低温韧性也叫低温脆性,即钢材在低温时韧性的大小或低温时脆化的程度。 红硬性:红硬性是指材料在经过一定温度下保持一定时间后所能保持其硬度的能力。如刀具材料中的高速钢,应在600摄氏度下保持60分钟后空冷,连续地重复进行4次后去表面氧化层,然后得出的硬度。 控轧控冷:

就是在一定合金化的基础上,采用较低的终轧温度(近于A3),在大压下量的情况下,使晶粒已经细化的形变奥氏体再结晶后(或根本不发生再结晶)控制其

不再长大,经快冷或控冷得到细小的铁素体晶粒,同时具有高位错及弥散析出的NbC等,由此造成强化和低温韧性的显著增大,这种强韧化手段叫控轧控冷。 粗大奥氏体晶粒的遗传性:

生产中发现,过热后钢的粗大奥氏体晶粒,经淬火后得到粗大的马氏体,再次快速或慢速加热至稍高于临界温度,奥氏体仍然保留了原来的粗大晶粒,甚至保留原来的位向和原来的晶界,这种现象称为组织遗传。其原因是过热后的粗晶粒奥氏体与马氏体之间相互转变维持着严格的晶体学取向关系。

消除方法:中等速度奥氏体化或者加热到Ac3以上100-200℃,由于相变硬化使高温奥氏体产生再结晶,达到细化晶粒,消除组织遗传性的效果。 回火二次硬化现象

某些淬火组织的合金钢(如含钨、钼、钛、钒、铌、铬、锆等元素)经500-600℃回火后,硬度重新升高的现象。

主要原因是某些含有强碳化物形成元素的合金钢,淬火后高温回火形成极细的、高度弥散的特殊化合物。这些特殊化合物是渗碳体溶解在位错区的沉淀,多呈丝状或细针状,而且与α相保持共格关系。这就导致了α相中高密度相变诱生位错的形成,引起碳化物与α相的共格畸变、弥散碳化物对位错的钉扎作用等,使得硬度明显提高。

其次,某些合金钢淬火组织高温回火时的二次淬火现象也是引起二次硬化的原因。 二次淬火

对于含有较多合金元素的钢,在珠光体型转变和贝氏体型转变C曲线之间,有一个过冷奥氏体的中间稳定区。与此相似,这类钢的残留奥氏体,在相应的回火温度时,也出现两转变之间的中间稳定区。然而,将这类淬火钢回火加热至该区间的上限温度时,残留奥氏体既不转变成珠光体,也不转变成贝氏体,而是在继续冷却到室温时转变成马氏体。这一效应叫做二次淬火。 高温形变热处理与低温形变热处理

高温形变热处理:在接近A3以上温度进行形变,形变后立即淬火,并回火至所需要的硬度。从工艺过程来看,形变温度较高,形变温度容易进行。但形变温度远高于再结晶温度,形变强化效果容易被再结晶过程所削弱,所以形变温度和形变后至淬火前的间歇时间,对高温形变热处理后钢材的力学性能影响很大。 低温形变热处理:将加热至奥氏体化的钢迅速冷却至C曲线的亚稳定区进行形变,然后淬火获得马氏体,并回火至所需的硬度,这种工艺过程称为低温热变形处理。 钢的热处理:

1 热处理是将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却到室温的一种热加工工艺。

2 通过热处理可以改变钢的内部组织结构,从而改善其工艺性能和使用性能,充分挖掘钢材的潜力,延长零件的使用寿命,提高产品质量,节约材料和能源。

3 正确的热处理工艺还可以消除钢材经铸造、锻造、焊接等热加工工艺造成的各种缺陷,细化晶粒,消除偏析,降低内应力,使组织和性能更加均匀。 淬透性:

1 淬透性是钢的固有属性,它是选材和制定热处理工艺的重要依据之一。 2 淬透性是指钢在淬火时获得马氏体的能力。其大小用钢在一定条件下淬火所获得的淬透性深度来表示。 过热:

过热是指工件在淬火加热时,由于温度过高或时间过长,造成奥氏体晶粒粗大的缺陷。过热不仅使淬火后得到的马氏体组织粗大,使工件的强度和韧性降低,易于产生脆断,而且容易引起淬火裂纹。对于过热工件,进行一次细化晶粒的退火或正火,然后再按工艺规程进行淬火,便可以纠正过热组织。

简答题

简述碳对缓冷钢显微组织和性能的影响 1对组织的影响:

碳是决定碳钢在缓冷后组织和性能的主要元素。碳对缓冷后钢显微组织的影响是:在亚共析钢范围内,随含碳量增加,铁素体相对量减少,珠光体的相对量增加;达到共析成分时,全部为珠光体;在过共析钢范围内,随含碳量增加,先共析渗碳体相对量增多,珠光体相对量减少。 2对性能的影响:

随钢种含碳量的增加,碳钢在热轧状态下的硬度呈直线上升,范性和韧性降低。在亚共析范围内,碳对抗拉强度的影响是,随含碳量增加,抗拉强度不断提高。超过共析含碳量以后,抗拉强度提高减缓,以致于最后抗拉强度随含碳量增加而降低。

在亚共析范围内,抗拉强度随珠光体相对量增加而提高;在过共析范围内,抗拉强度的变化是因为先共析渗碳体量增多,并沿原奥氏体晶界析出,形成网状,使钢的脆性增大,容易发生早期断裂,从而降低抗拉强度。

含碳量增加时碳钢的耐腐蚀性降低,同时碳也使碳钢的焊接性能和冷加工(冲压、拉拔)性能变坏。 简述热变形钢的组织形式 1 纤维状组织

钢凝固时所产生的枝晶偏析具有相对稳定性。由枝晶偏析显示的“初生晶粒”随钢坯外形改变而延伸。处于原枝晶间的范性夹杂物也一起形变。随着形变量的加大,“初生晶粒”从最初的柱状或等轴形逐渐变成条带状或者纺锤形。被延伸拉长的枝晶干和枝晶间就构成了形变钢中的“纤维”。 2 带状组织

热变形钢试样磨片用含CuCl2的试剂浸蚀后放在显微镜下观察,发现原来在肉眼观察时所看到的那些纤维经过放大以后变成黑白交替的条带,称之为原始带状组织,它是由树枝状结晶(偏析)所引起的。其中黑色条带相当于原树枝状晶较纯的枝干,白色条带相当于原富含杂质的枝间区域。

在热变形钢中还会出现另外一种形式的带状组织。这种带状组织使用普通硝酸酒精试剂侵蚀的情况下就能显露出来。这里所看到的交替相间的条带是由不同的组织构成,称为“显微组织带状”。这些不同的组织是固态相变的结果,所以也把这种带状组织称为二次带状组织。二次带状组织的形成意味着碳在固态相变中发生了不均匀的重新分布(二次碳偏析)。

只有在一次带状组织的基础上才会出现二次带状组织,二次带状组织有两种情况:①在铁素体条带中含有硅酸盐,同时珠光体条带中含有硫化物。也就是说,铁素体出现在原枝晶干,珠光体出现在原枝晶间。这种二次带状的碳浓度分布与凝固时碳的枝晶偏析是一致的,称为“顺态”的二次碳偏析。②在铁素体条带中含有硫化物,同时珠光体条带中含有硅酸盐。这种情况表明,在固态相变时发生了碳浓度分布的逆转,碳从枝间处扩散到了枝干。这种二次带状的碳浓度分布称为“逆态”的二次碳偏析。

带状组织使钢的力学性能具有方向性,使钢的横向范性和韧性降低。铁素体珠光体带状组织还使钢的切削加工性变坏。钢材若出现了带状组织,加工时其表面光洁度就差;渗碳时易引起渗层不均匀,热处理时易产生变形且硬度不均匀等缺陷。 3 魏氏组织

凡新相从母相中脱溶析出,新旧相之间有一定的位向关系,同时新相的中心平面与母相的一定结晶学平面重合时,这样一种具有纹理特征的组织可统称为魏氏组织。

在亚共析钢中,当从奥氏体相区缓慢冷却通过Ar3-Ar1温度范围时,铁素体沿奥氏体晶界析出,呈块状。如果冷却速度加快时,则铁素体不仅沿奥氏体晶界析出生长,而且还形成许多铁素体片插向奥氏体晶粒内部,铁素体片之间的奥氏体最后变为珠光体。这些分布在原奥氏体晶粒内部呈片状的先共析铁素体称为魏氏组织铁素体。

如果奥氏体比较粗大,冷却速度又比较快时,一般来讲,容易产生魏氏组织铁素体。退火可消除魏氏组织。 4 “反常”组织

在原奥氏体晶界分布着粗厚的网状渗碳体,在此粗厚渗碳体的两边有很宽的游离铁素体,这样的组织称为“反常”组织。

研究指出,钢在奥氏体相区加热温度越低(特别是在Acm-A1温度区间加热时),奥氏体就越不均匀,其中含有大量未溶的碳化物或氮化物。越是在这种加热条件下,越容易形成“反常”组织。就冷却条件来说,冷却越缓慢,以致Ar1温度非常接近A1温度时,越容易产生“反常”组织。钢的含碳量与共析含碳量相距越远时,形成“反常”组织的倾向就越大。此外,“反常”组织的出现也与钢中的含氮量和加铝量有关。所有这些条件都是和离异共析体形成的基本原理相一致。

5 网状碳化物

过共析钢轧后在冷却过程中沿奥氏体晶界析出先共析渗碳体。依钢的含碳量、形变终止温度和冷却速度的不同,先共析渗碳体呈半连续或连续网状。 减轻或者消除亚共析钢中的铁素体珠光体带状组织的措施是什么?

⑴减轻原始带状偏析程度(方法:①钢锭中柱状晶要比等轴晶的枝晶偏析程度轻②枝晶比较细时通过扩散退火能达到更好的均匀化效果③钢锭的偏析随钢锭重量增加而加大,随冷却速度的加快而减轻④扩散退火) ⑵抑制或者减轻原始带状组织对二次带状的影响。

⑶在设计钢的成分时,升高和降低A3温度(912℃)的元素如硅-锰,锰-硫等要互相搭配,这样在发生枝晶偏析以后,由于几种杂质元素的影响互相抵消,枝干和枝间两区域A3温度差别很小,从而有利于避免铁素体珠光体带状组织产生。 ⑷加速热变形钢的冷却速度,借以抑制碳在原始带状基础上的长距离扩散。 ⑸将钢材加热后空冷(正火),或者适当提高钢坯或钢材的加热速度,使奥氏体晶粒尺寸超过原始带状的条带宽度。 简述石墨化的温度阶段

第一阶段:从铸铁的液相中结晶出一次石墨(过共晶合金)和通过共晶反应结晶出共晶石墨。或者在铸铁凝固过程中通过渗碳体在共晶温度以上的高温分解形成石墨。

中间阶段:从铸铁的奥氏体相中直接析出二次石墨,或者通过渗碳体在共晶温度或共析温度之间发生分解而形成石墨。

第二阶段:在铸铁的共析转变过程中析出石墨,或者通过渗碳体在共析温度附近及其以下温度发生分解形成石墨。

进行石墨化时,不仅需要碳原子在溶液或固溶体中的扩散集聚,而且还需要铁原子从碳的集聚处扩散掉。温度越低,原子的活动性愈小,石墨化过程也就愈困难。所以,在铸铁的连续冷却过程中,温度较低的第二阶段石墨化往往不能进行到底。 一般来说,凡是能削弱铁原子和碳原子之间的结合力的元素以及能增大铁原子扩散能力的元素大多能促进石墨化,比如:锆、钴、磷、铜、镍、钛、硅、碳、铝等;反之,则阻碍石墨化,比如:钨、锰、钼、硫、铬、钒、镁、铈、硼等。 简述几种常见的铸铁

⑴白口铸铁:其中碳除少量溶于铁素体外,绝大部分以渗碳体的形式存在于铸铁中。白口铸铁断口呈亮白色,组织中都存在共晶莱氏体,性能硬而脆,很难切削加工。白口铸铁除主要用作炼钢原料外,还用来生产可锻铸铁。

⑵麻口铸铁:碳一部分以石墨形式存在,另一部分以自由渗碳体形式存在,断口呈黑白相间的麻点。

⑶灰口铸铁:其中碳全部或大部分以片状石墨形式存在。灰口铸铁断裂时,裂纹沿各个石墨片发展,因而断口呈暗灰色。

⑷可锻铸铁:又称展性铸铁,有白口铸铁经石墨化退火后制成,其中碳以团絮状石墨形式存在。

⑸球磨铸铁:钢液在浇注前经过球化处理,碳主要以球状石墨形式存在。 ⑹冷硬铸铁:将钢液注入放有冷铁的模中制成。与冷铁相接触的铸铁表面层由于冷却速度比较快,故铸铁组织在一定厚度内属于白口,因而硬度高,耐磨性好;而远离冷铁的深层部位,由于冷却速度较小,得到的组织为灰口;在白口和灰口之间的过渡区域呈麻口。冷硬铸铁用于制造轧辊、车轮等。

⑺蠕墨铸铁:钢液在浇注前经过蠕化处理,碳主要以介于片状和球状之间的石墨形式存在,它是近年发展起来的一种新型铸铁。 简述钢加热时奥氏体化的组织转变过程

奥氏体的形成过程:任何成分碳钢加热到Ac1以上,珠光体就向奥氏体转变;加热到Ac3或Accm以上,将全部变为奥氏体。这种加热转变也称奥氏体化。 ⑴形核:将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核。这是因为相界面上原子排列不规则,处于能量较高状态,具备形核所需的结构起伏和能量起伏条件,同时相界面上处于碳浓度过渡,易出现浓度起伏,符合奥氏体所需的碳浓度,所以奥氏体晶核优先在相界面上形成。

⑵长大:当奥氏体在铁素体和渗碳体相界面上形核后,建立起界面浓度平衡,从而在奥氏体和铁素体内部出现浓度差,碳原子由高浓度向低浓度扩散,使C2、C4浓度降低,而C1、C3浓度升高,从而破坏浓度平衡。必须通过渗碳体逐渐溶解,以提高C2、C4,同时产生a→r转变,以降低C1、C3,维持界面浓度平衡。如此所进行的碳原子扩散,渗碳体溶解,a→r点阵重构的反复,奥氏体逐渐长大。 ⑶残余渗碳体的溶解:奥氏体向铁素体方向推进的速度要大得多,铁素体总是比渗碳体消失得早。铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体,使奥氏体逐步趋近共析成分。

⑷奥氏体的均匀化:残余奥氏体完全溶解后,奥氏体中碳浓度仍是不均匀的,原先是渗碳体的位置碳浓度较高,原先是铁素体的位置碳浓度较低。为此必须继续保温,通过碳原子扩散,获得均匀化奥氏体。 影响奥氏体形成速度的因素 ⑴加热温度的影响

一方面,由于珠光体转变为奥氏体的过程是扩散相变的过程,随着加热温度的升高,原子扩散系数增加,特别是碳在奥氏体中的扩散系数增加,加快了奥氏体的形核和长大速度。同时加热温度升高,奥氏体中的碳浓度差增大,浓度梯度加大,故原子扩散速度加快。

另一方面,加热温度升高,奥氏体与珠光体的自由能差增大,相变驱动力增大,所以,随奥氏体形成温度的升高,奥氏体的形核率和长大速度急剧增加,因此,转变的孕育期和转变所需的时间显著缩短,加热温度越高,转变孕育期和完成转变的时间越短 ⑵原始组织的影响

在化学成分相同的情况下,随原始组织中碳化物分散度的增大,不仅铁素体和渗碳体相界面增多,加大了奥氏体的形核率;而且由于珠光体片层间距减小,使奥氏体中的碳浓度梯度增大,使碳原子的扩散距离减小,这些都使奥氏体的长大速度增加。因此,钢的原始组织越细,则奥氏体的形成速度越快。 ⑶化学成分的影响 ①质量分数的影响

钢中含碳质量分数越高,奥氏体的形成速度越快。这是因为随含碳质量分数增加,渗碳体的数量相应地增加,铁素体和渗碳体相界面的面积增加,因此增加了奥氏体形核的部位,增大奥氏体的形核率。同时,碳化物数量增加,又使碳的扩散距离减小,碳浓度梯度增大,以及随奥氏体中含碳量质量分数增加,碳和铁原子的扩散系数将增大,从而增大奥氏体的长大速度。 ②合金元素的影响

首先,合金元素影响了碳在奥氏体中的扩散速度,碳化物形成元素大大减小了碳在奥氏体中的扩散速度。故显著减慢了奥氏体的形成速度,非碳化合物形成元素增加碳在奥氏体中的扩散速度,因而加快了奥氏体的形成速度。

其次合金元素改变了钢的临界温度,故改变了奥氏体转变时的过热度,从而改变了奥氏体与珠光体的自由能差,因而改变了奥氏体的形成速度。

第三,合金元素在珠光体中的分布是不均匀的,因此合金钢的奥氏体均匀化过程除了碳在奥氏体中的均匀化外,还包括了合金元素的均匀化。

影响奥氏体晶粒长大的因素 ⑴加热温度的影响

奥氏体形成后,随着加热温度升高,晶粒急剧长大。温度对奥氏体晶粒长大的影响最为显著。 ⑵保温时间的影响

在相变温度以上任何温度保温时,奥氏体都有一个加速长大期。当经理达到一定尺寸后,长大速度趋于缓慢。 ⑶加热速度的影响

加热速度越大,过热度越大,形核率越高,奥氏体的起始晶粒越细。快速加热至高温,短时保温,可获得细晶粒组织。 ⑷化学成分的影响

含碳量对钢的奥氏体晶粒长大有明显影响。当钢的含碳量不超过一定限度时,在相同加热条件下,奥氏体晶粒随钢种含碳量增加而急剧长大。这是因为碳的扩散速度和铁的扩散速度都随含碳量的增加而增大。但当含碳量超过一定限度时,随含碳量增大,奥氏体晶粒反而减小。 简述过冷奥氏体冷却时的组织转变 ⑴高温珠光体型转变

奥氏体在A1-550℃之间,转变产物为珠光体(铁素体和渗碳体的混合物)。再此温度区间内,原子的扩散能力较强,容易在奥氏体晶界上产生高碳的渗碳体晶核和低碳的铁素体晶核,并实现晶格重构,属于扩散型相变,也可称为高温转变。 ⑵中温贝氏体型转变

在550℃-MS(230℃)温度范围内,过冷度较大,铁原子难以扩散,仅有碳原子扩散,过冷奥氏体转变速度下降,孕育期逐渐延长,这主要通过相变驱动力来改变晶格结构,通过碳原子扩散形成碳化物,属于半扩散型转变,转变产物为贝氏体型组织。

⑶低温马氏体型转变

当钢加热到奥氏体后,奥氏体被迅速过冷至MS以下时,铁、碳原子都已失去了扩散能力,但过冷度较大,相变驱动力足以使面心立方的奥氏体转变为体心立方的马氏体,并保持原奥氏体的成分。这种转变属于非扩散型转变,转变产物为马氏体。

简述影响过冷奥氏体等温转变图的因素

⑴含碳量的影响:亚共析钢加热到Ac3以上,过共析钢加热到Ac1以上的正常热处理加热条件下,随着含碳量的增加,亚共析钢的C曲线向右移;过共析钢的C曲线向左移。故在碳钢中以共析钢的过冷奥氏体最稳定。

⑵合金元素的影响:除钴外所有合金元素的溶入,均增加过冷奥氏体的稳定性,使C曲线向右移。其中,非碳化合物或弱碳化合物形成元素,如硅、镍、铜和锰等不改变C 曲线的形状,仍保持一个“鼻尖”,至改变C曲线位置;中强或强碳化物形成元素,如铬、钼、钨、钒和钛等溶入奥氏体,不仅使C曲线右移,并使珠光体转变和贝氏体转变区分离,出现两个“鼻尖”,即变成双C曲线。上部C曲线是等温转变形成珠光体区域;下部C曲线是等温转变形成贝氏体区域,其间存在着过冷奥氏体的亚稳定区。

必须指出,强碳化合物形成元素只有溶入奥氏体,才能增加过冷奥氏体的稳定性,使C曲线右移。如以不溶的碳化物存在,反而有利于奥氏体的分解,降低过冷奥氏体的稳定性。

⑶加热温度和时间的影响:当原始组织相同时,随加热温度的升高和保温时间的延长,奥氏体成分更加均匀,晶粒长大,晶界面积减小,从而降低冷却时相变的晶核数目,提高过冷奥氏体的稳定性,使C曲线右移。

⑷原始组织的影响:在相同加热条件下,原始组织越细小,越均匀,加热时越容易得到均匀的奥氏体,过冷奥氏体也越稳定。

⑸外加应力和塑性变形的影响:一般来说,因奥氏体比容最小,转变时体积膨胀。三向压应力阻碍过冷奥氏体的转变,使C曲线右移;三向拉应力有利于过冷奥氏体的转变,使C曲线左移。奥氏体塑性变形时会造成晶粒破碎和碳化物的析出,降低奥氏体的稳定性,使C曲线左移。 马氏体具有高强度和高硬度的原因是什么?

⑴过饱和碳引起强烈的正方畸变,形成以碳原子为中心的应力场,这种应力场与位错的交互作用使马氏体显着强化,即固溶强化,这个是主要的。

⑵板条状马氏体内的高密度位错,片状马氏体内精细孪晶,产生亚结构强化。 ⑶马氏体形成过程中的自回火现象,使碳原子沿晶体缺陷偏聚或碳化物弥散析出,钉扎位错,从而产生时效强化。

⑷原始奥氏体晶粒大小及板条马氏体束大小对马氏体强度的影响。原始奥氏体晶粒越细小,马氏体板条束越小,则马氏体强度越高。这是由于相界面阻碍位错的运动造成的马氏体强化。

简述淬火钢在回火时的组织变化过程

1马氏体中碳原子的偏聚

⑴含碳量小于0.2%的低碳马氏体中,绝大部分碳原子偏聚到高密度的位错线上,形成柯氏气团。这是由于碳原子和位错的弹性应力场的交互作用,使碳原子被弹性地吸引到位错线上,也称弹性偏聚。马氏体的含碳量为0.2%时,偏聚已达饱和状态。

⑵含碳量大于0.2%的马氏体,超过0.2%的碳原子以不再偏聚到位错附近,而在垂直c轴的(001)m面上偏聚,伴随有化学自由能降低,正方度c/a增加,硬度、强度有所提高,称为化学偏聚。这种偏聚也为析出亚稳定ε碳化物作准备。 2 马氏体的分解

马氏体的分解是自发进行的降低系统自由能的过程,是过饱和碳从固溶体中析出的脱溶过程,可分为两个阶段。

高碳马氏体在100-150℃回火为马氏体分解的第一阶段。碳原子只做短距离迁移,析出的ε碳化物片从周围取得碳原子长大,从而形成贫碳区,远离ε相的地区仍是高碳区,故称为马氏体的二相式分解。

150℃以上回火为马氏体分解的第二阶段,发生连续式分解、碳原子可以作较长距离的迁移,随ε碳化物的析出,α相碳浓度均匀降低,马氏体分解可延续到350℃,此时c/a趋近于1。实验指出,回火温度越高,马氏体碳浓度越低,析出的ε碳化物越多。 3 残余奥氏体的转变

含碳量超过0.5%的碳钢或低合金钢,淬火后总有少量残余奥氏体存在,在

200-300℃范围内回火时,残余奥氏体分解为过饱和α固溶体和薄片状ε碳化物的复相组织,二者保持共格,一般认为是回火马氏体或下贝氏体。研究证明,残余奥氏体的转变与过冷奥氏体转变一样,也是一个形核和长大的过程,转变生成贝氏体后也出现浮凸现象。 4 碳化物的转变

在250-400℃回火时,碳钢马氏体中过饱和碳原子几乎全部脱溶,析出比ε碳化物更稳定的碳化物。一种是χ碳化物,具有单斜晶系;另一种是θ碳化物,也就是渗碳体。

研究证明,条状马氏体在上述温度范围回火时,会直接析出θ相(渗碳体)。这种相以薄片或短杆状形成于马氏体的位错线或界面上。

高碳钢中的淬火马氏体和残余奥氏体在低温回火时,分解成α相和ε相,两相之间保持共格联系。

5 碳化物的聚集长大和α相回复、再结晶

当回火温度高于400℃时,渗碳体明显聚集长大并球化,无论片状渗碳体的球化或粒状渗碳体的长大,都通过小颗粒溶解,大颗粒长大的机理进行。由于碳原子的扩散能力近一步增强,铁原子的扩散能力开始恢复,α相中过饱和固溶碳原子全部脱溶,其本身正方度消失,逐渐回复与再结晶,组织中的碳化物也将聚集和球化。

对于条状马氏体来说,回火温度超过400℃时,马氏体的位错密度逐渐降低,剩下的位错又形成二维位错网络,排列成“墙”,构成α相中的亚晶界,从而将其分割成许多亚晶粒。同时,α相中的点阵畸变逐渐消失,称为α相的回复阶段。但是仍保持条形形态。只有回火温度超过600℃时,α相发生再结晶由位错密度降低的等轴晶粒代替回复时的条状组织,条状马氏体形态才消失。 对于高碳钢中的片状马氏体来说,当回火温度超过250℃时,孪晶开始消失,出现位错胞和位错线,显微裂纹逐渐被填合。回火温度达400℃时,孪晶全部消失,α相回复,逐渐形成多边化亚晶粒,仍保持片状特征。当温度高于600℃时,片状马氏体形态消失,等轴状α相代替片状α相。 钢回火转变后的组织有哪些? 1 回火马氏体

高碳钢在150-250℃低温回火,得到回火马氏体组织。回火马氏体光学显微镜下呈暗黑色片状组织,比淬火马氏体易受腐蚀。在电子显微镜下可以观察到片状α相内分布着薄片状ε碳化物,两者保持共格关系。低碳板条状马氏体低温回火后,只是碳原子的偏聚,与淬火马氏体没有显着差别。 2 回火屈氏体

在350-500℃进行中温回火后,得到回火屈氏体组织。其组织特征是:α相仍保持板条状或者片状形态,其上分布着微细粒状渗碳体,在光学显微镜下难以分辨,在电子显微镜下才能辨清两相。 3 回火索氏体

在500——650℃进行高温回火,得到回火索氏体组织。其组织是由细粒状渗碳体和等轴状铁素体所构成的复相组织。 4 粒状珠光体

在650-A1之间回火时,粒状渗碳体明显粗化。此种粒状珠光体与球化退火所得到的组织相同。范性很好,强度较低。

简述淬火钢回火时力学性能与回火温度之间的关系 ⑴ 硬度与回火温度之间的关系

中、低碳钢在250℃一下回火时,机械性能无明显变化。这是因为只有碳的偏聚,而无其他组织变化。高碳钢则不同,由于ε相共格析出,引起弥散强化,硬度略有升高。

250-400℃回火时,一方面由于马氏体分解、正方度减小以及碳化物转变和聚集长大,硬度趋于降低;另一方面,由于残余奥氏体转变为下贝氏体,硬度则有所升高。二者综合影响,使得中、低碳钢硬度下降,而高碳钢硬度升高。 回火温度在400℃以上升高时,产生α相的回复与再结晶及碳化物聚集并球化,均使硬度下降。

⑵强度和塑性与回火温度的关系

高、中、低碳钢回火时,弹性极限随回火温度上升而增加,大约在350℃左右出现峰值。这与回火过程中碳的偏聚、ε碳化物的析出、α相中碳过饱和度下降以及渗碳体析出α相回复等组织结构变化相联系。 钢的塑性一般随回火温度的升高而加大。 ⑶冲击韧性与回火温度之间的关系

随着回火温度的升高,碳钢冲击值(αk)变化的总趋势是增加的。但是,高碳钢经扭转冲击试验,可测出250℃左右回火后冲击值下降的脆化现象。 ⑷断裂韧性与回火温度之间的关系

在400℃以下,随回火温度增高,断裂韧性和冲击韧性均降低。400℃以上回火时,断裂韧性增大。

解释碳钢回火脆性的定义、原因及消除或改善方法

在250-400℃和450-650℃区域存在着冲击韧显著下降的现象,这种脆化现象称为回火脆性。

⑴其中在250-400℃范围内回火时出现的脆性称为第一类回火脆性,存在于一切钢种之中。此后若重新加热至第一类回火脆化温区,也不再出现脆性。故又称不可逆回火脆性。因其出现与低温回火温度范围,故又称低温回火脆性。发生第一类回火脆性的钢件,断口呈晶间断裂;无第一次回火脆性的钢件,呈穿晶断裂。 消除或改善的方法:

①以极快的速度加热和冷却以及高温形变热处理。

②以非碳化合物形成元素(Si)来合金化,一起有效地推迟马氏体脱溶的作用,使低温回火脆性温度区上移,从而使钢获得高强韧性。

导致第一类回火脆性的原因是ε相转变θ相或χ相,沿板条马氏体的条间、束界或片状马氏的孪晶带和晶界上析出,引起钢的韧性明显降低。

⑵淬火的合金钢在450-650℃范围内回火后,进行慢冷所出现的脆性,称为高温回火脆性。已产生脆性的工件,重新加热到600℃以上保温,然后快冷,则可消除此类脆性。如在600℃以上再次加热慢冷,脆性又将出现,故也称为可逆回火脆性。

产生第二类回火脆性的原因是:锑、锡、砷、磷等杂质元素在原奥氏体晶界上偏聚或以化合物方式析出,是导致第二类回火脆性的主要原因。

为了防止高温回火脆性,可在钢中加入0.5%钼或1%钨,抑制杂质元素向晶界偏聚,这种方法适用于大工件。对于中小工件,可采用高温回火后快冷,抑制杂质元素偏聚。

介绍几种常见的退火工艺、目的及应用 1 完全退火

将亚共析钢加热至Ac3以上20-30℃,保温足够时间奥氏体化后,随炉缓慢冷却,从而接近平衡的组织,这种热处理工艺称为完全退火。

经浇注并模冷后的钢锭和铸钢件,或终轧终止温度过高的热锻轧件,晶粒粗大,易得魏氏组织,并存在着内应力。可通过完全退火来细化晶粒、均匀组织、消除内应力、降低硬度,便于切削加工,并为加工后零件的淬火做好组织准备。 完全退火只适用于亚共析钢,不宜用于过共析钢。过共析钢若加热至Acm以上单相奥氏体区,缓冷后会析出网状二次渗碳体,使钢的强度、范性和韧性大大降低。 2 不完全退火

亚共析钢在Ac1- Ac3之间或过共析钢在Ac1-Accm之间两相区加热,保温足够时间,进行缓慢冷却的热处理工艺,称为不完全退火。

如果亚共析钢的终轧终止温度适当,并未引起晶粒粗化,铁素体和珠光体的分布又无异常现象,采用不完全退火,可以进行部分重结晶,起到细化晶粒,改善组织,降低硬度和消除内应力的作用。亚共析钢的不完全退火温度一般为740-780℃,其优点是加热温度低,操作条件好,节省燃料和时间。 过共析钢退火是为了细化和均匀组织,降低硬度和消除内应力。 3 等温退火

等温退火是将钢件加热到临界温度(过共析钢Ac1或亚共析钢Ac3)以上奥氏体化,然后将钢件移入另一温度稍低于Ar1的炉中等温停留,不可太高也不宜过低。太高则等温时间过长,且硬度偏低;过低则硬度偏高。原则是在保证硬度合格的

条件下,尽量选用较低的等温温度,以缩短等温时间,提高劳动生产率。当转变完成后,出炉空冷至室温。

等温退火时转变易于控制,更适用于过冷奥氏体稳定性高的合金钢,可以节省钢件在炉内的时间,提高退火炉的周转率。 4 球化退火

球化退火是使钢中的碳化物球化,获得粒状珠光体的热处理工艺,主要用于过共析钢,如碳素工具钢、低合金工具钢和滚珠轴承钢。

球化退火的目的是降低硬度,改善切削加工性能,以及获得均匀的组织,并为最后的淬火处理做组织准备。其加热温度范围一般取Ac1以上20-30℃ 经球化退火后组织的优点:

⑴由片状变成粒状珠光体,降低硬度,改善切削加工性能。

⑵粒状珠光体加热时奥氏体晶粒不易长大,允许有较宽的淬火温度范围,淬火时变形开裂倾向小,即淬火的工艺性能好。

⑶能获得最佳的淬火组织,即马氏体片细小,残余奥氏体量少,并保留一定量均匀分布的粒状碳化物。

另外具有明显网状碳化物结构的钢材,必须先进行正火消除碳化物网,再进行球化退火。 5 扩散退火

扩散退火也称均匀化退火,主要用于合金钢钢锭或铸件,它们在浇注后凝固过程中总会产生合金元素的枝晶偏析,即化学成分不均匀性。扩散退火是通过高温长时间加热奥氏体化,使分布不均匀的元素通过扩散,以消除或者减弱枝晶偏析。 常用扩散退火温度是1100℃-1200℃,保温时间为10-15小时。钢中合金元素含量越高,所采用的加热温度越高。经高温长时间加热扩散退火后,奥氏体晶粒已经过度长大,如不再进行热加工,必须进行一次完全退火或正火以细化晶粒。 6 低温退火

低温退火是把钢件加热到低于Ac1温度退火,又叫消应力退火,主要用于消除铸件、锻件、焊接件、冷冲压件和机加工件中的残余应力,提高稳定性,防止淬火变形开裂。它包括软化退火和再结晶退火。

常用的软化退火温度为650-720℃,保温后出炉空冷。钢锭经软化退火后,消除了内应力,避免钢锭开裂,并降低硬度便于钢锭表面清理。合金结构钢的锻轧钢

材,经软化退火后能消除内应力和降低硬度,对于过冷奥氏体稳定性高的合金钢,降低硬度效果更为显著。

再结晶退火是将冷加工硬化的钢材,加热至T再-Ac1之间进行,通常为650-700℃。其目的是通过再结晶使变形晶粒恢复成等轴状晶粒,从而消除加工硬化。 简述热处理工艺中的正火、退火、淬火、回火的定义、目的及应用

1正火是将钢加热到Ac3或Acm以上约30-50℃,或者更高的温度,保温足够时间,然后在静止空气中冷却的热处理工艺,得到的显微组织为珠光体。 正火的目的:

⑴对于大锻件、截面较大的钢材、铸件,用正火来细化晶粒,均匀组织。如消除魏氏组织或带状组织,为下一步淬火处理做好组织准备,它相当于退火的效果。 ⑵低碳钢退火后硬度太低,切削加工中易粘刀,光洁度较差。改用正火,可提高硬度,改善切削加工性。

⑶可作为某些中碳钢或中碳低合金钢工件的最终热处理,以代替调质处理,具有一定的综合力学性能。

⑷用于过共析钢,可以消除网状碳化物,便于球化退火 正火的用途:

正火操作方便、成本较低、生产周期短、生产效率高,主要用于改善低碳非合金钢(低碳钢)的切削加工性能,消除中碳非合金钢的热加工缺陷,消除过共析钢的网状碳化物,也可用于某些低温化学热处理件的预处理及某些结构钢的最终热处理。

2退火:将钢加热到临界点Ac1以上或以下的一定温度,保温一定时间,然后缓慢冷却,以获得接近平衡状态的组织,这种热处理工艺称为退火。 退火的目的是:

⑴消除钢锭的成分偏析,使成分均匀化。

⑵消除铸、锻件存在的魏氏组织或带状组织,细化晶粒和均匀组织。 ⑶降低硬度,提高塑性,改善组织,以便于切削加工和冷变形加工。 ⑷改善高碳钢中碳化物形态和分布,为淬火做好准备 ⑸消除组织遗传,淬火过热组织。

⑹消除零件的加工应力,稳定零件尺寸。 ⑺脱除氢气,消除白点。

3 淬火:将钢加热到临界点Ac1或Ac3以上的一定温度,保温一段时间,然后在水或油等冷却介质中快速冷却,这种热处理工艺称为淬火。

淬火的主要目的,是把奥氏体化工件淬成马氏体,以便在适当温度回火,获得所需要的力学性能。

4 回火是将淬火后的钢在A1温度下加热,使之转变成稳定的回火组织的工艺过程。此过程不仅保证组织转变,而且要消除内应力,故应有足够的保温时间 回火的目的就是消除应力、稳定组织、调整性能。 介绍几种常见的回火工艺,目的及应用 1 低温回火

在150-250℃之间进行,回火后组织为回火马氏体。其目的是降低淬火内应力,使其具有一定韧性,并保持高的硬度。

低温回火一般用来处理要求高硬度、高耐磨性工件,如模具、刀具、滚动轴承和渗碳件等。低碳合金钢淬火后,经低温回火具有高的综合力学性能。 2 中温回火

在350-500℃之间进行,回火后组织为回火屈氏体。中温回火后具有高的弹性极限,并具有足够的韧性,中温回火主要用来处理各种弹簧,也可用于处理要求高强度的工件,如刀杆、轴套等。 3 高温回火

在500-650℃之间进行,回火后组织为回火索氏体。习惯上把这种淬火加高温回火的双重处理称为调质处理。调质处理后钢件具有高的范性和韧性,强度也较高,即具有高的综合力学性能。调质处理广泛用于要求高强度并受冲击或交变负荷的重要工件,如连杆、轴等。 合金元素对铁碳相图的影响

1 扩大γ相区的元素:就是指在铁与合金元素组成的二元相图中,是A3点温度降低,A4点温度升高,并在相当宽的温度范围内与γ-Fe可以无限固溶或有相当大的溶解度。

⑴开启γ相区元素:在这类元素与铁组成的二元相图中,γ相区存在的温度范围变宽,相应的α和δ相区缩小,并在一定范围内铁与该元素可以无限固溶。Mn、Co、Ni和Fe组成的二元相图属于此类。

⑵扩大γ相区的元素:与⑴相似,但是不能无限固溶。C、N、Cu等元素属于这类。

2 缩小γ相区的元素:就是指这类元素在二元相图中,可以使A3温度升高,A4点温度降低;合金元素在γ-Fe中的溶解度较小。

⑴封闭γ相区的元素:这类元素使A3升高,A4降低,γ相区被α相区所封闭,在相图上形成γ圈。V、Cr、Ti、W、Mo、Al、Si、P、Sn、Sb、As等属于这类元素,其中V和Cr与α-Fe在一定温度范围可无限互溶,其余元素与α-Fe都是有限互溶。

⑵缩小γ相区的元素:这类元素与封闭γ相区的元素相似,但由于在一定浓度范围出现了金属化合物,破坏了γ圈,使γ相可以在相当大的浓度范围内与化合物共存。B、Zr、Nb、Ta、S、Ce等属于这类元素。

综述合金元素(包括碳)在各种钢的作用(结合钢种详细说明要具体到某一型号的钢) 一 结构钢:

1 调质钢 30CrMo C(0.26-0.34) Mn Cr Mo 合金元素的作用:

碳:保证形成足够的碳化物,其中一部分碳化物在加热至高温时溶入奥氏体中,使固溶体中含碳量达到饱和,从而保证淬火后马氏体的硬度;另一部分碳化物起细化晶粒的作用,并提高钢的耐磨性。

锰:可显著增大钢的淬透性和强度,与碳配合可以增大钢的加工硬化率,提高钢的耐磨性。

铬:增大钢的淬透性,并使过剩碳化物增多和变细,以增大钢的耐磨性。铬还可以提高钢的回火稳定性、抗氧化和抗气体腐蚀能力。 2 渗碳钢 18Cr2Ni4WA C(0.13-0.19)W Cr Si Mn Ni 合金元素在渗碳钢中的作用

碳:保证形成足够的碳化物,其中一部分碳化物在加热至高温时溶入奥氏体中,使固溶体中含碳量达到饱和,从而保证淬火后马氏体的硬度;另一部分碳化物起细化晶粒的作用,并提高钢的耐磨性。

锰:可显著增大钢的淬透性和强度,与碳配合可以增大钢的加工硬化率,提高钢的耐磨性。

铬:增大钢的淬透性,并使过剩碳化物增多和变细,以增大钢的耐磨性。铬还可以提高钢的回火稳定性、抗氧化和抗气体腐蚀能力。 钨:细化奥氏体晶粒 镍:提高钢的淬透性

为获得良好的渗碳性能 凡是形成碳化物的元素,当它们溶于奥氏体时,都可以增加钢表面对碳的吸收能力;于此同时,它们都减慢碳在奥氏体中的扩散。非碳化合物形成元素则减小钢件表面碳的吸收速度,如硅、镍、铜等,同时加速碳在奥氏体中的扩散。因而加入这类元素,往往可以使渗碳层的含碳量分布变平缓,并使表面层含碳量适当减少。

3 弹簧钢 60Si2CrVA C(0.56-0.64) Si Mn Cr V 弹簧钢中合金元素的作用如下: ⑴碳:主要用来满足钢材的强度。

⑵铬、锰:主要是增大钢的淬透性,以保证大截面弹簧强度的要求。 ⑶硅:主要用来提高钢的弹性极限和屈服强度。

⑷钒:用来细化奥氏体晶粒,提高钢的耐磨性,以增大钢的强度和韧性。 二、轴承钢 GCr15 C(0.95-1.05) Mn Si Cr

碳:保证形成足够的碳化物,其中一部分碳化物在加热至高温时溶入奥氏体中,使固溶体中含碳量达到饱和,从而保证淬火后马氏体的硬度;另一部分碳化物起细化晶粒的作用,并提高钢的耐磨性。

铬:目的是增大钢的淬透性,并使过剩碳化物增多和变细,以增大钢的耐磨性。 硅:目的是溶入固溶体中提高钢的弹性极限,并在一定程度上增大钢的淬透性。而且,由于硅能显著提高低温回火时马氏体的抗回火稳定性,从而使钢保持高强度、高硬度,但硅多时钢的脱碳敏感性增大。

锰:可显著增大钢的淬透性和强度,但锰多时产生淬火裂纹的倾向和残余奥氏体量将增大。

稀土元素可以改善钢中夹杂物的分布,改善钢的范性和韧性。 三、工具钢

1 低速刃具及量具用钢 9SiCr C(0.85-0.95) Si Mn Cr 合金元素的作用:

碳:保证形成足够的碳化物,其中一部分碳化物在加热至高温时溶入奥氏体中,使固溶体中含碳量达到饱和,从而保证淬火后马氏体的硬度;另一部分碳化物起细化晶粒的作用,并提高钢的耐磨性。

锰:可显著增大钢的淬透性和强度,提高钢的耐磨性,细化奥氏体晶粒。 铬:增大钢的淬透性,增大钢的耐磨性,细化奥氏体晶粒,。 硅:增大钢的抗回火软化能力,减少淬火变形。

2 高速钢 W18Cr4V C(0.7-0.8)W Mo Cr V Si Mn Al 合金元素的作用:

高碳:可保证形成足够的合金碳化物量和马氏体中有足够的含碳量,使钢具有高的耐磨性和高的硬度。同时,由于合金碳化物数量多,在淬火加热时溶入奥氏体中碳化物的数量相应增多,使淬火后马氏体中的合金度提高,从而增大二次硬化效果,有利于红硬性的提高。

钨和钼:主要目的是造成二次硬化,以保证高的红硬性。

钒:提高钢的耐磨性,还能明显提高钢的抗氧化能力和抗回火能力。 铝:显著提高钢的硬度和红硬性,降低刀具的磨损。

锰:可显著增大钢的淬透性和强度,提高钢的耐磨性,细化奥氏体晶粒。 铬:增大钢的淬透性,增大钢的耐磨性,细化奥氏体晶粒。

硅:溶入固溶体中提高钢的弹性极限,并在一定程度上增大钢的淬透性。硅还能显著提高低温回火马氏体时的抗回火稳定性,使钢保持高硬度和高强度。 四、耐蚀钢 1Cr13 C(≦0.08) Si Mn Cr Ni 合金元素的作用:

铬: 铬是决定不锈钢耐蚀性能的主要元素。钢中若含有足够的铬,钢在氧化性介质中就可形成以Cr2O3为基体的稳定的表面防护膜;同时铬能有效地提高固溶体(铁素体、马氏体或奥氏体)的电极电位,从而使钢不受腐蚀。

碳:一方面它是稳定奥氏体的元素,并且作用很大;另一方面,由于碳和各的亲和力很强,它与铬可形成一系列的复杂碳化物。因此,钢中含碳量越高,其抗腐蚀性就越低。

镍: 镍与各互相配合可以显著提高钢的耐蚀性。 锰: 可以部分的代替镍,是形成奥氏体的合金元素。

硅:溶入固溶体中提高钢的弹性极限,并在一定程度上增大钢的淬透性。硅还能显著提高低温回火马氏体时的抗回火稳定性,使钢保持高硬度和高强度。 五、耐热钢

1 铁素体珠光体耐热型钢 12Cr1MoV 合金元素在这类钢中的作用是:

硅和铬可以提高钢在580-650℃的抗氧化和抗气体腐蚀能力。

铬、钼、钨等中强碳化物形成元素能形成合金渗碳体或特殊碳化物,强碳化物形成元素如钒、钛则形成VC、TiC等碳化物,由其造成的沉淀强化使钢保持较高的蠕变强度。

铬和钼等元素可以溶入固溶体起到固溶强化作用,同时它们还降低碳在固溶体中的扩散速度;当它们进入碳化物中可以增加碳化物中原子的结合力。 2 奥氏体耐热钢 Cr15Ni26MoTi2AlVB 合金元素的作用:

镍、锰、氮:扩大γ相区,稳定γ相。 铬、铝、硅提高钢的抗气体腐蚀和抗氧化能力。

钼、钨、钴、铬提高基体的再结晶温度,增加基体组织结构的稳定性。 硼(微量)强化晶界

列出结构钢、轴承钢、工具钢、耐蚀钢、耐热钢的具体热处理工艺 一、结构钢 调质钢 1 淬火

淬火温度 理论加热温度在Ac3以上30~50℃,一般含钨、钒、铝的合金钢加热温度可取高些,含锰则低些。尺寸小、形状复杂的工件淬火加热温度取下限,而尺寸大形状简单取上限。

加热时间 盐浴炉按0.4-0.6min/mm,气体介质加热炉按1.5-1.8min/mm来估算。 冷却介质 一般合金调质钢,均用油做淬火剂。

2 回火 调质钢淬火后应进行高温回火才能获得会后索氏体组织。 回火温度 取500-600℃之间。 回火时间 合金钢一般可取0.5-1小时

冷却介质 除了回火脆性敏感的钢材需要快冷外(用水或油),其他的钢材可在空气中冷却。 40Cr热处理工艺

正火在空气介质炉中加热至850-870℃,置于空气中冷却。 退火在空气介质炉中加热至830-850℃,随炉降温。

淬火 水淬温度为830-850℃,油淬为850-870℃,小尺寸油冷,大尺寸水-油双液冷却。

回火 通常在500-650℃回火,置于水中或油中冷却。 二、轴承钢 GCr15钢

轴承零件经淬火低温回火后,具有良好的接触疲劳强度和耐磨性,其显微组织为隐回火马氏体基体上分布着细小的粒状碳化物。轴承钢是过共析钢,因此必须采用不完全淬火。淬火温度选在820-850℃。淬火后的组织为马氏体+7-8%未溶粒状碳化物+8-10%残留奥氏体。

轴承零件的回火皆为低温回火。GCr15钢取150-160℃,含有硅、钒的钢取175℃回火。回火保温时间一般为2小时。 三、工具钢

比如低速刃具及量具用钢

1 球化退火 球化退火在锻后进行。目的除了软化钢材,便于切削加工外,更重要的是为以后淬火提供较为理想的原始组织,即球状珠光体。

退火加热温度通常取在Ac1以上20-40℃,保温时间一般取2-4小时。经保温后可随炉(不大于50℃/h)冷却或采用等温冷却(一般取在680—700℃)。 如果球化退火前,钢中存在严重的网状碳化物,则应先进行加热温度高于Ac3的正火,然后在退火。含钨较高的钢采用高温回火。

2 淬火 目的是获得马氏体和过剩碳化物组织,以提高钢的硬度和耐磨性。 加热温度:亚共析钢采用完全淬火,即Ac3以上30-50℃;过共析钢采用不完全淬火,即Ac1以上30-50℃。

加热保温时间,可按刃具的有效厚度计算。在盐浴炉中加热,碳钢取20-25s/mm;合金钢取25-30s/mm。

淬火的冷却,碳钢通常采用水淬油冷(双液淬火),直径小于8mm的小刀刃,可以采用油淬,或用170-190℃的碱液(或盐液)分级或等温冷却。合金钢可采用较缓和的介质冷却,使淬火变形减小,通常采用油淬或熔盐分级淬火。 3 低温回火淬火后应立即进行回火,以消除淬火应力,并适当提高塑性和韧性。为了保持高硬度和高耐磨性,应采用低温回火。回火温度,碳钢一般取160-180;合金钢可以适当提高 9SiCr的热处理工艺

等温球化退火:加热温度790-810℃,经2-4小时保温后,于700-729℃等温保温6-8小时。

淬火的加热温度为850-870℃,淬火的冷却,可根据刀具尺寸及形变程度的要求分别选用油淬和分级淬火(Ms点稍高处约180℃左右停留2-5分钟)或等温淬火(在Ms点稍高处180-200℃或稍低处160℃,停留约30-60分钟)。 9SiCr钢的回火温度应根据刃具要求的硬度来确定,一般取在170-220℃之间保温2小时左右。 再比如高速钢

1 球化退火目的在于取出锻造后的内应力,消除不平衡组织,降低硬度,获得较细小的晶粒,以便于切削加工和为以后淬火提供良好的原始组织。

退火温度选在860-880℃之间。退火保温时间一般为2-4小时。然后等温退火,打开炉门于740-750℃等温六小时再以不大于30℃/h冷到500-550℃出炉。 2 淬火目的是通过加热使尽可能多的碳及合金元素溶入奥氏体中,冷却后得到合金度很高的马氏体组织,从而为后的高的红硬性与耐磨性打下基础。

淬火前,一般刀具采用800-850℃预热,而大截面、形状复杂的道具采用两次预热。第一次在600-650℃,第二次在800-850℃。淬火温度:W18Cr4v为1280℃,加热时间根据加热温度、加热介质、装炉量和碳化物的形态等因素考虑,最短不超过30s。

冷却介质为空气或油,采用等温退火,在240-280℃硝盐内进行,等温时间2-4小时,然后空冷。

3 回火 淬火后应立即进行回火,以消除淬火应力,并适当提高塑性和韧性。为了保持高硬度和高耐磨性,一般采用560℃回火,每次回火保温均采用1小时(大型刀具1.5小时)。通常还要进行二次回火、三次回火。(减少回火次数的措施:淬火后立即在-80—--70℃低温处理,然后在进行一次回火) 四、耐蚀钢

Cr13型马氏体不锈钢热处理工艺

加热到1000℃空冷即可得到马氏体组织,然后根据使用条件来决定回火温度。若要求高的硬度,取200-250℃低温回火;若要求热强度,则取600-750℃高温回火。

18—8型奥氏体不锈钢的热处理工艺

1 固溶处理 固溶处理的温度一般为1050-1150℃,钢的含碳量越高,固溶处理温度也越高。保温时间与钢材厚度和直径有关,厚度为1mm,时间为5min;2-3mm,时间为15min;4-12mm,时间为30min.

加热保温后,薄壁零件可以空冷,其他均进行水冷。

2 消除内应力处理 为消除切削加工后的残余应力,通常采用300-350℃的消除应力退火,保温1-2小时后空冷。

3 稳定化处理 这种方法针对含钛、铌的不锈钢而设置的。钢中加入钛或铌可消除晶间腐蚀,但是他们的效果必须通过稳定化处理后才能保证。 将钢加热至850-900℃,保温2小时,空冷。 五、耐热钢

1 珠光体耐热钢12Cr1MoV

珠光体钢的热处理一般是正火后再回火,回火温度要高于使用温度100℃。如12Cr1MoV钢制锅炉过热管,工作时管壁温度可达580℃,其热处理工艺是加热至980-1020℃,保温空冷后进行710-750℃回火。 2 奥氏体耐热钢Cr15Ni26MoTi2AlVB (GH132)

热处理工艺:GH132经980-1000℃固溶,700-720℃时效16小时,一般可用于650-700℃,受力不大的零件可用于850℃。

画出铁碳相图,并按碳含量分类,说出对应合金钢的热处理方式。 一、亚共析钢 比如调质钢 1 淬火

淬火温度 理论加热温度在Ac3以上30~50℃,一般含钨、钒、铝的合金钢加热温度可取高些,含锰则低些。尺寸小、形状复杂的工件淬火加热温度取下限,而尺寸大形状简单取下限。

加热时间 盐浴炉按0.4-0.6min/mm,气体介质加热炉按1.5-1.8min/mm来估算。 冷却介质 一般合金调质钢,均用油做淬火剂。

2 回火 调质钢淬火后应进行高温回火才能获得会后索氏体组织。 回火温度 取500-600℃之间。 回火时间 合金钢一般可取0.5-1小时

冷却介质 除了回火脆性敏感的钢材需要快冷外(用水或油),其他的钢材可在空气中冷却。 40Cr热处理工艺 二、过共析钢

比如低速刃具及量具用钢

1 球化退火 球化退火在锻后进行。目的除了软化钢材,便于切削加工外,更重要的是为以后淬火提供较为理想的原始组织,即球状珠光体。

退火加热温度通常取在Ac1以上20-40℃,保温时间一般取2-4小时。经保温后可随炉(不大于50℃/h)冷却或采用等温冷却(一般取在680—700℃)。 如果球化退火前,钢中存在严重的网状碳化物,则应先进行加热温度高于Ac3的正火,然后在退火。含钨较高的钢采用高温回火。

2 淬火 目的是获得马氏体和过剩碳化物组织,以提高钢的硬度和耐磨性。

加热温度:亚共析钢采用完全淬火,即Ac3以上30-50℃;过共析钢采用不完全淬火,即Ac1以上30-50℃。

加热保温时间,可按刃具的有效厚度计算。在盐浴炉中加热,碳钢取20-25s/mm;合金钢取25-30s/mm。

淬火的冷却,碳钢通常采用水淬油冷(双液淬火),直径小于8mm的小刀刃,可以采用油淬,或用170-190℃的碱液(或盐液)分级或等温冷却。合金钢可采用较缓和的介质冷却,使淬火变形减小,通常采用油淬或熔盐分级淬火。 3 低温回火淬火后应立即进行回火,以消除淬火应力,并适当提高塑性和韧性。为了保持高硬度和高耐磨性,应采用低温回火。回火温度,碳钢一般取160-180;合金钢可以适当提高。

1.名词解释(30分): (1)刃型位错和螺型位错模型 (2)晶界与界面能 (3)同分凝固与异分凝固 (4)形变织构 (5)二次再结晶 (6)淬透性与淬硬性

1,刃型位错和螺型位错模型:将晶体上半部切开,插入半个晶面,再粘合起来;这样,在相当于刃端部为中心线的附近一定范围,原子发生有规则的错动。其特点是上半部受压,下半部受拉。这与实际晶体中的刃型位错造成的情景相同,称刃型位错模型。同样,将晶体的前半部切开,以刃端为界使左右两部分沿上下发生一个原子间距的相对切变,再粘合起来,这时在已切动和未切动交界线附近,原子错动情况与真实的螺位错相似,称螺型位错模型。

2,晶界与界面能:晶界是成分结构相同的同种晶粒间的界面。界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。 3,同分凝固与异分凝固:凝固时不发生成分变化的称同分凝固;反之,凝固时伴随成分变化,称异分凝固。

4,形变织构:多晶形变过程中出现的晶体学取向择优现象。

二次再结晶:再结晶结束后正常长大过程被抑制而发生少数晶粒异常长大的现象。 6,淬透性与淬硬性:淬透性指合金淬成马氏体的能力,主要与临界冷却有关,大小用淬透层深度表示。而淬硬性指淬火后能达到的最高硬度。主要与钢中的碳含量有关。

2.简述二元系中共晶反应、包晶反应和共析反应的特点;并计算其各相平衡时的自由度。(12)

共晶反应是:液相同时凝固出两个不同成分的固相相互配合生长,一般长成片层状。

共析与共晶相似,只是母相是固相,即一个固相同时生成另两个不同成分的固相。 包晶反应是:液相与一个固相反应生成另一个固相,新生成的固相包住原有的固相,反应需要固相中的扩散,速度较慢。

这三种反应出现时,自由度都是0,即三相成分固定,温度也固定。

4.凝固过程中形核和长大与再结晶过程中形核和长大主要区别是什么?简述再结晶过程中核心的产生方式。(12)

凝固时形核和长大的驱动力是新、旧相化们差,再结晶器形核和长大的驱动力只是形变储存能。

凝固时的形核常为均匀形核;再结晶形核常在现有的形变不均匀区中,如晶界附近、切变带、形变带、第二相粒子周围;凝固长大时与母相不会有取向关系,再结晶长大时可能有一定的取向关系。

再结晶核心产生方式:1,原有晶界推移成核,也称应变诱导晶界迁移式形核;2,亚晶成核,即通过亚晶合并或长大形成新晶粒。

本文来源:https://www.bwwdw.com/article/c4f.html

Top