初三上期中复习《压轴题》专题训练(2)

更新时间:2024-05-16 04:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2016-2017学年第一学期初三数学期中压轴题训练(2)

1.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3

),B(4,0)两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出

的值,并求出此时点M的坐标.

2.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0). (1)求该二次函数的表达式及点C的坐标;

(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S. ①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.

3.如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;

(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;

(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且 点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

4.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4). (1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;

(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.

5.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D. (1)求此抛物线的解析式.

(2)求此抛物线顶点D的坐标和对称轴.

(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.

6.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称

(1)填空:点B的坐标是 ;

(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;

(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.

7.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.

(1)请直接写出点A,C,D的坐标;

(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;

(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.

8.如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F. (1)求抛物线的解析式;

(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=

,求点Q的坐标;

(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.

9.如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3). (1)求抛物线的函数表达式;

(2)判断△BCM是否为直角三角形,并说明理由.

(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

10.如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB的解析式;

(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以

个单位/秒的速度向终点B匀速运动,当E,

F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?

(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形

中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.

11.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D. (1)求这条抛物线的表达式;

(2)联结AB、BC、CD、DA,求四边形ABCD的面积;

(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

12.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7). (1)求抛物线m的解析式;

(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标; (3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.

13.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,BE⊥y轴,BE=2AC. 且在第一象限内,交y轴于点E,交AO的延长线于点D,(1)用含m的代数式表示BE的长. (2)当m=

时,判断点D是否落在抛物线上,并说明理由.

(3)若AG∥y轴,交OB于点F,交BD于点G. ①若△DOE与△BGF的面积相等,求m的值.

②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是 .

14.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.

(1)求该抛物线的解析式;

(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标; (3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

15.抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方. (1)如图1,若P(1,﹣3),B(4,0). ①求该抛物线的解析式;

②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,为定值?若是,试求出该定值;若不是,请说明理由.

是否

16.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点 (1)求m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由 (3)P为抛物线上一点,它关于直线BC的对称点为Q ①当四边形PBQC为菱形时,求点P的坐标;

②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.

17.如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.

(1)求直线AB和直线BC的解析式;

(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的最小值;

(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,tt≥0)平移的距离是(,平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.

BH的值最小,求点H的坐标和GH+

18.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D. (1)求抛物线的解析式; (2)证明:△DBO∽△EBC;

(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

19.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.

(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;

(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?

(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

20.B、C分别为坐标轴上的三个点,已知如图,在平面直角坐标系xOy中,点A、且OA=1,OB=3,OC=4,

(1)求经过A、B、C三点的抛物线的解析式;

(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

21.如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.

(1)求抛物线的解析式及顶点D的坐标;

(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;

(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.

22.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.

(1)求出二次函数的表达式以及点D的坐标;

(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;

(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.

23.如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点. (1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;

(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;

(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?

24.如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.

(1)求抛物线的解析式;

(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.

①求点P的坐标;

②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;

(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.

25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣

),C(2,0),其对称轴与x轴交于点D

(1)求二次函数的表达式及其顶点坐标;

(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为 ; (3)M(x,t)为抛物线对称轴上一动点

B,M,N为顶点的四边形为菱形, ①若平面内存在点N,使得以A,则这样的点N共有 个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.

26.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=. (1)求抛物线的解析式;

(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;

(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.

27.已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B. (1)试确定a的值,并写出B点的坐标;

(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式; (3)试在x轴上求一点P,使得△PAB的周长取最小值;

(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.

28.如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点 (1)当m=2时,a= ,当m=3时,a= ;

(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;

(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为 ; (4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.

29.如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.

(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;

(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan (α﹣β)=1,求点E的坐标; (3)如图②,在(2)的条件下,动点M从点C出发以每秒

个单位的速度在直线BC

上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.

30.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.

(1)求这个二次函数的表达式;

(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;

(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,

为常数,试确定k的值.

参考答案与解析

1.(2016?泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3

),B(4,0)两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出

的值,并求出此时点M的坐标.

【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;

(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;

(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得

的值;借助a可表示出M点的

坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标. 【解答】解: (1)∵A(1,3∴

),B(4,0)在抛物线y=mx2+nx的图象上,

, x2+4

x;

,解得

∴抛物线解析式为y=﹣

(2)存在三个点满足题意,理由如下:

当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,

∵A(1,3),

∴D坐标为(1,0);

当点D在y轴上时,设D(0,d),则AD2=1+(3

2

﹣d)2,BD2=42+d2,且AB2=(4﹣1)

+(3

)2=36,

∵△ABD是以AB为斜边的直角三角形, ∴AD2+BD2=AB2,即1+(3∴D点坐标为(0,

﹣d)2+42+d2=36,解得d=)或(0,

);

0)综上可知存在满足条件的D点,其坐标为(1,或(0,(3)如图2,过P作PF⊥CM于点F,

)或(0, );

∵PM∥OA,

∴Rt△ADO∽Rt△MFP, ∴

=

=3

∴MF=3PF,

在Rt△ABD中,BD=3,AD=3∴tan∠ABD=

∴∠ABD=60°,设BC=a,则CN=a,

在Rt△PFN中,∠PNF=∠BNC=30°, ∴tan∠PNF=∴FN=

PF,

PF, =

∴MN=MF+FN=4∵S△BCN=2S△PMN, ∴∴a=2∴NC=∴

=

NC=a2=2××4PF, a=2

=

PF2,

PF, , ×

+a=

a, )a, +

)a),

∴MN=

∴MC=MN+NC=(

∴M点坐标为(4﹣a,(

又M点在抛物线上,代入可得﹣解得a=3﹣OC=4﹣a=

或a=0(舍去), +1,MC=2

+

, +

(4﹣a)2+4

(4﹣a)=(+)a,

∴点M的坐标为(+1,2).

【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、勾股定理、相似三角形的判定和性质、点与函数图象的关系及分类讨论等.在(2)中注意分点D在x轴和y轴上两种情况,在(3)中分别利用PF表示出MF和NC是解题的关键,注意构造三角形相似.本题涉及知识点较多,计算量较大,综合性较强,特别是第(3)问,难度很大.

2.(2016?淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0). (1)求该二次函数的表达式及点C的坐标;

(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S. ①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.

【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标

(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S

△OCF

,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的

面积有最大值,然后根据平行四边形的性质可得S的最大值;

②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代 入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得解得

所以抛物线的解析式为y=﹣x2+x+8; 当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8, 所以C点坐标为(8,0);

(2)①连结OF,如图,设F(t,﹣t2+t+8), ∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,

∴S△CDF=S△ODF+S△OCF﹣S△OCD=?4?t+?8?(﹣t2+t+8)﹣?4?8 =﹣t2+6t+16 =﹣(t﹣3)2+25,

当t=3时,△CDF的面积有最大值,最大值为25, ∵四边形CDEF为平行四边形, ∴S的最大值为50;

②∵四边形CDEF为平行四边形, ∴CD∥EF,CD=EF,

∵点C向左平移8个单位,再向上平移4个单位得到点D,

∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣∵E(t﹣8,﹣t2+t+12)在抛物线上,

∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7, 当t=7时,S△CDF=﹣(7﹣3)2+25=9, ∴此时S=2S△CDF=18.

t2+t+12),

【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.

3.(2016?钦州)如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C (1)直接写出抛物线的函数解析式;

(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;

(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且 点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;

(2)令抛物线解析式中x=0求出点C的坐标,根据点A、B的坐标即可求出其中点M的坐标,由此即可得出CM的长,根据圆中直径对的圆周角为90°即可得出△COM∽△CDE,根据相似三角形的性质即可得出

,代入数据即可求出DC的长度;

(3)根据平移的性质求出平移后的抛物线的解析式,令其y=0,求出平移后的抛物线与x轴的交点坐标,由此即可得出点P横坐标的范围,再过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,通过分割图形求面积法找出S△PDE关于x的函数关系式,利用配方结合而成函数的性质即可得出△PDE面积的最大值.

【解答】解:(1)将点A(﹣3,0)、B(1,0)代入y=ax2+bx﹣2中,

得:,解得:,

∴抛物线的函数解析式为y=x2+x﹣2. (2)令y=x2+x﹣2中x=0,则y=﹣2, ∴C(0,﹣2), ∴OC=2,CE=4.

∵A(﹣3,0),B(1,0),点M为线段AB的中点, ∴M(﹣1,0), ∴CM=

∵CE为⊙O的直径, ∴∠CDE=90°, ∴△COM∽△CDE, ∴∴DC=

, .

=

(3)将抛物线向上平移个单位长度后的解析式为y=x2+x﹣2+=x2+x﹣, 令y=x2+x﹣中y=0,即x2+x﹣=0, 解得:x1=

,x2=

∵点P在第三象限,

∴<x<0.

过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,如图所示. 在Rt△CDE中,CD=∴DE=

=

,CE=4, ,sin∠DCE=

=

在Rt△CDD′中,CD=,∠CD′D=90°,

=

∴DD′=CD?sin∠DCE=,CD′=OD′=CD′﹣OC=,

∴D(﹣,),D′(0,), ∵P(x, x2+x﹣), ∴P′(0, x2+x﹣).

?D′P′﹣PP′?EP′=﹣∴S△PDE=S△DD′E+S梯形DD′P′P﹣S△EPP′=DD′?ED′+(DD′+PP′)x+2(∵S△PDE=﹣∴当x=﹣

<x<0), ﹣

x+2=﹣

+

,.

x+2(<﹣

<0,

时,S△PDE取最大值,最大值为

故:△PDE的面积关于x的函数关系式为S△PDE=﹣且△PDE面积的最大值为

<x<0),

【点评】本题考查了待定系数法求函数解析式、两点间的距离、相似三角形的判定与性质以及二次函数的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据相似

三角形的性质找出边与边之间的关系;(3)利用分割图形求面积法找出S△PDE关于x的函数关系式.本题属于中档题,难度不大,但数据稍显繁琐,本题巧妙的利用了分割图形法求不规则的图形面积,给解题带来了极大的方便.

4.(2016?新疆)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4). (1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;

(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.

【分析】(1)根据对称轴、A、B点的坐标,可得方程,根据解方程,可得答案; (2)根据平行四边形的面积公式,可得函数解析式;

(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案. 【解答】解:(1)设抛物线的解析式为y=ax2+bx+c, 将A、B点的坐标代入函数解析式,得

解得,

抛物线的解析式为y=﹣x2+配方,得

x﹣4,

y=﹣(x﹣)2+顶点坐标为(,

, );

x﹣4), x﹣4)

(2)E点坐标为(x,﹣x2+S=2×OA?yE=6(﹣x2+即S=﹣4x2+28x﹣24;

(3)平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形,理由如下: 当平行四边形OEAF的面积为24时,即 ﹣4x2+28x﹣24=24, 化简,得

x2﹣7x+12=0,解得x=3或4,

当x=3时,EO=EA,平行四边形OEAF为菱形. 当x=4时,EO≠EA,平行四边形OEAF不为菱形.

∴平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形.

【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式,配方法求函数的顶点坐标;利用平行四边形性质是解题关键;利用方程的判别式是解题关键.

5.(2016?六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D. (1)求此抛物线的解析式.

(2)求此抛物线顶点D的坐标和对称轴.

(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.

【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),可以求得抛物线的解析式;

(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴; (3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可. 【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),

∴,

解得,,

即此抛物线的解析式是y=x2﹣2x﹣3; (2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1; (3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形, 设点P的坐标为(1,y), 当PA=PD时,

=

解得,y=﹣,

即点P的坐标为(1,﹣); 当DA=DP时,

=

解得,y=﹣4±

)或(1,﹣4+

);

即点P的坐标为(1,﹣4﹣2当AD=AP时,

=

解得,y=±4,

即点P的坐标是(1,4)或(1,﹣4),

当点P为(1,﹣4)时与点D重合,故不符合题意,

由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2

)或(1,﹣4+

)或(1,4).

【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.

6.(2016?大连)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称

(1)填空:点B的坐标是 (0,) ;

(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;

(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.

【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;

(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;

(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标. 【解答】解:

(1)∵抛物线y=x2+与y轴相交于点A, ∴A(0,),

∵点B与点O关于点A对称, ∴BA=OA=,

∴OB=,即B点坐标为(0,), 故答案为:(0,); (2)∵B点坐标为(0,),

∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣∴OC=﹣∵PB=PC,

∴点P只能在x轴上方,

如图1,过B作BD⊥l于点D,设PB=PC=m,

则BD=OC=﹣,CD=OB=,

∴PD=PC﹣CD=m﹣,

在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,

即m2=(m﹣)2+(﹣∴PB+

)2,解得m=+

∴P点坐标为(﹣当x=﹣

, +),

时,代入抛物线解析式可得y=+

∴点P在抛物线上; (3)如图2,连接CC′,

∵l∥y轴, ∴∠OBC=∠PCB, 又PB=PC, ∴∠PCB=∠PBC, ∴∠PBC=∠OBC,

又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上, ∴∠PBC=∠PBC′,

∴∠OBC=∠CBP=∠C′BP=60°, 在Rt△OBC中,OB=,则BC=1 ∴OC=

,即P点的横坐标为

,1).

,代入抛物线解析式可得y=(

)2+=1,

∴P点坐标为(

【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.

7.(2016?河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D. (1)请直接写出点A,C,D的坐标;

(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;

(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.

【分析】(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;

(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;

(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论. 【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0, 解得:x1=﹣3,x2=1, ∵A在B的左侧,

∴A(﹣3,0),B(1,0). 当y=﹣x2﹣2x+3中x=0时,则y=3, ∴C(0,3).

∵y=﹣x2﹣2x+3=﹣(x+1)2+4, ∴顶点D(﹣1,4).

(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示. ∵C(0,3), ∴C′(0,﹣3).

设直线C′D的解析式为y=kx+b, 则有

,解得:

∴直线C′D的解析式为y=﹣7x﹣3, 当y=﹣7x﹣3中y=0时,x=﹣,

∴当△CDE的周长最小,点E的坐标为(﹣,0). (3)设直线AC的解析式为y=ax+c, 则有

,解得:

∴直线AC的解析式为y=x+3. 假设存在,设点F(m,m+3),

△AFP为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P(m,﹣m﹣3), ∵点P在抛物线y=﹣x2﹣2x+3上, ∴﹣m﹣3=﹣m2﹣2m+3, 解得:m1=﹣3(舍去),m2=2, 此时点P的坐标为(2,﹣5); ②当∠AFP=90°时,P(2m+3,0) ∵点P在抛物线y=﹣x2﹣2x+3上, ∴0=﹣(2m+3)2﹣2×(2m+3)+3, 解得:m3=﹣3(舍去),m4=﹣1, 此时点P的坐标为(1,0); ③当∠APF=90°时,P(m,0), ∵点P在抛物线y=﹣x2﹣2x+3上,

∴0=﹣m2﹣2m+3,

解得:m5=﹣3(舍去),m6=1, 此时点P的坐标为(1,0).

综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).

【点评】本题考查了解一元二次方程、待定系数法求函数解析式以及等腰直角三角形的性质,解题的关键是:(1)根据二次函数图象上点的坐标特征求出点A、B、C的坐标,利用配方法求出顶点坐标;(2)找出点E的位置;(3)分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,利用一次函数图象上点的坐标特征设出点F的坐标,再根据等腰直角三角形的性质表示出点P的坐标是关键.

8.(2016?南充)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F. (1)求抛物线的解析式;

(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=

,求点Q的坐标;

(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.

【分析】(1)设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入即可解决问题. (2)作FG⊥AC于G,设点F坐标(m,0),根据sin∠AMF=解决问题.

(3))①当MN是对角线时,设点F(m,0),由QN=PM,列出方程即可解决问题.②MN=PQ=当MN为边时,

,设点Q(m,﹣m2﹣m+5)则点P(m+1,﹣m2﹣m+6),

=

,列出方程即可

代入抛物线解析式,解方程即可.

【解答】解:(1)∵抛物线与x轴交于点A(﹣5,0),B(3,0), ∴可以假设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入得到a=﹣, ∴抛物线的解析式为y=﹣x2﹣x+5. (2)作FG⊥AC于G,设点F坐标(m,0), 则AF=m+5,AE=EM=m+6,FG=∵sin∠AMF=∴

=

(m+5),FM=

=

∴=

,整理得到2m2+19m+44=0,

∴(m+4)(2m+11)=0, ∴m=﹣4或﹣5.5(舍弃), ∴点Q坐标(﹣4,).

(3)①当MN是对角线时,设点F(m,0). ∵直线AC解析式为y=x+5,

∴点N(m,m+5),点M(m+1,m+6), ∵QN=PM,

∴﹣m2﹣m+5﹣m﹣5=m+6﹣[﹣(m+1)2﹣(m+1)+5], 解得m=﹣3±

,3+

)或(﹣2﹣

,3﹣

).

∴点M坐标(﹣2+

②当MN为边时,MN=PQ=m+6),

,设点Q(m,﹣m2﹣m+5)则点P(m+1,﹣m2﹣

∴﹣m2﹣m+6=﹣(m+1)2﹣(m+1)+5, 解得m=﹣3.

∴点M坐标(﹣2,3),

综上所述以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,3)或(﹣2+

,3+

)或(﹣2﹣

,3﹣

).

【点评】本题考查二次函数综合题、三角函数、勾股定理等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.

9.(2016?甘孜州)如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3). (1)求抛物线的函数表达式;

(2)判断△BCM是否为直角三角形,并说明理由.

(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

【分析】(1)用待定系数法求出抛物线解析式即可;

(2)由抛物线解析式确定出抛物线的顶点坐标和与x轴的交点坐标,用勾股定理的逆定理即可;

(3)根据题意判断出点N只能在x轴上方的抛物线上,由已知四边形的面积相等转化出S

△ABN

=S△BCM,然后求出三角形BCM的面积,再建立关于点N的坐标的方程求解即可.

【解答】解:(1)∵抛物线y=a(x+1)2﹣4与y轴相交于点C(0,﹣3). ∴﹣3=a﹣4, ∴a=1,

∴抛物线解析式为y=(x+1)2﹣4=x2+2x﹣3, (2)△BCM是直角三角形

理由:由(1)有,抛物线解析式为y=(x+1)2﹣4, ∵顶点为M的抛物线y=a(x+1)2﹣4, ∴M(﹣1,﹣4),

由(1)抛物线解析式为y=x2+2x﹣3, 令y=0, ∴x2+2x﹣3=0, ∴x1=﹣3,x2=1,

∴A(1,0),B(﹣3,0),

∴BC2=9+9=18,CM2=1+1=2,BM2=4+14=20, ∴BC2+CM2=BM2,

∴△BCM是直角三角形, (3)存在,N(﹣1+

,)或N(﹣1﹣

,),

∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等,且点M是抛物线的顶点,

∴①点N在x轴上方的抛物线上, 如图,

由(2)有△BCM是直角三角形,BC2=18,CM2=2, ∴BC=3

,CM=

×

=3,

∴S△BCM=BC×CM=×3设N(m,n),

∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等, ∴S△ABN+S△ABC=S△BCM+S△ABC, ∴S△ABN=S△BCM=3,

∵A(1,0),B(﹣3,0), ∴AB=4,

∴S△ABN=×AB×n=×4×n=2n=3, ∴n=,

∵N在抛物线解析式为y=x2+2x﹣3的图象上, ∴m2+2m﹣3=, ∴m1=﹣1+

,m2=﹣1﹣

∴N(﹣1+②如图2,

,)或N(﹣1﹣,).

②点N在x轴下方的抛物线上, ∵点C在对称轴的右侧,

∴点N在对称轴右侧不存在,只有在对称轴的左侧, 过点M作MN∥BC,交抛物线于点N, ∵B(﹣3,0),C(0,﹣3), ∴直线BC解析式为y=﹣x﹣3, 设MN的解析式为y=﹣x+b

∵抛物线解析式为y=(x+1)2﹣4①, ∴M(﹣1,﹣4),

∴直线MN解析式为y=﹣x﹣5②, 联立①②得∴N(﹣2,﹣3), 即:N(﹣1+

,)或N(﹣1﹣

,)或N(﹣2,﹣3).

(舍),

【点评】此题是二次函数综合题,主要考查了待定系数法求抛物线解析式,直角三角形的判断,图形面积的计算,解本题的关键是判断出△BCM是直角三角形,难点是要两个四边形面积相等,点N分在x轴上方的抛物线上和下方的抛物线上,用方程的思想解决问题是解决(3)的关键,也是初中阶段常用的方法.

10.(2016?临夏州)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.

(1)求此抛物线的解析式和直线AB的解析式;

(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以

个单位/秒的速度向终点B匀速运动,当E,

F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?

(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.

【分析】(1)用待定系数法求出抛物线,直线解析式; (2)分两种情况进行计算即可;

(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=﹣x+

,根据锐角三角函数求出BD,计算即可.

【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点, ∴∴

∴y=﹣x2+2x+3,

设直线AB的解析式为y=kx+n, ∴∴

, ,

∴y=﹣x+3;

(2)由运动得,OE=t,AF=

t,∴AE=OA﹣OE=3﹣t,

∵△AEF为直角三角形, ∴①△AOB∽△AEF, ∴∴∴t=,

②△AOB∽△AFE, ∴∴∴t=1;

(3)如图,存在,

, ,

过点P作PC∥AB交y轴于C, ∵直线AB解析式为y=﹣x+3, ∴设直线PC解析式为y=﹣x+b, 联立

∴﹣x+b=﹣x2+2x+3, ∴x2﹣3x+b﹣3=0 ∴△=9﹣4(b﹣3)=0 ∴b=∴BC=

﹣3=,x=,

).

∴P(,

过点B作BD⊥PC, ∴直线BD解析式为y=x+3, ∴

BD=,

×

=

).

∴BD=∵AB=3

S最大=AB×BD=×3

即:存在面积最大,最大是,此时点P(,

【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.

11.(2016?上海)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D. (1)求这条抛物线的表达式;

(2)联结AB、BC、CD、DA,求四边形ABCD的面积;

(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;

(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;

本文来源:https://www.bwwdw.com/article/c2k7.html

Top