福建省德化一中12-13学年高一第二次质量检查数学试卷

更新时间:2024-06-04 18:48:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

德化一中2013年春第二次质检高一数学(试卷)

第Ⅰ卷(选择题 75分)

参考公式:

1.样本数据x1,x2,?xn的方差

(x1?x)2?(x2?x)2???(xn?x)2 s?,其中x为样本的平均数;

n22. 线性回归方程系数公式

b???(xi?x)(yi?y)i?1n__?(xi?1ni?x)2_?=b??xy?n?x?yiii?1n?xi?1n2i?nx2?x; ??y?b,a

一、选择题(本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一

项是符合题目要求的.请把答案写在答题卡上) ..........1.若sin??tan??0,则角?的终边在( ) (A)第一象限 (B)第四象限 2.已知sin(???)? (C)第一或第四象限 (D)第二或第三象限

1?,则cos(??) 的值等于( ) 32(A)112323 (B) ? (C) ? (D)

33333.已知角?的顶点与原点重合,始边与x轴的非负半轴重合,终边在射线y?2x(x?0)上,则

cos?= ( )(A)?525525 (B)? (C) (D) 55554. 为了研究所挂物体的重量x对弹簧长度y的影响。某学生通过实验测量得到物体的重量与弹簧长度的对比表: 物体重量(单位g) 弹簧长度(单位cm) 1 1.5 2 3 3 4 4 5 5 6.5 ??bx?0.4, 已知物体的重量与弹簧长度的关系为线性关系,其回归直线方程为y则b为( )(A)1.0 (B)1.1 (C)1.2 (D)1.3

5.采用系统抽样方法从学号为1到50的50名学生中选取5名参加测试,则所选5名学生的学号可能是( )

(A)1,2,3,4,5 (B)5,26,27,38,49 (C)2,4,6,8,10 (D)5,14,23,32,41 6.直线x?y?4?0与圆x?y?2x?2y?2?0的位置关系是( ) (A)相交 (B)相切 (C)相交且过圆心 (D)相离

7.从甲乙两个城市分别随机抽取16台自动售货机,对其销额进行统计,统计数据用茎叶图表示(如图所示),设甲乙

22售

组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( ) (A) x甲?x乙,m甲?m乙 (B) x甲?x乙,m甲?m乙 (C) x甲?x乙,m甲?m乙 (D) x甲?x乙,m甲?m乙

8.从1,2,3,?,9中任取两数,其中:①事件“两个都是偶数”和事件“恰有一个奇数”;②事件“至少有一个奇数”和事件“两个都是奇数”;③事件“至少有一个奇数”和事件“两个都是偶数”;④事件“至少有一个奇数”和事件“至少有一个偶数”.在上述四组事件中,是互斥事件的是( )

开始 (A)① (B)②④ (C)③ (D)①③ 9.右图是给出计算1?2?4???2的值的一个程序框图,则其中判断框填入的是( )

(A)i?19? (B)i?20? (C)i?19? (D)i?20?

19 S=1 i=1 i S=S+2内应sin??cos?10.若tan???3,则?( )

sin??cos?(A) 1

2 (B)2

(C)?1 (D)-2

2 i=i+1 是 输出S 结束 否 11.在空间直角坐标系中,点M(3,?2,1)关于平面yOz对称的点的坐标是

(?3,?2,1) (?3,2,?1) (?3,?2,?1) (?3,2,1) ( )(A)(B)(C)(D)

12.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是( )

(A)函数f(x)的最小正周期为2? (B)方程f(x)?tanx在区间(?(C)点(?2,0)上无实根

?2,0)为函数f(x)的对称中心 (D)函数f(x)的图象关于直线x?0对称

5213.定义在R上的函数f(x)是周期为2的奇函数,当0?x?1时,f(x)?2x(1?x),则f(?)?( ) (A)

1111 (B)? (C) ? (D) 442214.在区间[0,2?]内任取一个角x,则满足sinx?1的概率值等于( ) 2(A)

1121 (B) (C) (D) 3234,此人随机从口袋中摸出一把钥匙试15.某人身带钥匙3把(注3把钥匙中只有1把能打开家门)

开门。(1)开不了门不扔掉放回口袋继续摸钥匙开门(2)开不了门就扔掉,再继续摸钥匙开门。问按这两种方式开门,此人第二次才打开家门的概率分别为多少( ) (A)

21111121, (B), (C), (D), 93344394

第Ⅱ卷(非选择题 75分)

二、填空题(本大题共5小题,每小题4分,满分20分.请把答案写在答题卡上) ..........16.已知函数y?tan?x(??0)的最小正周期为

??,则?=_______________; 217.已知扇形的中心角为150,半径为3,则此扇形的面积为 ; 18.已知函数f(x)?cos(?2x??6),则f(x)的单调递减区间为 ; 19.某班48名同学,在一次考试中统计出平均分为70,方差为75,后来发现有2名同学的分数登记错了,甲实际得了80分,却记成了50分,乙实际得了70分,却记成了100分,更正后方差应为_______________;

20.设集合A??1,2?,B??1,2,3?,分别从集合A和B中随机取一个数a和b,确定平面上一个点P(a,b),记“点P(a,b)落在直线x?y?n上”为事件Cn(2?n?5, n?N),若事件Cn的概率最大,则n的所有可能值为_______________。 三、解答题(本大题共5小题,共55分)(解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)

利用“五点法”作出函数y?2sinx,x??0,2??的简图,并回答下列问题. (1)观察所作图象,写出满足条件sinx?0的x的取值集合; (2)利用函数单调性,求函数在区间(22.(本小题满分10分) 化简下列各式.

?5?4,4]上的最值,并写出取最值时对应的自变量x的取值;

1?2sin60?cos60? (1); ???sin60?cos60sin(??)cos(??)tan(3???)2 (2). ?3?sin(???)cos(???)sin(??)cos(2???)223.(本小题满分10分)

已知圆C:(x?1)2?y2?4,点(a,b).

(1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求点(a,b)在圆C内的概率;

?,3]任取的一个数,b是从区间[0,2]任取的一个数,求点(a,b)在圆C外的(2)若a是从区间[1概率.

24.(本小题满分12分)

从高一年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.

利用频率分布直方图估计:

(1)这50名学生的众数P与中位数M (精确到0.1);

(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各

应抽取多少名学生参加测试;

(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行

心理测试,列出所有基本事件,并求

㈠第1组中的甲同学和第2组中的A同学都没有被抽到的概率;

㈡第1组中至多有一个同学入选的概率。 25.(本小题满分13分)

如图:某污水处理厂要在一个矩形污水处理池?ABCD?的池底水平铺设污水净化管道(Rt?FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB?20米,AD?103米,记?BHE??.

(1)试将污水净化管道的长度L表示为?的函数,并写出定义域; (2)若sin??cos??2,求此时管道的长度L;

(3)问:当? 取何值时,污水净化效果最好?并求出此时管道的长度. 参考公式:

??5?6?2 sin??cos??2sin(??),sin??cos??2cos(??),sin?44124

德化一中2013年春第二次质检高一数学(试卷)答案

第Ⅰ卷(选择题 75分)

参考公式:

1.样本数据x1,x2,?xn的方差

(x1?x)2?(x2?x)2???(xn?x)2 s?,其中x为样本的平均数;

n22. 线性回归方程系数公式

b???(xi?1nni?x)(yi?y)i__?(xi?1?x)_?=b?2?xy?n?x?yiii?1n?xi?1n2i?nx2?x; ??y?b,a

一、选择题(本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一

项是符合题目要求的.请把答案写在答题卡上) ..........1.若sin??tan??0,则角?的终边在( C ) (A)第一象限 (B)第四象限 2.已知sin(???)? (C)第一或第四象限 (D)第二或第三象限

1?,则cos(??) 的值等于( C ) 32(A)

112323 (B) ? (C) ? (D)

3333

3.已知角?的顶点与原点重合,始边与x轴的非负半轴重合,终边在射线y?2x(x?0)上,则

cos?= ( A )(A)?525525 (B)? (C) (D) 55554. 为了研究所挂物体的重量x对弹簧长度y的影响。某学生通过实验测量得到物体的重量与弹簧长度的对比表: 物体重量(单位g) 弹簧长度(单位cm) 1 1.5 2 3 3 4 4 5 5 6.5 ??bx?0.4, 已知物体的重量与弹簧长度的关系为线性关系,其回归直线方程为y则b为( C )(A)1.0 (B)1.1 (C)1.2 (D)1.3

5.采用系统抽样方法从学号为1到50的50名学生中选取5名参加测试,则所选5名学生的学号可能是( D )

(A)1,2,3,4,5 (B)5,26,27,38,49 (C)2,4,6,8,10 (D)5,14,23,32,41 6.直线x?y?4?0与圆x?y?2x?2y?2?0的位置关系是( D ) (A)相交 (B)相切 (C)相交且过圆心 (D)相离

7.从甲乙两个城市分别随机抽取16台自动售货机,对其销额进行统计,统计数据用茎叶图表示(如图所示),设甲乙组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,

22售

两则

( B )

(A) x甲?x乙,m甲?m乙 (B) x甲?x乙,m甲?m乙 (C) x甲?x乙,m甲?m乙 (D) x甲?x乙,m甲?m乙

8.从1,2,3,?,9中任取两数,其中:①事件“两个都是偶数”和事件“恰有一个奇数”;②事件“至少有一个奇数”和事件“两个都是奇数”;③事件“至少有一个奇数”和事件“两个都是偶数”;④事件“至少有一个奇数”和事件“至少有一个偶数”.在上述四组事件中,是互斥事件的是( D )

开始 (A)① (B)②④ (C)③ (D)①③ 9.右图是给出计算1?2?4???2的值的一个程序框图,则其中判断框填入的是( B )

(A)i?19? (B)i?20? (C)i?19? (D)i?20?

19 S=1 i=1 i S=S+2 内应sin??cos?10.若tan???3,则?( B )

sin??cos?(A) 1

2 (B)2

(C)?1 (D)-2

2 i=i+1 是 输出S 结束 否 11.在空间直角坐标系中,点M(3,?2,1)关于平面yOz对称的点的坐标是

(?3,?2,1) (?3,2,?1) (?3,?2,?1) (?3,2,1) ( )(A)(B)(C)(D)

12.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是( B )

(A)函数f(x)的最小正周期为2? (B)方程f(x)?tanx在区间(?(C)点(?2,0)上无实根

?2,0)为函数f(x)的对称中心 (D)函数f(x)的图象关于直线x?0对称

5213.定义在R上的函数f(x)是周期为2的奇函数,当0?x?1时,f(x)?2x(1?x),则f(?)?( C ) (A)

1111 (B)? (C) ? (D) 442214.在区间[0,2?]内任取一个角x,则满足sinx?1的概率值等于( A ) 2(A)

1121 (B) (C) (D) 3234,此人随机从口袋中摸出一把钥匙试15.某人身带钥匙3把(注3把钥匙中只有1把能打开家门)

开门。(1)开不了门不扔掉放回口袋继续摸钥匙开门(2)开不了门就扔掉,再继续摸钥匙开门。问按这两种方式开门,此人第二次才打开家门的概率分别为多少( A ) (A)

21111121, (B), (C), (D), 93344394

德化一中2013年春第二次质检高一数学(试卷)答案

一、选择题(本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案写在答题卡上) ..........

1 C

2 C

3 A

4 C

5 D

6 D

7 B

8 D

9 B

10 11 12 13 14 15 B

A

B

C

A

A

第Ⅱ卷(非选择题 75分)

三、填空题(本大题共5小题,每小题4分,满分20分.请把答案写在答题卡上) ..........

?,则?=_______2________; 25??17.已知扇形的中心角为150,半径为3,则此扇形的面积为 ;

4??7?,k??](k?Z); 18.已知函数f(x)?cos(?2x?),则f(x)的单调递减区间为 [k??1212616.已知函数y?tan?x(??0)的最小正周期为

19.某班48名同学,在一次考试中统计出平均分为70,方差为75,后来发现有2名同学的分数登

记错了,甲实际得了80分,却记成了50分,乙实际得了70分,却记成了100分,更正后方差应为______50_________;

20.设集合A??1,2?,B??1,2,3?,分别从集合A和B中随机取一个数a和b,确定平面上一个点P(a,b),记“点P(a,b)落在直线x?y?n上”为事件Cn(2?n?5, n?N),若事件Cn的概率最大,则n的所有可能值为_____3,4__________。 三、解答题(本大题共5小题,共55分)(解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)

利用“五点法”作出函数y?2sinx,x??0,2??的简图,并回答下列问题. (1)观察所作图象,写出满足条件sinx?0的x的取值集合; (2)利用函数单调性,求函数在区间(解:(1)图像(略)---------4分

由图像可知,满足条件sinx?0的x的取值集合为(0,?)------------6分

?5?4,4]上的最值,并写出取最值时对应的自变量x的取值;

???5?,]单调递增,在(,]单调递减-------8分 4224?5?所以,当x?时,fmax(x)?2;当x?时,fmin(x)??2。--------10分

24(2)由图像可知,函数y?2sinx在(

22.(本小题满分10分) 化简下列各式.

1?2sin60?cos60? (1); ???sin60?cos60sin(??)cos(??)tan(3???)2(2). ?3?sin(???)cos(???)sin(??)cos(2???)2解:(1)-1;-----5分(2)-1(过程略)------10分 23.(本小题满分10分)

已知圆C:(x?1)2?y2?4,点(a,b).

(1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求点(a,b)在圆C内的概率;

(2)若a是从区间[1,3]任取的一个数,b是从区间[0,2]任取的一个数,求点(a,b)在圆C外的概率.

解:用数对(a,b)表示基本事件,则其所有可能结果有:(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)(3,0),(3,1),(3,2)共9个。---------------3分

事件A? {点(a,b)在圆C内},其结果为:(1,0),(1,1),(2,0),(2,1)共4个 所以P(A)??4-----------5分 9??(2)所有可能结果???(a,b)??中正方形ABDC,------------7分

?1?a?3????表示的区域图?0?b?2??事件B?{点(a,b)在圆C外}表示的区域为图中阴影部分-----9分

12?2????22?4所以P(B)??1?-----------10分

2?24

24.(本小题满分12分)

从高一年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.

利用频率分布直方图估计:

(1)这50名学生的众数P与中位数M (精确到0.1);

(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各

应抽取多少名学生参加测试;

(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行

心理测试,列出所有基本事件,并求

㈠第1组中的甲同学和第2组中的A同学都没有被抽到的概率;

㈡第1组中至多有一个同学入选的概率。 解:(1)P?75-------1分;M?76.7--------3分

(2)第3组共有学生50?0.02?10?10(人);第5组共有学生50?0.024?10?12(人) 所以,第3组抽5人;第5组抽6人。---------7分

(3)第1组共2人用甲、乙表示;第2组共3人用A、B、C表示,则从这5名学生中随机抽取3名的所有可能为:(甲,乙,A)(甲,乙,B)(甲,乙,C)(甲,A,B)

B、C(甲,A,C)(甲,B,C)(乙,A,B)(乙,A,C)(乙,B,C)(A、共10个。----------------9分

(一)事件S?{第1组中的甲同学和第2组中的A同学都没有被抽到}其有(乙,B,C)共1

个,所以P(S)?(二)事件T?{第1组中至多有一个同学入选}其有(甲,A,B)(甲,A,C)(甲,B,C)

1。--------------10分 10B、C(乙,A,B)(乙,A,C)(乙,B,C)(A、所以P(T)?----------12分

1025.(本小题满分13分)

)共有7个,

7如图:某污水处理厂要在一个矩形污水处理池?ABCD?的池底水平铺设污水净化管道(Rt?FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB?20米,AD?103米,记?BHE??.

(1)试将污水净化管道的长度L表示为?的函数,并写出定义域; (2)若sin??cos??2,求此时管道的长度L;

(3)问:当? 取何值时,污水净化效果最好?并求出此时管道的长度. 参考公式:

??5?6?2 sin??cos??2sin(??),sin??cos??2cos(??),sin?44124101010,FH? EF? ??3分 cos?sin?sin?cos?10?103 由于BH?10tan??103,AF?tan?解:(1)EH?所以 L???3?tan??3,即 ??[,]????4分

633101010???? , ??[,]. ???? 5分 cos?sin?sin?cos?631(2) sin??cos??2时,sin?cos??, ?????????6分

2L?20(2?1) ????????????????7分

(3)L?10101010(sin??cos??1)??? cos?sin?sin?cos?sin?cos?t2?1设sin??cos??t 则sin?cos?? ????????????8分

2由于??[??,],所以t?sin??cos??2sin(??)?[634?3?1,2]???10分 2L?20??3?13?1,2]内单调递减,于是当t?在[时??或??时

t?16322L的最大值20(3?1)米. ????????????12分

答:当t?

??3?1即??或??时所铺设的管道最短,为20(3?1)米.---13分

632

本文来源:https://www.bwwdw.com/article/bzj6.html

Top