光学相干断层扫描

更新时间:2023-12-06 21:10:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

光学相干断层扫描

维基百科,自由的百科全书

指尖的光学相干断层扫描图像。

光学相干断层扫描(英文: Optical coherence tomography,简称OCT)是一种光学信号获取与处理的方式。它可以对光学散射介质如生物组织等进行扫描,获得的三维图像分辨率可以达到微米级。光学相干断层扫描技术利用了光的干涉原理,通常采用近红外光进行拍照。由于选取的光线波长较长,可以穿过扫描介质的一定深度。另一种类似的技术,

共焦显微技术,穿过样品的深度不如光学相干断层扫描。

光学相干断层扫描使用的光源包括超辐射发光二极管与超短脉冲激光。根据光源性质的不同,这种扫描方式甚至可以达到亚微米级的分辨率,这时需要光源的频谱非常宽,波长的变化范围在100纳米左右。

光学相干断层扫描技术是光学断层扫描技术的一种。目前比较先进的一种光学相干断层扫描技术为频域光学相干断层扫描,这种扫描方式的信噪比较高,获得信号的速度也比较快。商用的光学相干断层扫描系统有多种应用,包括艺术品保存和诊断设备,尤其是在眼科中,这种断层扫描系统可以获取视网膜的细节图像。最近,这种技术也被用于心脏病学的研究,以对冠状动脉的疾病进行诊断 [1]。

目录

[显示]

[编辑]简介

一个肉瘤的光学相干断层扫描图像。

在全世界范围内,有数个研究组织从采用白光干涉对活体内人眼进行测量开始[2][3]对人体组织,尤其是眼睛的成像进行研究。1990年的 ICO-15 SAT 会议上,首先展示了一张基于白光干涉深度扫描原理的对活体内人眼眼底沿眼水平子午线的二维图像[4]。1990年,丹野直弘对这个方案进行了进一步的研究[5][6],随后日本山形大学的一位教授也对此展开了研究[7]。这些研究使得光学相干断层扫描技术拥有了微米级的分辨率和毫米级的穿透深度,还拥有产生截面图像的能力,因此它成为一种重要的生物组织成像技术[8]。1993年,首次采用光学相干断层扫描技术对活体内的视网膜结构成像[9][10] 。 光学相干断层扫描也被应用于许多艺术品保护的项目中,它被用来分析绘画作品的不同层次。与其他医学图像系统相比,光学相干断层扫描有很大的优势。医用超声成像和核磁共振成像由于分辨率不够,无法用于形态组织成像,而共焦显微技术则缺少毫米级的穿透能力[11][12]。

光学相干断层扫描是基于弱相干干涉学理论发展的[13][14][15]。在传统的干涉学中需要使用相干

长度很长的光源,因此通常选用激光作为干涉光源,相干长度通常达到数米。而在光学相

干断层扫描技术中,由于使用了宽带光源,相干长度被缩短到了几个微米。宽带光源通常

可以使用超辐射发光二极管或超短脉冲的激光(飞秒激光器)来实现。白光也是一种功率较低的宽带光源。

光学相干断层扫描系统中的光束被分成两部分:一部分称为样品光臂,照射在样品上;一部分被称为参考光臂,通常照在镜子上。样品产生的反射光和参考光臂产生的反射光会发生干涉,而仅仅当两条光路的长度相同(差距小于相干长度)时,会产生稳定的干涉图样。通过调整参考光臂的镜子,可以得到样品的反射轮廓,这种技术被称为时域光学相干断层扫描。样品反射能力较强的区域会产生较强的干涉,而超出干涉长度的反射光将不会产生干涉。这样产生的反射轮廓被称为A扫描,包含有我们观察的样品内部结构的空间大小与位置的信息。截面断层扫描B扫描可以通过结合不同深度的A扫描结果来重建。根据使用的成像引擎的能力,还可以实现在给定深度上的C扫描。

[编辑]原理

光学相干断层扫描可以获得透明或者不透明物质的表面以及次表面图像,图像的分辨率与小型显微镜相同。它可以认为是一种类似超声成像的光学技术,通过组织对光线的反射来提供截面图像。与其它成像技术相比,光学相干断层扫描可以提供拥有微米级分辨率的活体组织形态图像,因此,在医学界,它是一种非常具有吸引力的技术。 光学相干断层扫描的主要优点是

对活体组织成像,分辨率可达微米级 对组织形态迅速、直接的成像 不需要制备样品 不需要离子辐射

? ? ? ?

由于光学相干断层扫描采用了波长很短的光波作为探测手段,它可以达到很高的分辨率。首先将一束光波照在组织上,一小部分光被样品表面反射,然后被收集起来。大部分的光

线被样品散射掉了,这些散射光失去了远视的方向信息,因此无法形成图像,只能形成耀斑。散射光形成的耀斑会引起光学散射物质(如生物组织、蜡、特定种类的塑料等等)看起来不透明或者透明,尽管他们并不是强烈吸收光的材料。采用光学相干断层扫描技术,散射光可以被滤除,因此可以消除耀斑的影响。即使仅仅有非常微小的反射光,也可以被采用显微镜的光学相干断层扫描设备检测到并形成图像。

光学相干是滤除散射光的物理机制。反射光可以作为相干光,而由于散射光散射的位置不同,造成光路长度的差异,再加上光源的相干长度极短,使得散射光失去了相干的性质。在光学相干断层扫描设备中,光学干涉仪被用来检测相干光。从原理上说,干涉仪可以将散射光从反射光中滤除,以得到生成图像的信号。在信号处理过程中,可以得到从某一次表面反射的反射光深度和强度。三维图像可以通过类似声纳和雷达的扫描来构建。 在已经引入医学研究的无创三维成像技术中,光学相干断层扫描技术与超声成像都采用了回波处理技术,因此他们的原理相似。其他的医学成像技术如计算机断层扫描、核磁共振成

像以及正电子发射断层扫描都没有利用回声定位的原理。

光学相干断层扫描的局限性是仅能扫描生物组织表面下1-2毫米的深度。这是由于深度越大,光线无散射的射出表面的比例就越小,以至于无法检测到。但是在检测过程中不需要样品制备过程,成像过程也不需要接触被成像的组织。更重要的是,设备产生的激光是对人眼安全的近红外线,因此几乎不会对组织造成伤害。

[编辑]理论细节

光学相干断层扫描的基础理论是白光或低相干光的干涉。在这种技术中,光学设备包括一个干涉仪(在图.1中,使用了典型的迈克耳孙干涉仪),和低相干的宽带光源。光线被分成两束,分别称为参考光臂和样品光臂,然后又将这两束光合并以产生干涉图样。

图1. 全场相干断层扫描的光学设备。主要结构的名称:超辐射发光二极管(SLD),凸透镜(L1),50/50分光器(BS),照相机物镜(CO),CMOS-DSP照相机(CAM),参考平面(REF)和样品(SMP)。照相机的功能是一个二维探测器阵列。当该设备对深度扫描的时候,可以以无损的方式重建样品的三维图像。

图2. 典型的单点光学相干断层扫描的光学设备。通过扫描照射在样品上的光束可以以微米级的分辨率以无损的方式重建样品的截面图,深度最深可达3mm。

本文来源:https://www.bwwdw.com/article/bzgt.html

Top