2019届江苏省苏州市高三上学期期初调研考试数学(文)试题(word
更新时间:2024-02-26 23:07:01 阅读量: 综合文库 文档下载
2019届江苏省苏州市高三上学期期初调研考试数学(文)试
题(正卷)
2018.9
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试
卷满分160分,考试时间120分钟. 2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色墨水的签字笔填写在答题卡的指定位置. 3.答题时,必须用0.5毫米黑色墨水的签字笔填写在答题卡的指定位置,在其它位置作答一律无效. 4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚.
5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 方差公式:s2?[(x1?x)2?(x2?x)2?1n1?(xn?x)2],其中x?(x1?x2?n?xn).
1锥体体积公式:V锥体=Sh(S为锥体底面面积,h为锥体的高).
3一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上. ........
n?7 S?0 2.若复数z1?2?i,z2?a?2i(i为虚数单位),且z1z2为实数,则实数a? ▲ . While S<18 S?S+n 3.一组数据1,2,3,4,a的平均数为2,则该组数据的方差等于 ▲ . n?n?1 1.已知集合A?{?1,0,1},集合B?{x|x?0},则AB? ▲ .
4.如图是某一算法的伪代码,则输出值n等于 ▲ .
5.一只口袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次 摸出2只球,则摸出1个黑球和1个白球的概率等于 ▲ .
2End While Print n (第4题)
?x?2x(x≥0)?6.已知函数f(x)??2为奇函数,则实数a的值等于 ▲ .
?x?ax(x?0)??57.已知函数f(x)?sin(2x??)(0≤???)的一条对称轴是x???,则?? ▲ .
12a?a48.已知等比数列{an}的前 项和为Sn,若S2,S6,S4成等差数列,则2的值为 ▲ .
a69.已知△ABC的三边上高的长度分别为2,3,4,则△ABC最大内角的余弦值等于 ▲ . 10.将一张半径为3?1(cm)的圆形纸片按如图所示的实线裁剪,并按虚线折叠为各棱长均相等的
四棱锥,则折叠所成的四棱锥的体积为 ▲ cm3.
11.如图,已知AC与BD交于点E,AB∥CD,AC?310,AB?2CD?6,则当tanA?3时,
ABE?CD? ▲ .
(第10题) 高三数学正卷 第1页(共4页)
EB(第11题)
DC
12.已知函数f (x)=|x2-6|,若a?b?0,且f (a)=f (b),则a2b的最大值是 ▲ . 13.在斜三角形ABC中,已知
11??tanC?0,则tanC的最大值等于 ▲ . tanAtanB14.已知⊙C的方程为:(x?3)2?(y?2)2?r2(r?0),若直线3x?y?3上存在一点P,在⊙C总存
在不同的两点M,N,使得点M是线段PN的中点,则⊙C的半径r的取值范围是 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文.......字说明、证明过程或演算步骤. 15.(本题满分14分)
已知cos??43π,??(0,). 72π(1)求sin(??)的值;
4(2)若cos??????11π,??(0,),求?的值. 142
16.(本题满分14分)
如图,已知矩形CDEF和直角梯形ABCD,AB∥CD,?ADC?90?,DE=DA, M为AE的中点.
(1)求证:AC∥平面DMF; (2)求证:BE⊥DM.
AMDB(第16题)
EFC高三数学正卷 第2页(共4页)
17.(本题满分14分)
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化.其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60?,设?BOC??.
(1)记市民活动广场及停车场的占地总面积为f(?),求f(?)的表达式; (2)当cos?为何值时,可使市民活动广场及停车场的占地总面积最大.
18.(本题满分16分)
AO(第17题)
HDEGCFBx2y213已知椭圆C:2?2?1(a?b?0)的左、右顶点分别为A,B,离心率为,点P(1,)为椭圆
ab22上一点.
(1)求椭圆C的标准方程;
(2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1?2k2,求直线l斜率的值.
AN(第18题) ylMCOBx高三数学正卷 第3页(共4页)
19.(本小题满分16分)
已知数列?an?的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列?an?前n项和为Sn,且满足S3?a4,a5?a2?a3.
(1)求数列?an?的通项公式;
(2)若amam?1?am?2,求正整数m的值; (3)是否存在正整数m,使得值,若不存在,说明理由.
20.(本小题满分16分)
若对任意的实数k,b,函数y?f(x)?kx?b与直线y?kx?b总相切,则称函数f(x)为“恒切函数”.
(1)判断函数f(x)?x2是否为“恒切函数”;
(2)若函数f(x)?mlnx?nx(m?0)是“恒切函数”,求实数m,n满足的关系式; 1 (3)若函数f(x)?(ex?x?1)ex?m是“恒切函数”,求证:??m≤0.
4
S2m恰好为数列?an?中的一项?若存在,求出所有满足条件的mS2m?12018~2019学年第一学期期初教学质量调研卷 高三数学(正卷)参考解答与评分标准
一、填空题:(每题5分,满分70分) 1.{1}
2.4
3.2
4.4
35.
5高三数学正卷 第4页(共4页)
6.?2 11.12
7.
? 38.2 13.?22 12.16
1142 10.
324410,??) 14.[159.?二、解答题(共6小题,满分90分) 15.(本题满分14分) 解:(1)由cos??43π,??(0,), 72得sin??1?cos2??1?(4321············································ 2分 )?,·
77πππ所以sin(??)?sincos??cossin? ·············································· 4分
444?2432146?2????. ································ 6分 272714π(2)因为?,??(0,),所以????(0,π).
2又cos??????111153,则sin??????1?cos2(???)?1?()2?. 8分
141414所以sin??sin????????sin?????cos??cos?????sin? ·············· 10分
?53431111????. ············································· 12分 1471472ππ因为??(0,),所以??. ······················································ 14分
2616.(本题满分14分)
证明:(1)连接EC交DE于N,连接MN.
∵矩形CDEF,∴EC,DF相互平分,∴N为EC中点. ·· 2分 又∵M为EA中点,∴MN∥AC. ··································· 4分 又∵AC?平面DMF,且MN?平面DMF.
∴AC∥平面DMF. ·················································· 7分 (2)∵矩形CDEF,∴CD⊥DE.
又∵AB∥CD,∴AB⊥DE. ·························································· 8分 又∵直角梯形ABCD,AB∥CD且?ADC?90?,∴AB⊥AD. ∵DE
AD=D,∴AB⊥平面ADE. ··············································· 10分
ANMDBCEF又∵DM?平面ADE,∴AB⊥DM.
∵AD?DE,M为AE的中点,∴AE⊥DM. ·································· 11分 又∵ABAE?A,∴MD⊥平面ABE. ·········································· 13分
高三数学正卷 第5页(共4页)
∵BE?平面ABE,∴BE⊥MD. ··················································· 14分 17.(本题满分14分)
解:(1)∵半圆的半径为r,?BOC??,∠OBC=90°.
∴在直角三角形OBC中,
OB?rcos?,BC?rsin?,∴AB?2rcos?.
AOBDHEGCF∴S矩形ABCD?AB?BC?2r2sin?cos?. ················································ 2分 又∵∠BOG=60?,由半圆的对称性可知,∠HOA=60?,∴∠HOG=60?. ∴△HOG为等边三角形,∴HG=r,HE=∴S矩形EFGH?EF?EH?(33r?rsin?=(?sin?)r. 223?sin?)r2. ·············································· 4分 232?)r,其中??(0,). 23 ································································································· 7分
∴f(?)?S矩形ABCD?S矩形EFGH?(2sin?cos??sin??(2) ∵f?(?)?r2(2cos2??2sin2??cos?)=r2(4cos2??cos??2). ··········· 9分 令f?(?)?0,即4cos2??cos??2?0, 解得:cos??令cos?0?1?331?33或cos??(舍去). ·································· 11分 881?33?,?0?(0,). 831?当??(0,?0)时,f?(?)?0,f(?)单调递增;
?2?当??(?0,)时,f?(?)?0,f(?)单调递减.
3∴当???0时,f(?)取得最大值. ···················································· 13分 答:当cos??
18.(本题满分16分)
1解:(1)∵椭圆的离心率为,∴a?2c.
2ylMCANOBx1?33时,可使市民活动广场和停车场的面积总和最大. · 14分 8又∵a2?b2?c2,∴b?3c.
x2y2∴椭圆的标准方程为:2?2?1. ··············· 3分
4c3c高三数学正卷 第6页(共4页)
913又∵点P(1,)为椭圆上一点,∴2?42?1,解得:c?1. ··············· 5分
4c3c2x2y2∴椭圆的标准方程为:?················································ 6分 ?1. ·
43(2)由椭圆的对称性可知直线l的斜率一定存在,设其方程为y?kx?1. 设M(x1,y1),N(x2,y2).
?x2y2?1??联列方程组:?4,消去y可得:(3?4k2)x2?8kx?8?0. 3?y?kx?1?∴由韦达定理可知:x1?x2??∵k1?8k8,. ····················· 8分 xx??123?4k23?4k2y2y2y1y,k2?2,且k1?2k2,∴1?. ·················· 10分
x1?2x2?2x1?2x1?2y124y22?即.①
(x1?2)2(x2?2)2又∵M(x1,y1),N(x2,y2)在椭圆上, 33∴y12?(4?x12),y22?(4?x22).②
44将②代入①可得:∴3(?2?x14(2?x2)?,即3x1x2?10(x1?x2)?12?0. ······· 12分 2?x12?x288k2················ 14分 )?10(?)?12?0,即12k?20k?3?0. ·223?4k3?4k解得:k?133或k?.又∵k>1,∴k?. ······································ 16分 62219.(本小题满分16分)
解:(1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q. ∴数列?an?的前5项依次为:1,2,1+d,2q,1+2d.
?S3?a4?4?d?2q?d?2∵?,∴?,解得:?. ···························· 2分
a?a?a1?2d?3?dq?3??23?5(n为奇数)?n?∴an??. ······························································ 4分 n?12??2?3(n为偶数)(2) ∵amam?1?am?2.
1?若m?2k(k?N*)
则a2ka2k?1?a2k?2,∴2?3k?1?(2k?1)?2?3k,即2k?1?3,∴k?1,即m?2. ································································································· 6分
高三数学正卷 第7页(共4页)
2?若m?2k?1(k?N*)
则a2k?1a2k?a2k?1,∴(2k?1)?2?3k?1?2k?1,∴2?3k?1?∵2?3k?1为整数,∴
2k?12. ?1?2k?12k?12必为整数,∴2k?1?1,∴k?1,此时2?30?3. 2k?1 不合题意. ················································································· 8分 综上可知:m=2. ········································································ 9分 (3)∵S2m?(a1?a3?????a2m?1)?(a2?a4?????a2m)
m(1?2m?1)2(1?3m) =+=3m?m2?1. ································· 10分
21?3S2m?1?S2m?a2m?3m?m2?1?2?3m?1?3m?1?m2?1. ··························· 11分
S2m3m?m2?12(m2?1)∴==3?m?1····································· 12分 ≤3. ·2S2m?13m?1?m2?13?m?1若
S2m为数列?an?中的项,则只能为a1,a2,a3. S2m?1S2m2(m2?1)m?1?1,则3?m?1·················· 13分 1??1,∴3?0,m无解. ·2S2m?13?m?1S2m2(m2?1)m?12?2,则3?m?12??2,∴3?1?m?0. 2S2m?13?m?1当m?1时,等式不成立; 当m?2时,等式成立;
1当m≥3时,令f(x)?3x?1?1?x2??3x?1?x2.
3ln23xln3x∴f?(x)??3?2. ?3?2x,f??(x)?33当x≥3时,f??(x)?0,∴f?(x)在[3,??)上单调递增. 又∵f?(3)?9ln3?6?0,∴f?(x)?0在[3,??)上恒成立, ∴f(x)在[3,??)上单调递增.
∵f(3)?1?0,∴当m≥3时,方程3m?1?1?m2?0无解. ···················· 14分
3?
S2m2(m2?1)2?3,则3?m?1············· 15分 ?3,∴m?1?0,即m?1. ·2S2m?13?m?1综上可知:m?1或m?2. ···························································· 16分 20.(本小题满分16分)
解:(1)函数f(x)为“恒切函数”,设切点为(x0,y0).
高三数学正卷 第8页(共4页)
?f(x0)?kx0?b?kx0?b?f(x0)?0则?,∴?. ······································· 2分
??f(x)?k?kf(x)?000?? 对于函数f(x)?x2,f?(x)?2x.
2??x0?0设切点为(x0,y0),∴?, ······················································· 3分
2x?0??0解得:x0?0.∴f(x)?x2是“恒切函数”. ······································· 4分 (2)若函数f(x)?mlnx?nx(m?0)是“恒切函数”,设切点为(x0,y0).
?mlnx0?nx0?0?m ∵f?(x)??n,∴?m, ·············································· 5分
?n?0x?x?0 解得:lnx0?1,即x0?e. ···························································· 7分 ∴实数m,n满足的关系式为:m?ne?0. ······································· 8分 (3) 函数f(x)?(ex?x?1)ex?m是“恒切函数”,设切点为(x0,y0). ?(ex0?x0?1)ex0?m?0? ∵f?(x)?(2e?x?2)e,∴?x, x00(2e?x?2)e?0?0?xxx0x0??m??(e?x0?1)e ∴?x. ······························································· 10分
0??2e?x0?2 考查方程2ex?x?2的解,设g(x)?2ex?x?2. ∵g?(x)?2ex?1,令g?(x)?0,解得:x??ln2. ∴当x?(??,?ln2)时,g?(x)?0,g(x)单调递减; 当x?(?ln2,??)时,g?(x)?0,g(x)单调递增.
∴g(x)min?g(?ln2)?ln2?1?0. ··················································· 12分
1?当x?(??,?ln2)时
∵g(?2)?42?0,g(?1)??1?0. 2ee∴g(x)?2ex?x?2在(??,?ln2)上有唯一零点x0?(?2,?1).
11又∵m??(ex0?x?1)ex0=x0(x0?2),∴m?(?,0). ························ 14分
442?当x?(?ln2,??)时
∵g(0)?0,∴g(x)?2ex?x?2在(?ln2,??)上有唯一零点0,∴m?0.
高三数学正卷 第9页(共4页)
正在阅读:
2019届江苏省苏州市高三上学期期初调研考试数学(文)试题(word02-26
小学市三好学生评语05-06
小学四年级作文评语06-09
加强和规范政法机关内部财务管理问题的思考01-29
Oracle数据库基础教程-参考答案02-28
大学生三下乡社会实践报告农业02-25
高二物理学业水平测试知识点03-24
工厂ESD审核 ESD审核技巧及审核方法01-30
高速铁路轨道超长波不平顺的检测 - 图文09-29
《春之声》单元分析教学设计09-13
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 苏州市
- 期期
- 江苏省
- 高三
- 调研
- 试题
- 上学
- 数学
- 考试
- 2019
- word
- 2016-2017学年江苏省南通市启东市高二(下)期末英语试卷
- 干部下乡帮扶日志精选
- 2012社团负责人述职通知 - 图文
- 最新-电力科学发展观活动动员大会上的讲话 精品
- 四年级综合复习下学期数学期末模拟试卷(部编人教版)
- APP产品需求说明书模板
- 瓦斯超限停产撤人制度
- 《心理学概论》知识点提纲
- 2016高考物理复习单元测试—相互作用
- 高次同余式的解数及解法
- 保洁工作总结3篇 doc
- 人民币汇率(变动)对我国以及世界经济的影响
- 药用土元(地乌龟)养殖教材
- FPGA实验一:简单分频器的设计 - 图文
- 试卷
- 宏观经济学习题
- 赣科版小学信息技术四年级上册《认识word》说课稿
- 夏季防暑降温安全知识
- 最新整理照明装置及移动电具安全规定 docx
- 关于STEP函数的问题 - 图文