2019届江苏省苏州市高三上学期期初调研考试数学(文)试题(word

更新时间:2024-02-26 23:07:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2019届江苏省苏州市高三上学期期初调研考试数学(文)试

题(正卷)

2018.9

注 意 事 项

考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试

卷满分160分,考试时间120分钟. 2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色墨水的签字笔填写在答题卡的指定位置. 3.答题时,必须用0.5毫米黑色墨水的签字笔填写在答题卡的指定位置,在其它位置作答一律无效. 4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚.

5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 方差公式:s2?[(x1?x)2?(x2?x)2?1n1?(xn?x)2],其中x?(x1?x2?n?xn).

1锥体体积公式:V锥体=Sh(S为锥体底面面积,h为锥体的高).

3一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上. ........

n?7 S?0 2.若复数z1?2?i,z2?a?2i(i为虚数单位),且z1z2为实数,则实数a? ▲ . While S<18 S?S+n 3.一组数据1,2,3,4,a的平均数为2,则该组数据的方差等于 ▲ . n?n?1 1.已知集合A?{?1,0,1},集合B?{x|x?0},则AB? ▲ .

4.如图是某一算法的伪代码,则输出值n等于 ▲ .

5.一只口袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次 摸出2只球,则摸出1个黑球和1个白球的概率等于 ▲ .

2End While Print n (第4题)

?x?2x(x≥0)?6.已知函数f(x)??2为奇函数,则实数a的值等于 ▲ .

?x?ax(x?0)??57.已知函数f(x)?sin(2x??)(0≤???)的一条对称轴是x???,则?? ▲ .

12a?a48.已知等比数列{an}的前 项和为Sn,若S2,S6,S4成等差数列,则2的值为 ▲ .

a69.已知△ABC的三边上高的长度分别为2,3,4,则△ABC最大内角的余弦值等于 ▲ . 10.将一张半径为3?1(cm)的圆形纸片按如图所示的实线裁剪,并按虚线折叠为各棱长均相等的

四棱锥,则折叠所成的四棱锥的体积为 ▲ cm3.

11.如图,已知AC与BD交于点E,AB∥CD,AC?310,AB?2CD?6,则当tanA?3时,

ABE?CD? ▲ .

(第10题) 高三数学正卷 第1页(共4页)

EB(第11题)

DC

12.已知函数f (x)=|x2-6|,若a?b?0,且f (a)=f (b),则a2b的最大值是 ▲ . 13.在斜三角形ABC中,已知

11??tanC?0,则tanC的最大值等于 ▲ . tanAtanB14.已知⊙C的方程为:(x?3)2?(y?2)2?r2(r?0),若直线3x?y?3上存在一点P,在⊙C总存

在不同的两点M,N,使得点M是线段PN的中点,则⊙C的半径r的取值范围是 ▲ .

二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文.......字说明、证明过程或演算步骤. 15.(本题满分14分)

已知cos??43π,??(0,). 72π(1)求sin(??)的值;

4(2)若cos??????11π,??(0,),求?的值. 142

16.(本题满分14分)

如图,已知矩形CDEF和直角梯形ABCD,AB∥CD,?ADC?90?,DE=DA, M为AE的中点.

(1)求证:AC∥平面DMF; (2)求证:BE⊥DM.

AMDB(第16题)

EFC高三数学正卷 第2页(共4页)

17.(本题满分14分)

如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化.其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60?,设?BOC??.

(1)记市民活动广场及停车场的占地总面积为f(?),求f(?)的表达式; (2)当cos?为何值时,可使市民活动广场及停车场的占地总面积最大.

18.(本题满分16分)

AO(第17题)

HDEGCFBx2y213已知椭圆C:2?2?1(a?b?0)的左、右顶点分别为A,B,离心率为,点P(1,)为椭圆

ab22上一点.

(1)求椭圆C的标准方程;

(2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1?2k2,求直线l斜率的值.

AN(第18题) ylMCOBx高三数学正卷 第3页(共4页)

19.(本小题满分16分)

已知数列?an?的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列?an?前n项和为Sn,且满足S3?a4,a5?a2?a3.

(1)求数列?an?的通项公式;

(2)若amam?1?am?2,求正整数m的值; (3)是否存在正整数m,使得值,若不存在,说明理由.

20.(本小题满分16分)

若对任意的实数k,b,函数y?f(x)?kx?b与直线y?kx?b总相切,则称函数f(x)为“恒切函数”.

(1)判断函数f(x)?x2是否为“恒切函数”;

(2)若函数f(x)?mlnx?nx(m?0)是“恒切函数”,求实数m,n满足的关系式; 1 (3)若函数f(x)?(ex?x?1)ex?m是“恒切函数”,求证:??m≤0.

4

S2m恰好为数列?an?中的一项?若存在,求出所有满足条件的mS2m?12018~2019学年第一学期期初教学质量调研卷 高三数学(正卷)参考解答与评分标准

一、填空题:(每题5分,满分70分) 1.{1}

2.4

3.2

4.4

35.

5高三数学正卷 第4页(共4页)

6.?2 11.12

7.

? 38.2 13.?22 12.16

1142 10.

324410,??) 14.[159.?二、解答题(共6小题,满分90分) 15.(本题满分14分) 解:(1)由cos??43π,??(0,), 72得sin??1?cos2??1?(4321············································ 2分 )?,·

77πππ所以sin(??)?sincos??cossin? ·············································· 4分

444?2432146?2????. ································ 6分 272714π(2)因为?,??(0,),所以????(0,π).

2又cos??????111153,则sin??????1?cos2(???)?1?()2?. 8分

141414所以sin??sin????????sin?????cos??cos?????sin? ·············· 10分

?53431111????. ············································· 12分 1471472ππ因为??(0,),所以??. ······················································ 14分

2616.(本题满分14分)

证明:(1)连接EC交DE于N,连接MN.

∵矩形CDEF,∴EC,DF相互平分,∴N为EC中点. ·· 2分 又∵M为EA中点,∴MN∥AC. ··································· 4分 又∵AC?平面DMF,且MN?平面DMF.

∴AC∥平面DMF. ·················································· 7分 (2)∵矩形CDEF,∴CD⊥DE.

又∵AB∥CD,∴AB⊥DE. ·························································· 8分 又∵直角梯形ABCD,AB∥CD且?ADC?90?,∴AB⊥AD. ∵DE

AD=D,∴AB⊥平面ADE. ··············································· 10分

ANMDBCEF又∵DM?平面ADE,∴AB⊥DM.

∵AD?DE,M为AE的中点,∴AE⊥DM. ·································· 11分 又∵ABAE?A,∴MD⊥平面ABE. ·········································· 13分

高三数学正卷 第5页(共4页)

∵BE?平面ABE,∴BE⊥MD. ··················································· 14分 17.(本题满分14分)

解:(1)∵半圆的半径为r,?BOC??,∠OBC=90°.

∴在直角三角形OBC中,

OB?rcos?,BC?rsin?,∴AB?2rcos?.

AOBDHEGCF∴S矩形ABCD?AB?BC?2r2sin?cos?. ················································ 2分 又∵∠BOG=60?,由半圆的对称性可知,∠HOA=60?,∴∠HOG=60?. ∴△HOG为等边三角形,∴HG=r,HE=∴S矩形EFGH?EF?EH?(33r?rsin?=(?sin?)r. 223?sin?)r2. ·············································· 4分 232?)r,其中??(0,). 23 ································································································· 7分

∴f(?)?S矩形ABCD?S矩形EFGH?(2sin?cos??sin??(2) ∵f?(?)?r2(2cos2??2sin2??cos?)=r2(4cos2??cos??2). ··········· 9分 令f?(?)?0,即4cos2??cos??2?0, 解得:cos??令cos?0?1?331?33或cos??(舍去). ·································· 11分 881?33?,?0?(0,). 831?当??(0,?0)时,f?(?)?0,f(?)单调递增;

?2?当??(?0,)时,f?(?)?0,f(?)单调递减.

3∴当???0时,f(?)取得最大值. ···················································· 13分 答:当cos??

18.(本题满分16分)

1解:(1)∵椭圆的离心率为,∴a?2c.

2ylMCANOBx1?33时,可使市民活动广场和停车场的面积总和最大. · 14分 8又∵a2?b2?c2,∴b?3c.

x2y2∴椭圆的标准方程为:2?2?1. ··············· 3分

4c3c高三数学正卷 第6页(共4页)

913又∵点P(1,)为椭圆上一点,∴2?42?1,解得:c?1. ··············· 5分

4c3c2x2y2∴椭圆的标准方程为:?················································ 6分 ?1. ·

43(2)由椭圆的对称性可知直线l的斜率一定存在,设其方程为y?kx?1. 设M(x1,y1),N(x2,y2).

?x2y2?1??联列方程组:?4,消去y可得:(3?4k2)x2?8kx?8?0. 3?y?kx?1?∴由韦达定理可知:x1?x2??∵k1?8k8,. ····················· 8分 xx??123?4k23?4k2y2y2y1y,k2?2,且k1?2k2,∴1?. ·················· 10分

x1?2x2?2x1?2x1?2y124y22?即.①

(x1?2)2(x2?2)2又∵M(x1,y1),N(x2,y2)在椭圆上, 33∴y12?(4?x12),y22?(4?x22).②

44将②代入①可得:∴3(?2?x14(2?x2)?,即3x1x2?10(x1?x2)?12?0. ······· 12分 2?x12?x288k2················ 14分 )?10(?)?12?0,即12k?20k?3?0. ·223?4k3?4k解得:k?133或k?.又∵k>1,∴k?. ······································ 16分 62219.(本小题满分16分)

解:(1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q. ∴数列?an?的前5项依次为:1,2,1+d,2q,1+2d.

?S3?a4?4?d?2q?d?2∵?,∴?,解得:?. ···························· 2分

a?a?a1?2d?3?dq?3??23?5(n为奇数)?n?∴an??. ······························································ 4分 n?12??2?3(n为偶数)(2) ∵amam?1?am?2.

1?若m?2k(k?N*)

则a2ka2k?1?a2k?2,∴2?3k?1?(2k?1)?2?3k,即2k?1?3,∴k?1,即m?2. ································································································· 6分

高三数学正卷 第7页(共4页)

2?若m?2k?1(k?N*)

则a2k?1a2k?a2k?1,∴(2k?1)?2?3k?1?2k?1,∴2?3k?1?∵2?3k?1为整数,∴

2k?12. ?1?2k?12k?12必为整数,∴2k?1?1,∴k?1,此时2?30?3. 2k?1 不合题意. ················································································· 8分 综上可知:m=2. ········································································ 9分 (3)∵S2m?(a1?a3?????a2m?1)?(a2?a4?????a2m)

m(1?2m?1)2(1?3m) =+=3m?m2?1. ································· 10分

21?3S2m?1?S2m?a2m?3m?m2?1?2?3m?1?3m?1?m2?1. ··························· 11分

S2m3m?m2?12(m2?1)∴==3?m?1····································· 12分 ≤3. ·2S2m?13m?1?m2?13?m?1若

S2m为数列?an?中的项,则只能为a1,a2,a3. S2m?1S2m2(m2?1)m?1?1,则3?m?1·················· 13分 1??1,∴3?0,m无解. ·2S2m?13?m?1S2m2(m2?1)m?12?2,则3?m?12??2,∴3?1?m?0. 2S2m?13?m?1当m?1时,等式不成立; 当m?2时,等式成立;

1当m≥3时,令f(x)?3x?1?1?x2??3x?1?x2.

3ln23xln3x∴f?(x)??3?2. ?3?2x,f??(x)?33当x≥3时,f??(x)?0,∴f?(x)在[3,??)上单调递增. 又∵f?(3)?9ln3?6?0,∴f?(x)?0在[3,??)上恒成立, ∴f(x)在[3,??)上单调递增.

∵f(3)?1?0,∴当m≥3时,方程3m?1?1?m2?0无解. ···················· 14分

3?

S2m2(m2?1)2?3,则3?m?1············· 15分 ?3,∴m?1?0,即m?1. ·2S2m?13?m?1综上可知:m?1或m?2. ···························································· 16分 20.(本小题满分16分)

解:(1)函数f(x)为“恒切函数”,设切点为(x0,y0).

高三数学正卷 第8页(共4页)

?f(x0)?kx0?b?kx0?b?f(x0)?0则?,∴?. ······································· 2分

??f(x)?k?kf(x)?000?? 对于函数f(x)?x2,f?(x)?2x.

2??x0?0设切点为(x0,y0),∴?, ······················································· 3分

2x?0??0解得:x0?0.∴f(x)?x2是“恒切函数”. ······································· 4分 (2)若函数f(x)?mlnx?nx(m?0)是“恒切函数”,设切点为(x0,y0).

?mlnx0?nx0?0?m ∵f?(x)??n,∴?m, ·············································· 5分

?n?0x?x?0 解得:lnx0?1,即x0?e. ···························································· 7分 ∴实数m,n满足的关系式为:m?ne?0. ······································· 8分 (3) 函数f(x)?(ex?x?1)ex?m是“恒切函数”,设切点为(x0,y0). ?(ex0?x0?1)ex0?m?0? ∵f?(x)?(2e?x?2)e,∴?x, x00(2e?x?2)e?0?0?xxx0x0??m??(e?x0?1)e ∴?x. ······························································· 10分

0??2e?x0?2 考查方程2ex?x?2的解,设g(x)?2ex?x?2. ∵g?(x)?2ex?1,令g?(x)?0,解得:x??ln2. ∴当x?(??,?ln2)时,g?(x)?0,g(x)单调递减; 当x?(?ln2,??)时,g?(x)?0,g(x)单调递增.

∴g(x)min?g(?ln2)?ln2?1?0. ··················································· 12分

1?当x?(??,?ln2)时

∵g(?2)?42?0,g(?1)??1?0. 2ee∴g(x)?2ex?x?2在(??,?ln2)上有唯一零点x0?(?2,?1).

11又∵m??(ex0?x?1)ex0=x0(x0?2),∴m?(?,0). ························ 14分

442?当x?(?ln2,??)时

∵g(0)?0,∴g(x)?2ex?x?2在(?ln2,??)上有唯一零点0,∴m?0.

高三数学正卷 第9页(共4页)

本文来源:https://www.bwwdw.com/article/buna.html

Top