《概率论与数理统计》(复旦大学出版社)第三章习题答案

更新时间:2024-03-16 10:17:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

[键入文字]

习题三

1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与

出现反面次数之差的绝对值.试写出X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 2 3 1 3 C130 1113??? 22281 81110 ???3/8 22211110 ??? 22282C3

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 0 2 22C3C23 ?4C73521C3C1122C2 ?4C73522C3C23 ?4C7353 1C323C2 ?4C7351C323C2 ?4C7350 1 0 12C163C2C2 ?4C73521C163C2C2 ?4C7352 P(0黑,2红,2白)= 24C22C2/C7?0 1 35

3.设二维随机变量(X,Y)的联合分布函数为

ππ??sinxsiny,0?x?,0?y?F(x,y)=?22

?其他.?0,求二维随机变量(X,Y)在长方形域?0?x?【解】如图P{0?X???πππ?,?y??内的概率. 463?πππ,?Y?}公式(3.2) 463ππππππF(,)?F(,)?F(0,)?F(0,) 434636

1

[键入文字]

?sinπ4sinπ3?sinππππ4sin6?sin0sin3?sin0sin6?2

4(3?1).

题3图

说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度

?Ae?(3x?4y)f(x,y)=?,x?0,y?0,?0,其他.

求:(1) 常数A;

(2) 随机变量(X,Y)的分布函数; (3) P{0≤X<1,0≤Y<2}. 【解】(1) 由

??????????f(x,y)dxdy????0???0Ae-(3x?4y)dxdy?A12?1 得 A=12 (2) 由定义,有 F(x,y)??y?x????f(u,v)dudv

?yy?(3u?4v) ?????dudv??(1?e?3x)(1?e?4y0012e)y?0,x?0,???0,?0,其他(3) P{0?X?1,0?Y?2}

?P{0?X?1,0?Y?2}

??10?2012e?(3x?4y)dxdy?(1?e?3)(1?e?8)?0.9499.

5.设随机变量(X,Y)的概率密度为

f(x,y)=??k(6?x?y),0?x?2,2?y?4,?0,其他.

(1) 确定常数k;

(2) 求P{X<1,Y<3}; (3) 求P{X<1.5}; (4) 求P{X+Y≤4}. 【解】(1) 由性质有

2

[键入文字]

??????????f(x,y)dxdy??

20?42k(6?x?y)dydx?8k?1,

故 R?

18

(2) P{X?1,Y?3}? ?(3) P{X?1.5}???1313????f(x,y)dydx

x?1.5???13k(6?x?y)dydx? ?0?288f(x,y)dxdy如图a??f(x,y)dxdy

D1 ?1.50dx?(4) P{X?Y?4}?X?Y?42??127(6?x?y)dy?. 2832f(x,y)dxdy如图b??f(x,y)dxdy

4D24?x2 ??dx?012(6?x?y)dy?. 83

题5图

6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为

?5e?5y,y?0,fY(y)=?

其他.?0,求:(1) X与Y的联合分布密度;(2) P{Y≤X}.

题6图

【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为

?1?,0?x?0.2, fX(x)??0.2?其他.?0,而

3

[键入文字]

?5e?5y,y?0,fY(y)??

其他.?0,所以

f(x,y)XY,独立fXx(f)Yy( )?1?5y ????5e?25e?5y,0?x?0.2且y?0,?0.2???0,?0,其他. (2) P(Y?X)?(x,y)dxdy如图y??f?x??25e?5ydxdy

D0.2x-5y

??0dx?25edy??0.2(?5e?5x00?5)dx

=e-1?0.3679.7.设二维随机变量(X,Y)的联合分布函数为

F(x,y)=??(1?e?4x)(1?e?2y),x?0,y?0,?0,其他.求(X,Y)的联合分布密度.

【解】f(x,y)??2F(x,y)?x?y???8e?(4x?2y),x?0,y?0, ?0,其他.8.设二维随机变量(X,Y)的概率密度为

f(x,y)=??4.8y(2?x),0?x?1,0?y?x,?0,其他.求边缘概率密度. 【解】fX(x)??????f(x,y)dy

? =???x(2?x)dy??2.4204.8y??x(2?x),0?x?1, ?0,?0,其他. fY(y)??????f(x,y)d x?1 =???y4.8y(2?x)dx??2.4y(3?4y?y2),0?y???1,?0,?0,其他.

4

[键入文字]

题8图 题9图

9.设二维随机变量(X,Y)的概率密度为

(x,y)=??e?yf,0?x?y,?0,其他.

求边缘概率密度. 【解】fX(x)??????f(x,y)dy

????y?x =???xedy??e,x?0, ???0,?0,其他.fY(y)??????f(x,y)dx

?y?y?x =???0edx??ye,y?0,?? ?0,?0,其他.

题10图

10.设二维随机变量(X,Y)的概率密度为

f(x,y)=??cx2y,x2?y?1,0,

?其他.(1) 试确定常数c;

(2) 求边缘概率密度. 【解】(1)

??????????f(x,y)dxdy如图??f(x,y)dxdy

D =?1-1dx?124x2cxydy?21c?1. 得c?214. (2) fX(x)??????f(x,y)dy

5

[键入文字]

(1) a,b,c的值; (2) Z的概率分布; (3) P{X=Z}.

解 (1) 由概率分布的性质知,

a+b+c+0.6=1 即 a+b+c = 0.4. 由E(X)??0.2,可得

?a?c??0.1.

再由 P{Y?0X?0}?P{X?0,Y?0}a?P{X?0}?b?0.1a?b?0.5?0.5,

得 a?b?0.3.

解以上关于a,b,c的三个方程得

a?0.2,b?0.1,c?0.1.

(2) Z的可能取值为?2,?1,0,1,2,

P{Z??2}?P{X??1,Y??1}?0.2,

P{Z??1}?P{X??1,Y?0}?P{X?0,Y??1}?0.1,

P{Z?0}?P{X??1,Y?1}?P{X?0,Y?0}?P{X?1,Y??1}?0.3,P{Z?1}?P{X?1,Y?0}?P{X?0,Y?1}?0.3,

P{Z?2}?P{X?1,Y?1}?0.1,

即Z的概率分布为 Z ?2 ??1 0 1 2 P 0.2 0.1 0.3 0.3 0.1 (3) P{X?Z}?P{Y?0}?0.1?b?0.2?0.1?0.1?0.2?0.4.

16

本文来源:https://www.bwwdw.com/article/btj8.html

Top