中考数学知识点复习 相似错题整理(1)-精品
更新时间:2024-01-06 21:12:01 阅读量: 教育文库 文档下载
- 中考数学必考知识点推荐度:
- 相关推荐
如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m. (1)求两个路灯之间的距离; (2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?
如图,直立在点B处的标杆AB长2.5m,站立在点F处的观察者从点E处看到标杆顶A、旗杆顶C在一条直线上.已知BD=8.8m,FB=2.2m,EF=1.5m,求旗杆高CD. (用两种方法)
教学楼旁边有一棵树,学习了相似三角形后,数学小组的同学想利用树影来测量树高.课外活动时在阳光下他们测得一根长为1m的竹竿的影长是0.9m,但当他们马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,经过一番争论,小组的同学认为继续测量也可以测出树高,他们测得落在地面的影长2.7m,落在墙壁上的影长1.2m,请你和他们一起算一下,树高为多少? 答案4.2m
如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经
过多长时间△ABC和△PQC相似?
如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.
(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长; (2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;
(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.
某公司在布置联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条.如图所示:在Rt△ABC中,AC=30cm,BC=40cm.依此裁下宽度为1cm的纸条,若使裁得的纸条的长都不小于5cm,则能裁得的纸条的张数为__________
答案:26
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P. (1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE?DF,为什么?
如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.
(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子; (2)求标杆EF的影长.
如图,在一个3×5的正方形网格中,△ABC的顶点A,B,C在单位正方形顶点上,请你在图中画一个△A1B1C1,使得△A1B1C1∽△ABC,且点A1,B1,C1都在单位正方形的顶点上.
如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.
如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围; (3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与
⊙O的位置关系,并证明你的结论.
正在阅读:
中国古代文学史 第六编 元代文学06-06
《导游法规》复习重点08-18
水力学(闻德荪)习题答案第六章01-27
内蒙古风光作文500字07-11
WinCC实例教程02-02
行测题库:必然性推理 练习题及解析08-30
终结企业客户管理信息系统06-04
高速公路路基碎石桩施工10-11
马哲习题01-04
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 错题
- 知识点
- 中考
- 复习
- 相似
- 整理
- 数学
- 精品