3GPP协议36211-850中文翻译 - 图文

更新时间:2024-01-23 09:57:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

3GPP TS 36.211 V8.5.0 (2008-12)

Technical Specification

3GPP;

技术规范组无线接入网;

通用陆地无线接入演进(E-UTRA);

物理信道与调制

(Release 8)

Release 8 2 3GPP TS 36.211 V8.5.0 (2008-12)

Contents

F 前言 ................................................................................................................................................................. 6 1 2 3

3.1 3.2

Scope ....................................................................................................................................................... 7 参考文献 .................................................................................................................................................. 7 定义,符号与缩写 .................................................................................................................................. 7

符号 ................................................................................................................................................................... 7 缩写 ................................................................................................................................................................... 9

4

4.1 4.2

帧结构 ...................................................................................................................................................... 9

帧结构类型 1 .................................................................................................................................................... 9 帧结构类型 2 .................................................................................................................................................. 10

5 上行链路 ................................................................................................................................................ 11

概要 ................................................................................................................................................................. 11

物理信道 .................................................................................................................................................... 11 物理信号 .................................................................................................................................................... 11 时隙结构和物理资源 ..................................................................................................................................... 12 资源格 ........................................................................................................................................................ 12 资源单元 .................................................................................................................................................... 13 资源块 ........................................................................................................................................................ 13 物理上行共享信道 ......................................................................................................................................... 13 加扰 ............................................................................................................................................................ 14 调制 ............................................................................................................................................................ 14 转换预编码 ................................................................................................................................................ 14 映射到物理资源 ........................................................................................................................................ 15 物理上行控制信道 ......................................................................................................................................... 16 PUCCH格式1, 1a 和1b ........................................................................................................................... 17 PUCCH 格式2, 2a 和 2b ........................................................................................................................... 19 映射到物理资源 ........................................................................................................................................ 20 参考信号 ......................................................................................................................................................... 21 参考信号序列的生成 ................................................................................................................................ 21

RB长为3Nsc或更长的基本序列............................................................................................................ 22

RB长度低于3Nsc的基本序列 ............................................................................................................... 22

5.1

5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 5.5.1.1 5.5.1.2

5.5.1.3 分组跳 .................................................................................................................................................. 24 5.5.1.4 序列跳 .................................................................................................................................................. 25 5.5.2 解调用参考信号 ........................................................................................................................................ 25 5.5.2.1 PUSCH中解调用参考符号 ................................................................................................................. 25 5.5.2.1.1 参考信号序列 ................................................................................................................................ 25 5.5.2.1.2 映射到物理资源............................................................................................................................. 26 5.5.2.2 PUCCH中解调用参考符号 ................................................................................................................ 27 5.5.2.2.1 参考信号序列 ................................................................................................................................ 27 5.5.2.2.2 映射到物理资源............................................................................................................................. 28 5.5.3 探测参考符号 ............................................................................................................................................ 28 5.5.3.1 序列生成 .............................................................................................................................................. 28 5.5.3.2 映射到物理资源 .................................................................................................................................. 28 5.5.3.3 探测参考符号子帧配置 ...................................................................................................................... 31 5.6 SC-FDMA基带信号生成 ............................................................................................................................... 32 5.7 物理随机接入信道 ......................................................................................................................................... 33 5.7.1 时频结构 .................................................................................................................................................... 33 5.7.2 导频序列生成 ............................................................................................................................................ 39

3GPP

Release 8 3 3GPP TS 36.211 V8.5.0 (2008-12)

5.7.3 5.8 基带信号生成 ............................................................................................................................................ 43 调制与上变频 ................................................................................................................................................. 43

6 下行链路 ................................................................................................................................................ 44

概述 ................................................................................................................................................................. 44

物理信道 .................................................................................................................................................... 44 物理信号 .................................................................................................................................................... 44 时隙结构和物理资源单元 ............................................................................................................................. 45 资源格 ........................................................................................................................................................ 45 资源单元 .................................................................................................................................................... 45 资源块 ........................................................................................................................................................ 46 局部类型虚拟资源块 .......................................................................................................................... 47 分布类型虚拟资源块 .......................................................................................................................... 47 资源单元组 ................................................................................................................................................ 48 半双工FDD 操作保护间隔 ...................................................................................................................... 49 TDD 操作保护间隔 ................................................................................................................................... 49 下行信道一般结构 ......................................................................................................................................... 49 加扰 ............................................................................................................................................................ 50 调制 ............................................................................................................................................................ 50 层映射 ........................................................................................................................................................ 50 单天线端传输层映射 .......................................................................................................................... 50 空分复用层映射 .................................................................................................................................. 51 发送分集层映射 .................................................................................................................................. 51 预编码 ........................................................................................................................................................ 52 单天线端口传输预编码 ...................................................................................................................... 52 空分复用预编码 .................................................................................................................................. 52 无CDD预编码 .............................................................................................................................. 52 大延时CDD预编码 ...................................................................................................................... 52 预编码码本 .................................................................................................................................... 53 发射分集预编码 .................................................................................................................................. 54 映射到资源单元 ........................................................................................................................................ 55 物理下行共享信道PDSCH ............................................................................................................................ 55 物理组播信道PMCH ..................................................................................................................................... 55 物理广播信道PBCH ...................................................................................................................................... 56 加扰 ............................................................................................................................................................ 56 调制 ............................................................................................................................................................ 56 层映射与预编码 ........................................................................................................................................ 56 映射到资源单元 ........................................................................................................................................ 56 物理控制格式指示信道PCFICH ................................................................................................................... 57 加扰 ............................................................................................................................................................ 57 调制 ............................................................................................................................................................ 57 层映射与预编码 ........................................................................................................................................ 57 资源单元映射 ............................................................................................................................................ 58 物理下行控制信道PDCCH ........................................................................................................................... 58 PDCCH格式 .............................................................................................................................................. 58 PDCCH 复用与加扰.................................................................................................................................. 58 调制 ............................................................................................................................................................ 59 层映射与预编码 ........................................................................................................................................ 59 到资源单元的映射 .................................................................................................................................... 59 物理混合ARQ指示信道PHICH .................................................................................................................. 60 调制 ............................................................................................................................................................ 61

6.1

6.1.1 6.1.2 6.2 6.2.1 6.2.2 6.2.3 6.2.3.1 6.2.3.2 6.2.4 6.2.5 6.2.6 6.3 6.3.1 6.3.2 6.3.3 6.3.3.1 6.3.3.2 6.3.3.3 6.3.4 6.3.4.1 6.3.4.2 6.3.4.2.1 6.3.4.2.2 6.3.4.2.3 6.3.4.3 6.3.5 6.4 6.5 6.6 6.6.1 6.6.2 6.6.3 6.6.4 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5 6.9 6.9.1 6.9.2 6.9.3 6.10 6.10.1

资源组调整,层映射和预编码 ...................................................................................................... 61 到资源单元的映射 .................................................................................................................................... 63 参考信号 ......................................................................................................................................................... 64 小区专用参考信号CRS ........................................................................................................................... 65

3GPP

Release 8 4 3GPP TS 36.211 V8.5.0 (2008-12)

6.10.1.1 序列生成 .............................................................................................................................................. 65 6.10.1.2 到资源单元的映射 .............................................................................................................................. 65 6.10.2 MBSFN 参考信号 ..................................................................................................................................... 67 6.10.2.1 序列生成 .............................................................................................................................................. 67 6.10.2.2 到资源单元的映射 .............................................................................................................................. 67 6.10.3 用户端专用参考信号DRS ....................................................................................................................... 69 6.10.3.1 序列生成 .............................................................................................................................................. 69 6.10.3.2 到资源单元的映射 .............................................................................................................................. 70 6.11 同步信号 ......................................................................................................................................................... 71 6.11.1 主同步信号 ................................................................................................................................................ 72 6.11.1.1 序列生成 .............................................................................................................................................. 72 6.11.1.2 到资源单元的映射 .............................................................................................................................. 72 6.11.2 次同步信号 ................................................................................................................................................ 72 6.11.2.1 序列生成 .............................................................................................................................................. 72 6.11.2.2 到资源单元的映射 .............................................................................................................................. 74 6.12 OFDM 基带信号生成 ..................................................................................................................................... 75 6.13 调制与上变换 ................................................................................................................................................. 75

7

7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.2

一般功能 ................................................................................................................................................ 76

调制映射 ......................................................................................................................................................... 76 BPSK ............................................................................................................................................................... 76 QPSK ............................................................................................................................................................... 76 16QAM ............................................................................................................................................................ 77 64QAM ............................................................................................................................................................ 77 伪随机序列产生 ............................................................................................................................................. 78

8

8.1

定时 ........................................................................................................................................................ 79

上行-下行帧定时 ............................................................................................................................................ 79

Annex A (informative): Change history ............................................................................................... 80

3GPP

Release 8 5 3GPP TS 36.211 V8.5.0 (2008-12)

1 Scope

The present document describes the physical channels for evolved UTRA.

2

[1] [2] [3] [4] [5] [6] [7] [8]

参考文献

3GPP TR 21.905: \

3GPP TS 36.201: \–

General Description\

3GPP TS 36.212: \channel coding\

3GPP TS 36.213: \procedures\

3GPP TS 36.214: \– Measurements\

3GPP TS 36.104: “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception”.

3GPP TS 36.101: “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception”.

3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification”

3

3.1

(k,l)

(p)ak,l

Definitions, symbols and abbreviations

Symbols

Resource element with frequency-domain index k and time-domain index l Value of resource element (k,l) [for antenna portp] Matrix for supporting cyclic delay diversity

Density of random access opportunities per radio frame Carrier frequency

PRACH resource frequency index within the considered time domain location Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers Scheduled bandwidth for uplink transmission, expressed as a number of resource blocks Number of coded bits to transmit on a physical channel [for code word q]

Number of modulation symbols to transmit on a physical channel [for code word q] Number of modulation symbols to transmit per layer for a physical channel Number of modulation symbols to transmit per antenna port for a physical channel

For the purposes of the present document, the following symbols apply:

D

DRA

f0

fRA

PUSCH MscPUSCHMRB

(q) Mbit(q) Msymblayer Msymbap Msymb3GPP

Release 8 N

NCP,l

Ncs(1) N(2)RB NRBHO NIDcell NIDMBSFN NRBDL NRBmin, DL NRBmax, DL NRBUL NRBmin, UL NRBmax, UL NsymbDL NsymbUL NscRB NSP

NRSPUCCH NTA

NTA offset n(1)PUCCH n(2)PUCCH nPDCCH nPRB

nRAPRB nRAPRB offsetnVRB nRNTI nf ns P p q

rRA

Qm s(p)l?t?

t0RA t1RA t2RA Tf Ts Tslot

6 3GPP TS 36.211 V8.5.0 (2008-12)

A constant equal to 2048 for ?f?15 kHz and 4096 for ?f?7.5 kHz

Downlink cyclic prefix length for OFDM symbol l in a slot

Number of cyclic shifts used for PUCCH formats 1/1a/1b in a resource block with a mix of formats 1/1a/1b and 2/2a/2b

Bandwidth available for use by PUCCH formats 2/2a/2b, expressed in multiples of NscRB The offset used for PUSCH frequency hopping, expressed in number of resource blocks (set by higher layers)

Physical layer cell identity MBSFN area identity

Downlink bandwidth configuration, expressed in multiples of NscRB

Smallest downlink bandwidth configuration, expressed in multiples of NscRB Largest downlink bandwidth configuration, expressed in multiples of NscRB Uplink bandwidth configuration, expressed in multiples of NscRB Smallest uplink bandwidth configuration, expressed in multiples of NscRB Largest uplink bandwidth configuration, expressed in multiples of NscRB

每个下行时隙中 OFDM符号个数 每个上行时隙中 SC-FDMA 符号个数 频域资源块大小, 表示为子载波个数

Number of downlink to uplink switch points within the radio frame Number of reference symbols per slot for PUCCH

Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts

Fixed timing advance offset, expressed in units of Ts Resource index for PUCCH formats 1/1a/1b Resource index for PUCCH formats 2/2a/2b Number of PDCCHs present in a subframe Physical resource block number

First physical resource block occupied by PRACH resource considered First physical resource block available for PRACH Virtual resource block number Radio network temporary identifier System frame number

Slot number within a radio frame Number of cell-specific antenna ports Antenna port number Code word number

Index for PRACH versions with same preamble format and PRACH density Modulation order: 2 for QPSK, 4 for 16QAM and 6 for 64QAM transmissions

Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot Radio frame indicator index of PRACH opportunity

Half frame index of PRACH opportunity within the radio frame

Uplink subframe number for start of PRACH opportunity within the half frame Radio frame duration Basic time unit Slot duration

3GPP

Release 8 7 3GPP TS 36.211 V8.5.0 (2008-12)

W

?PRACH ?PUCCH ?PUSCH ?SRS ?f ?fRA ?

Precoding matrix for downlink spatial multiplexing Amplitude scaling for PRACH Amplitude scaling for PUCCH Amplitude scaling for PUSCH

Amplitude scaling for sounding reference symbols Subcarrier spacing

Subcarrier spacing for the random access preamble Number of transmission layers

3.2

CCE CDD

Abbreviations

Control Channel Element Cyclic Delay Diversity

For the purposes of the present document, the following abbreviations apply:

4 帧结构

Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a number of time unitsTs?1?15000?2048? seconds.

?Ts?10 ms duration. Two radio Downlink and uplink transmissions are organized into radio frames with Tf?307200frame structures are supported:

- Type 1, applicable to FDD, - Type 2, applicable to TDD.

4.1 Frame structure type 1

Frame structure type 1 is applicable to both full duplex and half duplex FDD. Each radio frame is Tf?307200?Ts?10 ms long and consists of 20 slots of lengthTslot?15360?Ts?0.5 ms, numbered from 0 to 19. A subframe is defined as two consecutive slots where subframe i consists of slots 2iand2i?1.

For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. In half-duplex FDD operation, the UE cannot transmit and receive at the same time while there are no such restrictions in full-duplex FDD.

One radio frame, Tf = 307200Ts = 10 msOne slot, Tslot = 15360Ts = 0.5 ms#0#1#2#3#18#19One subframe

Figure 4.1-1: Frame structure type 1.

4.2 Frame structure type 2

?Ts?10 ms consists of two half-Frame structure type 2 is applicable to TDD. Each radio frame of length Tf?307200?Ts?5 mseach. Each half-frame consists of five subframes of length30720?Ts?1 ms. The frames of length 153600supported uplink-downlink configurations are listed in Table 4.2-2 where, for each subframe in a radio frame, “D” denotes the subframe is reserved for downlink transmissions, “U” denotes the subframe is reserved for uplink

3GPP

Release 8 8 3GPP TS 36.211 V8.5.0 (2008-12)

transmissions and “S” denotes a special subframe with the three fields DwPTS, GP and UpPTS. The length of DwPTS and UpPTS is given by Table 4.2-1 subject to the total length of DwPTS, GP and UpPTS being equal

to30720?Ts?1 ms. Each subframe iis defined as two slots, 2iand2i?1 of length Tslot?15360?Ts?0.5 msin each subframe.

Uplink-downlink configurations with both 5 ms and 10 ms downlink-to-uplink switch-point periodicity are supported. In case of 5 ms downlink-to-uplink switch-point periodicity, the special subframe exists in both half-frames. In case of 10 ms downlink-to-uplink switch-point periodicity, the special subframe exists in the first half-frame only. Subframes 0 and 5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe immediately following the special subframe are always reserved for uplink transmission.

One radio frame, Tf = 307200Ts = 10 msOne half-frame, 153600Ts = 5 msOne slot, Tslot=15360TsSubframe #0One subframe, 30720TsDwPTS30720TsSubframe #2Subframe #3Subframe #4Subframe #5Subframe #7Subframe #8Subframe #9GPUpPTSDwPTSGPUpPTS

Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special subframe configuration Normal cyclic prefix in downlink DwPTS UpPTS Normal Extended cyclic prefix cyclic prefix in uplink in uplink 6592?Ts 19760?Ts 2192?Ts 2560?Ts 21952?Ts 24144?Ts 26336?Ts Extended cyclic prefix in downlink DwPTS UpPTS Normal cyclic Extended cyclic prefix in uplink prefix in uplink 0 1 2 3 4 5 6 7 8 7680?Ts 20480?Ts 23040?Ts 25600?Ts 7680?Ts 2192?Ts 2560?Ts 6592?Ts 19760?Ts 21952?Ts 24144?Ts 4384?Ts 20480?Ts 5120?Ts 4384?Ts - - 5120?Ts - - 23040?Ts - - 3GPP

Release 8 9 3GPP TS 36.211 V8.5.0 (2008-12)

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink Downlink-to-Uplink Subframe number configuration Switch-point periodicity 0 1 2 3 4 5 6 7 0 5 ms D S U U U D S U 1 5 ms D S U U D D S U 2 5 ms D S U D D D S U 3 10 ms D S U U U D D D 4 10 ms D S U U D D D D 5 10 ms D S U D D D D D 6 5 ms D S U U U D S U 8 U U D D D D U 9 U D D D D D D

5

5.1

5.1.1

上行链路

Overview

物理信道

上行传输最小资源单位记为资源单元,定义见 5.2.2.节

定义下列上行物理信道

- 上行物理共享信道PUSCH - 上行物理控制信道PUCCH - 物理随机接入信道PRACH

5.1.2 物理信号

定义一个不携带信息的物理信号:参考信号

5.2

5.2.1

时隙结构与物理资源

资源格

ULRBUL每个时隙传输的信号可描述为包含NRB个 SC-FDMA 符号的资源格,如图 5.2.1-1所Nsc个子载波和NsymbUL示。NRB的数量取决于小区配置的上行传输带宽,满足

min,ULULmax,UL6?NRB?NRB?NRB?110

UL参见表5.2.3-1。 Nsymb3GPP

Release 8

One uplink slotTslot10 3GPP TS 36.211 V8.5.0 (2008-12)

ULNsymbSC-FDMA symbolsULRBk?NRBNsc?1Resource blockULRBresource Nsymb?NscelementssubcarrierssubcarriersULRBNRB?NscBNsRcResource element(k,l)k?0l?0ULl?Nsymb?1

图5.2.1-1: 上行资源格(k,l)

5.2.2 资源单元

ULRBUL资源单元?k,l?对应资源格中第k个子载波和第l个符号,k?0,...,NRBNsc?1, l?0,...,Nsymb?1。?k,l?对应

一个复值ak,l。ak,l对应的资源单元不用于传输则ak,l置零。

5.2.3 资源块

RBULULRB物理资源块定义为Nsymb个连续SC-FDMA符号和Nsc个连续子载波,即包含Nsymb资源单元,对应一?NscRBUL个时隙和180KHz带宽。Nsymb和Nsc见表5.2.3-1。

3GPP

Release 8 11 3GPP TS 36.211 V8.5.0 (2008-12)

表 5.2.3-1: 资源块参数

配置 常规CP 扩展CP RB NscUL Nsymb12 12 7 6 5.3

- - - - -

物理上行共享信道

加扰

加扰比特调制成复值符号 通过预编码转换成复值符号 复值符号映射到资源单元

在每个天线端口产生时域复值SC-FDMA 符号

Modulation mapperTransform precoderResource element mapper表征物理上行共享信道的基带信号定义如下:

ScramblingSC-FDMA signal gen.

图5.3-1: PUSCH处理过程

5.3.1 加扰

采用UE-specific加扰序列对一个子帧内的比特进行加扰。

5.3.2 调制

表5.3.2-1: PUSCH调制方案

物理信道 调制方案 PUSCH QPSK, 16QAM, 64QAM

5.3.3 转换预编码

调制复值符号d(0),...,d(Msymb?1)通过转换预编码变为同样数量的SC-FDMA符号。

5.3.4 映射到物理资源

SC-FDMA符号z(0),...,z(Msymb?1)乘以传输功率PPUSCH,以增序方式映射到资源单元(k,l),首先按k映射,然后按l继续。

5.4 物理上行控制信道PUCCH

PUCCH用于传输上行控制信息,不同与PUSCH同时传输,在TDD中,不能在UpPTS 域传输,格式如下:

3GPP

Release 8 12 3GPP TS 36.211 V8.5.0 (2008-12)

表5.4-1: PUCCH 格式

PUCCH 格式 1 1a 1b 2 2a 2b 调制方案 N/A BPSK QPSK QPSK QPSK+BPSK QPSK+QPSK 每子帧比特数Mbit N/A 1 2 20 21 22 说明 仅用于常规CP 仅用于常规CP

cell所有PUCCH格式在每个符号采用一个序列的循环位移,不同PUCCH格式采用ncs(ns,l)获得循环位移。cellncs(ns,l)是符号序号l和时隙序号ns的函数

cellncs(ns,l)?UL?ns?8l?i)?2i ?i?0c(8Nsymb7这里伪随机序列c(i) 参见7.2节,采用cinitcell初始化。 ?NID(2)(2)(1)PUCCH的物理资源取决于高层给定的参数NRB和Ncs。NRB?0 denotes the bandwidth in terms of resource

(1)blocks that are available for use by PUCCH formats 2/2a/2b transmission in each slot. The variable Ncs denotes the

number of cyclic shift used for PUCCH formats 1/1a/1b in a resource block used for a mix of formats 1/1a/1b and

(1)2/2a/2b. The value of Ncs is an integer multiple of ?PUCCH within the range of {0, 1, …, 7}, where ?PUCCH is provided shiftshift(1)by higher layers. No mixed resource block is present if Ncs?0. At most one resource block in each slot supports a mix of formats 1/1a/1b and 2/2a/2b. Resources used for transmission of PUCCH format 1/1a/1b and 2/2a/2b are

(1)??Ncs(2)(2)(1)RBRB(1)represented by the non-negative indices nPUCCH and nPUCCH?NRBNsc????(Nsc?Ncs?2), respectively.

?8?5.4.1 PUCCH 格式1,1a和1b

PUCCH格式1, information is carried by the presence/absence of transmission of PUCCH from the UE. In the remainder of this section, d(0)?1 shall be assumed for PUCCH format 1.

对于PUCCH格式1a和1b,分别发送一个或两个比特。比特块b(0),...,b(Mbit?1)调制映射成一个复值符号d(0),参见表5.4-1。

表5.4.1-1: 调制符号d(0) PUCCH 格式1a和1b

PUCCH 格式 1a b(0),...,b(Mbit?1) 0 1 00 01 10 11 d(0) 1 ?1 1 ?j j 1b ?1 )PUCCHd(0)乘以长度为Nseq?12的循环移位序列ru(,?v(n),得到

)PUCCHy(n)?d(0)?ru(,??1 v(n), n?0,1,...,Nseq)RSPUCCHPUCCH这里ru(,?。 循环移位?随着符号和时隙变化而变化。y(0),...,y(Nseq?1)通v(n)参见5.5.1节,Msc?Nseq过S(ns)加扰和正交序列wnoc(i)扩频,得到

3GPP

Release 8 13 3GPP TS 36.211 V8.5.0 (2008-12)

PUCCHPUCCHPUCCHzm'?NSF?Nseq?m?Nseq?n?S(ns)?wnoc(m)?y?n?

??这里

PUCCHm?0,...,NSF?1PUCCHn?0,...,Nseq?1

m'?0,1?1S(ns)??j??eifn'(nS)mod2?0

otherwise2PUCCHPUCCH其中常规PUCCH格式1/1a/1b中NSF?4,缩短 PUCCH格式1/1a/1b中第一个时隙NSF?4,第二个时

PUCCH隙NSF?3。正交序列wnoc(i) 由表5.4.1-2和5.4.1-3给出。n'(ns)在下面给出。

PUCCHPUCCH?1)(NSF表5.4.1-2: 正交序列w(0)?w(NSF?4)

PUCCH序列索引noc(ns) 正交序列w(0)?w(NSF?1) ????0 1 2 ??1??1??1?1?1?1? ?1?1?1? ?1?1?1? PUCCHPUCCH?1)(NSF表5.4.1-3: 正交序列w(0)?w(NSF?3)

PUCCH序列索引 noc(ns) 正交序列w(0)?w(NSF?1) ????0 1 2 ?111? 3?1?1ej2?ej4?ej4?ej2?3? ? 33(1)Resources used for transmission of PUCCH format 1, 1a and 1b are identified by a resource index nPUCCH from which

the orthogonal sequence index noc(ns) and the cyclic shift ?(ns,l) are determined according to

?n?(n)??PUCCHN??sshiftnoc(ns)??2?n?(ns)??PUCCHN??shift???for normal cyclic prefix??for extended cyclic prefix

RB?(ns,l)?2??ncs(ns,l)Nsc?ncell(n,l)??cssncs(ns,l)??cellncs(ns,l)???where

???n?(n)???n?(n)??ssPUCCHshiftPUCCHshiftRB?noc(ns)mod?PUCCHmodN?modNscshiftRB?noc(ns)2modN?modNsc??????for normal cyclic prefixfor extended cyclic prefix3GPP

Release 8 14

(1)(1)(1)PUCCH??Ncsif nPUCCH?c?Ncs?shift?N??RB?otherwise?Nsc

prefix?3normal cyclicc?? cyclic prefix?2extended3GPP TS 36.211 V8.5.0 (2008-12)

The resource indices within the two resource blocks in the two slots of a subframe to which the PUCCH is mapped are

given by

(1)??nPUCCHn?(ns)??(1)(1)PUCCHRBmodc?Nsc?PUCCH?shift?nPUCCH?c?Ncs?shift?????(1)(1)if nPUCCH?c?Ncs?PUCCHshift

otherwisefor nsmod2?0 and by

RB(1)(1)??c?n?(ns?1)?1??modcNsc?PUCCH?1?1nPUCCH?c?Ncs?PUCCHshiftshift n?(ns)??PUCCHotherwise??h/c???hmodc?N'/?shiftCCHfor nsmod2?1, where h??n'(ns?1)?d?modcN'/?PU, with d?2for normal CP and d?0for extended CP. shift???The parameter delta-PUCCH-shift ?PUCCH is provided by higher layers. shift5.4.2 PUCCH 格式2, 2a和2b

~~~b(i)??b(i)?c(i)?mod2

比特块b(0),...,b(19)通过UE专用加扰序列加扰,得到b(0),...,b(19):

这里加扰序列c(i)参见7.2节,初始化cinitcell???ns2??1??2NID?1?216?nRNTI。

??~~PUCCHb(0),...,b(19)通过QPSK调制得到复值调制符号d(0),...,d(9)。乘以长度为Nseq?12的循环移位序列

)ru(,?v(n),得到

PUCCH)z(Nseq?n?i)?d(n)?ru(,?v(i)n?0,1,...,9RBi?0,1,...,Nsc?1

)RSPUCCH这里ru(,?。 v(i)参见5.5.1节,Msc?Nseq(2)Resources used for transmission of PUCCH formats 2/2a/2b are identified by a resource index nPUCCH from which the

cyclic shift ?(ns,l) is determined according to

RB ?(ns,l)?2??ncs(ns,l)Nscwhere

cellRB ncs(ns,l)?ncs(ns,l)?n'(ns)modNSC??and

(2)RB?nPUCCHmodNscn'(ns)??(2)(1)RB?nPUCCH?Ncs?1modNsc??(2)RB(2)if nPUCCH?NscNRBotherwise

3GPP

Release 8 15 3GPP TS 36.211 V8.5.0 (2008-12)

for nsmod2?0 and by

RBRB(2)RB(2)?Nsc?n'(ns?1)?1?modNsc?1?1if nPUCCH?NscNRB n'(ns)??RB(2)RBotherwise?Nsc?2?nPUCCHmodNsc??????for nsmod2?1.

对于PUCCH格式2a 和2b(仅用于常规CP),比特b(20),...,b(Mbit?1)按照表5.4.2-1调制成复值符号d(10),用于生成 PUCCH格式2a 和2b的DM-RS。

表5.4.2-1: PUCCH 格式2a和2b 的调制符号d(10)

PUCCH格式 2a b(20),...,b(Mbit?1) 0 1 00 01 10 11 d(10) 1 ?1 1 ?j j 2b ?1

5.4.3 映射到物理资源

The block of complex-valued symbols z(i) shall be multiplied with the amplitude scaling factor ?PUCCH in order to conform to the transmit power PPUCCHspecified in Section 5.1.2.1 in [4], and mapped in sequence starting with z(0) to resource elements. PUCCH uses one resource block in each of the two slots in a subframe. Within the physical resource block used for transmission, the mapping of z(i) to resource elements ?k,l? not used for transmission of

reference signals shall be in increasing order of first k, then l and finally the slot number, starting with the first slot in the subframe.

The physical resource blocks to be used for transmission of PUCCH in slot ns is given by

nPRB??m??????2????NUL?1??m??2??RB???if ?m?nsmod2?mod2?0

if ?m?nsmod2?mod2?1where the variable m depends on the PUCCH format. For formats 1, 1a and 1b

(2)?NRB??(1)(1)?c?Ncs?PUCCHm???nPUCCHshift??RBPUCCHc?Nsc?shift????(1)(1)if nPUCCH?c?Ncs?PUCCHshift(1)???Ncs(2)??NRB???otherwise8????

prefix?3normal cyclicc?? cyclic prefix?2extendedand for formats 2, 2a and 2b

(2)RBm?nPUCCHNsc

??Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1.

In case of simultaneous transmission of sounding reference signal and PUCCH format 1a or 1b, one SC-FDMA symbol

on PUCCH shall punctured.

3GPP

Release 8

ULnPRB?NRB?116 3GPP TS 36.211 V8.5.0 (2008-12)

m?1m?3m?0m?2nPRB?0m?2m?0m?3m?1

One subframe图5.4.3-1: PUCCH到物理资源块映射

5.5 参考信号

支持两种上行参考信号

- 解调参考信号DM-RS,用于PUSCH或PUCCH传输 - 探测参考信号SRS,与PUSCH或PUCCH传输无关 DM-DS和SRS使用相同的基本序列集。

5.5.1 参考信号序列生成

)Reference signal sequence ru(,?v(n) is defined by a cyclic shift ? of a base sequence ru,v(n) according to

)j?nRS ru(,?ru,v(n),0?n?Mscv(n)?eRSRBmax,ULwhere Msc is the length of the reference signal sequence and1?m?NRB. Multiple reference signal ?mNscsequences are defined from a single base sequence through different values of ?.

Base sequences ru,v(n) are divided into groups, where u??0,1,...,29? is the group number and v is the base sequence

RSRBnumber within the group, such that each group contains one base sequence (v?0) of each length Msc, ?mNscRSRBmax,UL, 6?m?NRB. The sequence group ?mNsc1?m?5 and two base sequences (v?0,1) of each length Mscnumber u and the number v within the group may vary in time as described in Sections 5.5.1.3 and 5.5.1.4,

RSrespectively. The definition of the base sequence ru,v(0),...,ru,v(Msc?1) depends on the sequence lengthMsc.

RBBase sequences of length 3Nsc or larger

RS5.5.1.1

RSRBRS?3NscForMsc, the base sequence ru,v(0),...,ru,v(Msc?1) is given by

RSRS ru,v(n)?xq(nmodNZC),0?n?Mscwhere the qth root Zadoff-Chu sequence is defined by

xq?m??e?j?qm(m?1)RSNZCRS,0?m?NZC?1

with q given by

3GPP

Release 8 17 3GPP TS 36.211 V8.5.0 (2008-12)

q??q?12??v?(?1)?2q?RSq?NZC?(u?1)31

RSRSRSThe length NZC of the Zadoff-Chu sequence is given by the largest prime number such thatNZC. ?Msc5.5.1.2

RBBase sequences of length less than 3Nsc

RSRBRSRBFor Msc andMsc, base sequence is given by ?Nsc?2NscRSru,v(n)?ej?(n)?4,0?n?Msc?1

RSRBRSRBwhere the value of ?(n) is given by Table 5.5.1.2-1 and Table 5.5.1.2-2 for Msc and Msc, ?Nsc?2Nscrespectively.

RSRBTable 5.5.1.2-1: Definition of ?(n) for Msc. ?Nscu 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 1 1 -1 -1 1 -1 -3 1 1 -1 3 1 3 -3 3 1 -3 -3 -1 -1 -1 1 1 1 1 1 -3 -1 3 1 1 1 1 3 -3 3 -1 -3 -3 3 1 -3 3 1 -1 3 1 3 3 -3 3 1 1 1 -3 3 -1 3 -3 3 3 -3 1 1 3 -3 -1 3 -1 -1 -1 1 -3 -1 1 1 1 1 1 1 -1 -3 -1 3 3 -3 -3 -3 -3 -3 3 -3 1 -1 -1 -3 -1 1 3 1 -1 1 3 -3 -3 -1 3 1 3 1 1 -3 -3 1 3 -3 -1 3 -1 ?(0),...,?(11) 3 3 -3 1 1 -1 -3 1 -1 3 1 3 -3 -3 -1 -1 1 -3 -3 1 1 -3 -3 -1 3 1 3 -3 -1 -1 3 -1 -1 -1 -1 1 3 -3 -1 -1 -3 3 1 1 3 -1 3 3 1 -1 1 -3 -3 -3 3 3 -3 3 3 -3 1 1 -3 -3 -3 1 1 3 -1 -3 -3 -3 1 1 1 1 3 -3 -3 -1 3 -3 -1 1 -1 3 1 1 3 -1 1 -3 -3 -3 -1 -1 -1 -1 1 1 -1 1 1 3 3 1 3 -3 -3 3 1 -3 3 -1 1 1 -1 -1 -3 3 3 -3 1 1 1 -1 3 1 1 1 -3 3 -3 -1 3 3 -1 3 -1 -3 -1 -3 -3 1 -1 -3 -1 1 3 -3 1 1 -3 -3 -1 3 3 -3 3 1 -3 1 -3 -3 3 1 -1 1 -1 -1 1 1 1 3 -3 -1 3 3 3 3 -3 -3 1 3 1 -3 -3 3 -1 1 3 3 -3 3 -1 -1 3 3 1 -3 -3 -1 -3 -1 -3 -1 -1 -3 -1 1 3 3 -1 -1 3 1 1 1 1 1 -1 3 1 3 1 -3 -1 -1 -3 -1 -1 -3 3 1 1 3 -3 -3 -1 -1

3GPP

Release 8 18 3GPP TS 36.211 V8.5.0 (2008-12)

RSRBTable 5.5.1.2-2: Definition of ?(n) for Msc. ?2Nscu 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 -3 3 -1 -1 -3 1 -3 -3 1 -1 1 1 3 -3 -1 -1 1 1 1 -1 -3 -3 -1 1 1 -3 -1 -1 1 3 3 -1 -3 -1 1 1 3 1 1 1 3 3 -1 -3 -1 -3 3 1 3 -3 -3 -1 -1 -1 -1 -1 -3 -3 1 1 -3 3 1 -1 1 -1 3 3 -3 -3 3 3 -1 3 1 3 -1 1 3 3 1 -3 -1 3 1 1 3 -1 -1 -3 -3 3 1 -3 3 -1 -1 -3 3 -3 -3 1 -1 1 -3 -1 3 1 1 -3 1 3 -1 3 -1 3 3 -1 -1 3 -3 1 3 -3 -1 3 -1 1 3 3 -3 1 -1 3 1 -1 3 1 -1 -3 -1 1 3 -1 3 1 1 1 -3 -1 1 1 -3 -1 1 -3 -3 -1 -1 -1 1 1 -3 1 3 -1 -1 -1 -3 -3 1 -1 3 -3 -1 1 1 -3 -1 1 -3 -3 1 1 3 -3 -1 -3 -3 3 3 -1 -1 -3 -3 -1 -3 3 3 -1 -1 -3 3 3 3 -3 3 -1 3 3 -3 3 1 1 1 3 3 3 -1 -1 1 -1 3 3 1 1 1 -1 -1 -1 1 -1 1 -3 1 -1 -1 -1 -1 -3 3 3 -3 3 -3 -3 1 -3 3 -1 -1 1 3 1 -1 1 -1 -3 3 -3 -1 -3 3 -1 1 -1 -3 1 3 3 -1 3 -1 3 1 1 3 3 -3 -3 -3 -3 1 3 -3 -3 -3 1 3 -1 3 -3 3 -1 -1 -3 -1 -1 -1 ?(0),...,?(23) 1 1 3 -1 -1 -3 -1 1 -1 3 -3 -3 3 -1 1 -1 3 3 1 3 -3 1 3 -3 3 -1 3 -1 -3 1 3 1 1 1 3 1 -1 3 -1 3 -3 -3 -1 1 1 3 1 3 3 -3 3 -3 -3 1 -1 -3 -3 -1 1 3 -3 1 -1 3 -1 1 1 1 -1 3 -1 3 1 3 3 1 3 3 -3 1 1 -1 3 3 3 1 3 3 1 1 3 3 3 1 1 -1 -1 1 -1 -1 -3 3 1 3 3 3 3 -1 1 -1 3 1 -3 -1 -1 1 1 1 -3 -1 1 1 -1 3 -1 -1 1 -1 1 1 -3 -3 -3 3 -1 1 1 1 -3 1 -3 -1 -1 3 -1 -3 -3 -3 1 3 1 -1 1 1 -3 3 1 3 -3 1 1 3 3 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 3 -3 -3 1 -1 3 1 -1 1 -1 -1 1 -3 -3 -1 3 3 1 -3 -3 1 3 1 -3 3 -1 3 3 1 3 -3 -1 -3 3 1 -3 -1 3 -1 -3 -3 -1 -3 1 1 -1 -1 1 1 -3 -3 -1 1 -1 -1 -1 1 3 1 -3 1 3 3 -3 3 -3 -3 1 -3 3 -1 1 1 -1 3 -3 -3 -3 -3 -1 1 -3 -3 1 1 3 -3 -3 1 1 -1 -3 1 -3 -3 1 -1 1 -3 -3 1 3 -3 1 3 3 3 1 -1 -1 -3 -1 -3 3 -1 3 1 3 -1 1 1 -1 1 1 3 3 -1 -3 1 -3 -1 -3 -3 1 -1 -1 -3 3 3 -3 1 3 3 -1 3 -3 3 1 -1 -3 -3 -3 -1 -1 -3 1 1 -1 -3 -3 3 -1 -3 -3 1 1 -1 -1 1 -3 1 -1 1 3 -3 -1 3 -1 -3 -3 1 -1 3 -1 -1 1 3 -3 -1 1 -1 -1 1 1 -1 -3 -3 -3 1 -3 -3 -1 1 -3 1 1 -1 3 -1 -1 1 -3 -1 1 -3 -3 3 -1 -1 1 -3 1 -3 1 3 1 -1 3 3 -1 -1 -1 -3 -3 -1 -3 -3 3 3 -1 1 -1 -1 3

5.5.1.3

fss according to

Group hopping

The sequence-group number u in slot ns is defined by a group hopping pattern fgh(ns) and a sequence-shift pattern

u?fgh(ns)?fssmod30

There are 17 different hopping patterns and 30 different sequence-shift patterns. Sequence-group hopping can be

enabled or disabled by means of the parameter Group-hopping-enabled provided by higher layers. PUCCH and PUSCH have the same hopping pattern but may have different sequence-shift patterns. The group-hopping pattern fgh(ns) is the same for PUSCH and PUCCH and given by

0??fgh(ns)???????if group hopping is disabled7 c(8ns?i)?2i?mod30if group hopping is enabled?i?0????where the pseudo-random sequence c(i) is defined by section 7.2. The pseudo-random sequence generator shall be initialized with cinitcell??NID??? at the beginning of each radio frame.

30????The sequence-shift pattern fss definition differs between PUCCH and PUSCH.

PUCCHPUCCHcell?NIDmod30. For PUCCH, the sequence-shift pattern fss is given by fss3GPP

Release 8 19 3GPP TS 36.211 V8.5.0 (2008-12)

PUSCHPUSCHPUCCHFor PUSCH, the sequence-shift pattern fss is given by fss?fss??ssmod30, where ?ss??0,1,...,29? is configured by higher layers.

??5.5.1.4 Sequence hopping

RSRBSequence hopping only applies for reference-signals of length Msc. ?6NscRSRBFor reference-signals of length Msc, the base sequence number v within the base sequence group is given by ?6Nscv?0.

RSRBFor reference-signals of length Msc, the base sequence number v within the base sequence group in slot ns ?6Nscis defined by

is disabled and sequence hopping is enabled?c(n)if group hopping v??sotherwise?0where the pseudo-random sequence c(i) is given by section 7.2. The parameter Sequence-hopping-enabled provided by

higher layers determines if sequence hopping is enabled or not. The pseudo-random sequence generator shall be

cell??NID5PUSCHinitialized with cinit?? at the beginning of each radio frame. ??2?fss30????5.5.2

5.5.2.1

5.5.2.1.1

解调参考信号

PUSCH解调参考信号

参考信号序列

The demodulation reference signal sequence rPUSCH??? for PUSCH is defined by

RS)rPUSCHm?Msc?n?ru(,?v?n?

??where

m?0,1RSn?0,...,Msc?1

and

RSPUSCH Msc?Msc)(?)RSSection 5.5.1 defines the sequenceru(,?v(0),...,ru,v(Msc?1).

The cyclic shift ? in a slot nsis given as ? = 2?ncs/12 with

(1)(2)ncs?nDMRS?nDMRS?nPRS(ns)mod12

??where the values of

(2)nDlayers, MRS is given by the cyclic shift for DMRS field in most recent DCI format 0 [3] for the transport block

is given by Table 5.5.2.1.1-2 according to the parameter cyclicShift provided by higher (1)nDMRS(2)nDassociated with the corresponding PUSCH transmission where the values of MRS is given in Table 5.5.2.1.1-1. For a

semi-persistently configured PUSCH transmission on subframe n in the absence of a corresponding PDCCH with a

3GPP

Release 8 20 3GPP TS 36.211 V8.5.0 (2008-12)

DCI Format 0 in subframe n?kPUSCH or a PUSCH transmission associated with a random access response grant,

(2)nDMRS is set to zero where kPUSCH is as defined in section 8 [4]. nPRS(ns) is given by

nPRS(ns)??7i?0ULc(8Nsymb?ns?i)?2i

where the pseudo-random sequence c(i) is defined by section 7.2. The application of c(i) is cell-specific. The pseudo-

cinitrandom sequence generator shall be initialized with

cell??NID5PUSCH????2?fss?30??? at the beginning of each radio frame.

(2)nDTable 5.5.2.1.1-1: Mapping of Cyclic Shift Field in DCI format 0 to MRSValues.

Cyclic Shift Field in DCI format 0 [3] (2)nDMRS 000 001 010 011 100 101 110 111

0 6 3 4 2 8 10 9 Table 5.5.2.1.1-2: Mapping of cyclicShift to

Values. (1)nDMRScyclicShift (1)nDMRS0 1 2 3 4 5 6 7

0 2 3 4 6 8 9 10 5.5.2.1.2 映射到物理资源

The sequence rPUSCH??? shall be multiplied with the amplitude scaling factor ?PUSCH and mapped in sequence starting with rPUSCH(0) to the same set of physical resource blocks used for the corresponding PUSCH transmission defined in

3GPP

Release 8 21 3GPP TS 36.211 V8.5.0 (2008-12)

Section 5.3.4. The mapping to resource elements (k,l), with l?3 for normal cyclic prefix and l?2 for extended cyclic prefix, in the subframe shall be in increasing order of firstk, then the slot number.

5.5.2.2

5.5.2.2.1

PUCCH解调参考信号

参考信号序列

PUCCH的DM-RS rPUCCH???定义为:

PUCCHRSRS)rPUCCHm'NRSMsc?mMsc?n?w(m)z(m)ru(,?v?n?

??这里

PUCCHm?0,...,NRS?1RSn?0,...,Msc?1

m'?0,1对于PUCCH格式2a 和2b,z(m)等于d(10),m?1,其它情况z(m)?1。

RS)The sequence ru(,?v(n)is given by Section 5.5.1 with Msc?12 where the expression for the cyclic shift ? is determined by the PUCCH format.

For PUCCH formats 1, 1a and 1b, ?(ns,l) is given by noc(ns)?n?(ns)??PUCCHN?shiftRB?(ns,l)?2??ncs(ns,l)Nsc??

?ncell(n,l)?n?(n)??PUCCH?n(n)mod?PUCCHmodN?modNRB?csssshiftocsshiftscncs(ns,l)??RBncell(n,l)?n?(ns)??PUCCH?noc(ns)modN?modNsc?shift?css??????????for normal cyclic prefixfor extended cyclic prefixcellwhere n?(ns), N?, ?PUCCH and ncs(ns,l) are defined by Section 5.4.1. The number of reference symbols per slot shiftPUCCH and the sequence w(n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. NRSFor PUCCH formats 2, 2a and 2b, ?(ns,l) is defined by Section 5.4.2. The number of reference symbols per slot

PUCCH and the sequence w(n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-3, respectively. NRSPUCCHTable 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slotNRS.

PUCCH format Normal cyclic prefix Extended cyclic prefix 1, 1a, 1b 3 2 2 2 1 2a, 2b 2 N/A

PUCCHTable 5.5.2.2.1-2: Orthogonal sequences w(0)?w(NRS?1) for PUCCH formats 1, 1a and 1b.

??Sequence index noc(ns) Normal cyclic prefix Extended cyclic prefix 0 1 2 ?111? 33?11?33 ?1?1ej2?ej4?ej4?ej2?? ? ?1?1? N/A

3GPP

Release 8 22 3GPP TS 36.211 V8.5.0 (2008-12)

PUCCHTable 5.5.2.2.1-3: Orthogonal sequences w(0)?w(NRS?1) for PUCCH formats 2, 2a, 2b.

??Normal cyclic prefix Extended cyclic prefix ?11?

?1? 5.5.2.2.2 映射到物理资源

The sequence rPUCCH??? shall be multiplied with the amplitude scaling factor ?PUCCH and mapped in sequence starting with rPUCCH(0) to resource elements(k,l). The mapping shall be in increasing order of firstk, then l and finally the slot number. The same set of values for k as for the corresponding PUCCH transmission shall be used. The values of the symbol index l in a slot are given by Table 5.5.2.2.2-1.

Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats

PUCCH format 1, 1a, 1b 2 2a, 2b Set of values for l Normal cyclic prefix Extended cyclic prefix 2, 3, 4 2, 3 1, 5 3 1, 5 N/A

5.5.3

5.5.3.1

探测参考符号SRS

序列生成

)The sounding reference signal sequence rSRS?n??ru(,?v?n? is defined by Section 5.5.1, where u is the PUCCH

sequence-group number defined in Section 5.5.1.3 and ? is the base sequence number defined in Section 5.5.1.4. The cyclic shift ? of the sounding reference signal is given as

csnSRS, ??2?8cscswhere nSRS is configured for each UE by higher layers and nSRS?0,1,2,3,4,5,6,7.

5.5.3.2 映射到物理资源

The sequence shall be multiplied with the amplitude scaling factor ?SRS in order to conform to the transmit power

PSRS specified in Section 5.1.3.1 in [4], and mapped in sequence starting with rSRS(0) to resource elements (k,l)

according to

RS??SRSrSRS(k)k?0,1,...,Msc,b?1 ??0otherwise?a2k?k0,lwhere k0 is the frequency-domain starting position of the sounding reference signal and Msc,b is the length of the sounding reference signal sequence defined as

RSRBMsc,2b?mSRS,bNscRS

ULwhere mSRS,bis given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth NRB. The cell-specific parameter srsBandwidthConfiguration CSRS?{0,1,2,3,4,5,6,7} and the UE-specific parameter srsBandwidth

BSRS?{0,1,2,3}are given by higher layers. For UpPTS, in case of the UE-specific “SRS-Bandwidth” with b?0, mSRS,b

3GPP

Release 8 23 3GPP TS 36.211 V8.5.0 (2008-12)

maxcULshall be reconfigured to mSRS where c is a SRS BW configuration and C is the ,0?maxc?CmSRS,0?NRB?6NRA????set of SRS BW configurations from the Tables 5.5.3.2-1 to 5.5.3.2-4 for each uplink bandwidth NRB, NRA is the number of format 4 PRACH in the addressed UpPTS and derived from Table 5.7.1-4. The reconfiguration of mSRS,0 is enabled/disabled by cell specific parameter srsMaxUpPts given by higher layers. The frequency-domain starting position k0 is defined by

RS???2Msc,k0?k0bnb

b?0BSRSULmax?where for normal uplink subframes k0'0ULRB' is defined by: ??NRB/2??mSRS,02NSC?kTC, for UpPTS k0??ULmaxRB?(NRB?mSRS,0)Nsc?kTCk???kTCif (nfmod2)?(2?NSP)?t1RAmod2?0otherwise??

kTC?{0,1} is the parameter transmissionComb provided by higher layers for the UE, and nb is frequency position

index.

The frequency hopping of the sounding reference signal is configured by the parameter SRSHoppingBandwidth,

bhop?{0,1,2,3}, provided by higher layers. If frequency hopping of the sounding reference signal is not enabled (i.e.,

bhop?BSRS), the frequency position index nb remains constant (unless re-configured) and is defined by

nb??4nRRCmSRS,b?modNb where the parameter frequencyDomainPosition nRRC is given by higher layers for the

UE. If frequency hopping of the sounding reference signal is enabled (i.e., bhopindexes nb are defined by

?BSRS), the frequency position

??4nRRCmSRS,b?modNbnb????Fb(nSRS)??4nRRCmSRS,b??modNbb?bhopotherwise

where Nb is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth NRB,

UL??nSRSmod?b??nSRSmod?b?b'?bhopNb'b'?bhopNb'?????if Nb even ?(Nb/2)?b?1b?1 Fb(nSRS)???N2?N????b'?bhopb'b'?bhopb'?????b?1if Nb odd?Nb/2?nSRS/?b'?bhopNb'????where NbnSRShop?1 regardless of the Nb value on Table 5.5.3.2-1 through Table 5.5.3.2-4, and

??n??Toffset??2NSPnf?2?NSP?1??s???y of frame structure 2?, for 2ms SRS periodicit? T???10??offset_max???????(nf?10??ns/2?)/TSRS?, otherwisecounts the number of UE-specific SRS transmissions, where TSRS is UE-specific periodicity of SRS transmission defined in section 8.2 of [4], Toffset is SRS subframe offset defined in Table 8.2-2 of [4] and Toffset_max is the maximum value of Toffsetfor a certain configuration of SRS subframe offset.

For all subframes other than special subframes, the sounding reference signal shall be transmitted in the last symbol of the subframe.

3GPP

Release 8 24 3GPP TS 36.211 V8.5.0 (2008-12)

ULNRB?40.

Table 5.5.3.2-1: mSRS,b and Nb, b?0,1,2,3, values for the uplink bandwidth of 6?SRS bandwidth configuration CSRS 0 1 2 3 4 5 6 7 SRS-Bandwidth BSRS?0 SRS-Bandwidth BSRS?1 SRS-Bandwidth BSRS?2 SRS-Bandwidth BSRS?3 mSRS,b 36 32 24 20 16 12 8 4 Nb 1 1 1 1 1 1 1 1 mSRS,b 12 16 4 4 4 4 4 4 Nb 3 2 6 5 4 3 2 1 mSRS,b 4 8 4 4 4 4 4 4 Nb 3 2 1 1 1 1 1 1 mSRS,b 4 4 4 4 4 4 4 4 Nb 1 2 1 1 1 1 1 1 Table 5.5.3.2-2: mSRS,b and Nb, b?0,1,2,3, values for the uplink bandwidth of 40?SRS bandwidth configuration CSRS 0 1 2 3 4 5 6 7 SRS-Bandwidth BSRS?0 SRS-Bandwidth BSRS?1 SRS-Bandwidth BSRS?2 ULNRB?60.

SRS-Bandwidth BSRS?3 mSRS,0 48 48 40 36 32 24 20 16 N0 1 1 1 1 1 1 1 1 mSRS,1 24 16 20 12 16 4 4 4

N1 2 3 2 3 2 6 5 4 mSRS,2 12 8 4 4 8 4 4 4 N2 2 2 5 3 2 1 1 1 mSRS,3 4 4 4 4 4 4 4 4 N3 3 2 1 1 2 1 1 1 Table 5.5.3.2-3: mSRS,b and Nb, b?0,1,2,3, values for the uplink bandwidth of 60?SRS bandwidth configuration CSRS 0 1 2 3 4 5 6 7 SRS-Bandwidth BSRS?0 SRS-Bandwidth BSRS?1 SRS-Bandwidth BSRS?2 ULNRB?80.

SRS-Bandwidth BSRS?3 mSRS,0 72 64 60 48 48 40 36 32 N0 1 1 1 1 1 1 1 1 mSRS,1 24 32 20 24 16 20 12 16

N1 3 2 3 2 3 2 3 2 mSRS,2 12 16 4 12 8 4 4 8 N2 2 2 5 2 2 5 3 2 mSRS,3 4 4 4 4 4 4 4 4 N3 3 4 1 3 2 1 1 2 Table 5.5.3.2-4: mSRS,b and Nb, b?0,1,2,3, values for the uplink bandwidth of 80?SRS bandwidth configuration CSRS 0 1 2 SRS-Bandwidth BSRS?0 SRS-Bandwidth BSRS?1 SRS-Bandwidth BSRS?2 ULNRB?110.

SRS-Bandwidth BSRS?3 mSRS,0 96 96 80 N0 1 1 1 mSRS,1 48 32 40 N1 2 3 2 mSRS,2 24 16 20 N2 2 2 2 mSRS,3 4 4 4 N3 6 4 5 3GPP

Release 8 25 3GPP TS 36.211 V8.5.0 (2008-12)

3 4 5 6 7

72 64 60 48 48 1 1 1 1 1 24 32 20 24 16 3 2 3 2 3 12 16 4 12 8 2 2 5 2 2 4 4 4 4 4 3 4 1 3 2 5.5.3.3 Sounding reference signal subframe configuration

The cell specific subframe configuration period TSFC and the cell specific subframe offset ?SFC for the transmission of sounding reference signals are listed in Tables 5.5.3.3-1 and 5.5.3.3-2, for FDD and TDD, respectively. Sounding reference signal subframes are the subframes satisfying?ns/2?modTSFC??SFC. For TDD, sounding reference signal is transmitted only in configured UL subframes or UpPTS.

Table 5.5.3.3-1: FDD sounding reference signal subframe configuration srsSubframeConfiguration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 5.5.3.3-2: TDD sounding reference signal subframe configuration

Configuration Period TSFC (subframes) 0 1 0000 0001 5 5 Transmission offset ?SFC (subframes) {1} {1, 2} Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Configuration Period TSFC (subframes) 1 2 2 5 5 5 5 5 5 10 10 10 10 10 10 Inf Transmission offset ?SFC (subframes) {0} {0} {1} {0} {1} {2} {3} {0,1} {2,3} {0} {1} {2} {3} {0,1,2,3,4,6,8} {0,1,2,3,4,5,6,8} N/A srsSubframeConfiguration Binary 3GPP

Release 8 26 3GPP TS 36.211 V8.5.0 (2008-12)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 5 5 5 5 5 5 10 10 10 10 10 10 Inf reserved {1, 3} {1, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {1, 2, 3, 4} {1, 2, 6} {1, 3, 6} {1, 6, 7} {1, 2, 6, 8} {1, 3, 6, 9} {1, 4, 6, 7} N/A reserved 5.6 SC-FDMA baseband signal generation

Table 5.6-1: SC-FDMA parameters.

Configuration Normal cyclic prefix Extended cyclic prefix Cyclic prefix length NCP,l 添加CP,表5.6-1给出了CP长度NCP,l

160 for l?0 Ts最小基本时间长度 144 for l?1,2,...,6 Ts 512 for l?0,1,...,5 Ts

5.7

5.7.1

物理随机接入信道PRACH

时频结构

The physical layer random access preamble, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of lengthTCP and a sequence part of lengthTSEQ. The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the random access configuration. 高层控制导频结构

CPTCPSequenceTSEQ

图5.7.1-1: 随机接入导频格式

3GPP

Release 8 27 3GPP TS 36.211 V8.5.0 (2008-12)

表5.7.1-1: 随机接入导频参数

Preamble format 0 1 2 3 4 (仅用于帧类型2) TCP 3168?Ts TSEQ 24576?Ts 24576?Ts 2?24576?Ts 2?24576?Ts 4096?Ts 21024?Ts 6240?Ts 21024?Ts 448?Ts

The transmission of a random access preamble, if triggered by the MAC layer, is restricted to certain time and

frequency resources. These resources are enumerated in increasing order of the subframe number within the radio frame and the physical resource blocks in the frequency domain such that index 0 correspond to the lowest numbered physical resource block and subframe within the radio frame. PRACH resources within the radio frame are indicated by a PRACH Resource Index, where the indexing is in the order of appearance in Table 5.7.1-2 and Table 5.7.1-4. For frame structure type 1 with preamble format 0-3, there is at most one random access resource per subframe. Table 5.7.1-2 lists the preamble formats according to Table 5.7.1-1 and the subframes in which random access preamble transmission is allowed for a given configuration in frame structure type 1. PRACH-Configuration-Index is given by higher layers. The start of the random access preamble shall be aligned with the start of the corresponding uplink

subframe at the UE assuming NTA?0, where NTA is defined in section 8.1. For PRACH configuration 0, 1, 2, 15, 16, 17, 18, 31, 32, 33, 34, 47, 48, 49, 50 and 63 the UE may for handover purposes assume an absolute value of the relative

?Ts. The first physical time difference between radio frame i in the current cell and the target cell of less than 153600resource block nPRB allocated to the PRACH opportunity considered for preamble format 0, 1, 2 and 3 is defined as

RARARA, where the parameter prach-FrequencyOffset nPRB?nPRBn offsetPRBoffset is expressed as a physical resource block

RAnumber configured by higher layers and fulfilling 0?nPRBoffsetRAUL?NRB?6.

3GPP

Release 8 28 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.1-2: Frame structure type 1 random access configuration for preamble format 0-3.

PRACH Configuration Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Preamble Format 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N/A 1 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any Any Any Even Even Even Even Any Any Any Any Any Any Any Any Any Any Any N/A Even Subframe number 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 9 PRACH Preamble Configuration Format Index 32 2 33 2 34 2 35 2 36 2 37 2 38 2 39 2 40 2 41 2 42 2 43 2 44 2 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 N/A 2 3 3 3 3 3 3 3 3 3 3 3 3 N/A N/A N/A 3 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any Any N/A Even Even Even Even Any Any Any Any Any Any Any Any Any N/A N/A N/A Even Subframe number 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 N/A N/A N/A 9

For frame structure type 2 with preamble format 0-4, there might be multiple random access resources in an UL

subframe (or UpPTS for preamble format 4) depending on the UL/DL configuration [see table 4.2-2]. Table 5.7.1-3 lists PRACH configurations allowed for frame structure type 2 where the configuration index corresponds to a certain combination of preamble format, PRACH density value, DRA, and version index, rRA.

3GPP

Release 8 29 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.1-3: Frame structure type 2 random access configurations for preamble format 0-4

PRACH Preamble Density Version PRACH Preamble Density Version conf. Format Per 10 ms Format Per 10 ms rRA conf. rRA Index Index DRA DRA ????0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0 1 2 0 1 0 0 0 0 0 0 1 ????2 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 1 2 0 1 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 0.5 0.5 0.5 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 0.5 0.5 0.5 1 1 2 3 4 5 6 0.5 0.5 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 N/A N/A N/A N/A N/A N/A 0.5 1 1 2 3 4 5 6 0.5 0.5 0.5 1 1 2 3 4 0.5 0.5 0.5 1 1 2 3 4 5 6 N/A N/A N/A N/A N/A N/A

Table 5.7.1-4 lists the mapping to physical resources for the different random access opportunities needed for a certain PRACH density value, DRA. Each quadruple of the format (fRA,tRA,tRA,tRA) indicates the location of a specific random access resource, where

012fRA is a frequency resource index within the considered time instance,

0tRA?0,1,2indicates whether the resource is reoccurring in all radio frames, in even radio frames, or in odd radio

1frames, respectively, tRA?0,1 indicates whether the random access resource is located in first half frame or in second

2half frame, respectively, and where tRA is the uplink subframe number where the preamble starts, counting from 0 at

the first uplink subframe between 2 consecutive downlink-to-uplink switch points, with the exception of preamble format 4 which is always transmitted in UpPTS and tRA is denoted as (*). The start of the random access preamble formats 0-3 shall be aligned with the start of the corresponding uplink subframe at the UE assuming NTA?0 and the random access preamble format 4 shall start [5158?Ts] before the end of the UpPTS at the UE.

The random access opportunities for each PRACH configuration shall be allocated in time first and then in frequency if and only if time multiplexing is not sufficient to hold all opportunities of a PRACH configuration needed for a certain density value DRA without overlap in time. For preamble format 0-3, the frequency multiplexing shall be done according to

23GPP

Release 8 30 3GPP TS 36.211 V8.5.0 (2008-12)

RAnPRB?RA?fRA?n?6if fRAmod2?0??2?,?PRB offset?? ??f??ULRARA?NRB?6?nPRB offset?6??,otherwise2????RAwhere NRB is the number of uplink resource blocks, nPRBis the first physical resource block allocated to the PRACH opportunity considered and where the parameter prach-FrequencyOffset nPRB offset is the first physical resource block available for PRACH expressed as a physical resource block number configured by higher layers and fulfilling

RAUL0?nPRBoffset?NRB?6.

RAULFor preamble format 4, the frequency multiplexing shall be done according to

nRAPRB?6fRA,if (nfmod2)?(2?NSP)?t1RAmod2?0 ??UL?NRB?6(fRA?1),otherwise??wherenfis the system frame number and whereNSPis the number of DL to UL switch points within the radio frame. Each random access preamble occupies a bandwidth corresponding to 6 consecutive resource blocks for both frame structures.

3GPP

Release 8 31 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.1-4: Frame structure type 2 random access preamble mapping in time and frequency.

PRACH conf. Index (See Table 5.7.1-3) 0 1 2 3 4 5 6 7 8 9 10 11 12 0 (0,1,0,2) (0,2,0,2) (0,1,1,2) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,0) (0,0,1,0) (0,0,1,1) N/A (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) N/A UL/DL configuration (See Table 4.2-2) 1 2 3 4 5 (0,1,0,1) (0,2,0,1) (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) N/A (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) N/A (0,0,0,0) (0,0,1,0) N/A N/A (0,1,0,2) (0,2,0,2) (0,1,0,1) (0,0,0,2) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,0,0) (0,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) N/A (0,1,0,1) (0,2,0,1) (0,1,0,0) (0,0,0,1) (0,0,0,0) N/A (0,0,0,0) (0,0,0,1) N/A N/A (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A N/A (0,0,0,0) (1,0,0,0) N/A N/A 6 (0,1,0,2) (0,2,0,2) (0,1,1,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) N/A 13 14 15 16 17 18 19 20 / 30 21 / 31 (0,1,0,1) (0,2,0,1) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,1,0) (0,0,1,0) (0,0,1,1) (1,0,1,0) (0,0,0,0) N/A N/A (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0) (0,0,0,2) (0,0,1,1) (1,0,1,0) (1,0,0,2) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,1) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0) (0,0,0,2) (0,0,1,1) (1,0,1,0) (1,0,0,1) (1,0,0,1) (2,0,0,0) (1,0,0,2) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0) (0,0,0,2) (0,0,1,1) (1,0,1,0) (1,0,0,0) (1,0,1,1) (2,0,1,0) (1,0,0,2) (0,0,0,0) N/A (0,0,0,0) (0,0,0,1) (0,0,0,1) (0,0,1,0) (0,0,0,2) (0,0,1,1) (1,0,0,0) (1,0,0,0) (1,0,0,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0) (0,0,0,2) (0,0,1,1) (1,0,1,0) (1,0,0,0) (1,0,0,1) (2,0,0,0) (1,0,0,1) (1,0,1,1) (2,0,1,0) (1,0,0,2) (0,0,0,0) N/A N/A (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (1,0,1,0) (0,1,0,0) N/A (0,1,0,1) (0,2,0,0) N/A (0,2,0,1) (0,0,0,0) (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) (0,0,0,0) N/A (0,0,0,1) (1,0,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,1) (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) (2,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A (0,1,0,0) (0,2,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,1,0,1) (0,2,0,1) 3GPP

Release 8

22 / 32 23 / 33 24 / 34 25 / 35 26 / 36 27 / 37 (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (2,0,1,1) (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A 32 N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,0,0,1) N/A (0,0,0,1) (1,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (5,0,0,1) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A 3GPP TS 36.211 V8.5.0 (2008-12) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (2,0,1,0) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A 28 / 38 29 /39 40 41 42 43 44 45 46 47 N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 3GPP

Release 8

63 N/A N/A 33 N/A N/A N/A 3GPP TS 36.211 V8.5.0 (2008-12)

N/A N/A

* UpPTS

5.7.2 导频序列生成

The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use. There are 64 preambles available in each cell. The set of 64 preamble sequences in a cell is found by including first, in the order of increasing cyclic shift, all the available cyclic shifts of a root Zadoff-Chu sequence with the logical index RACH_ROOT_SEQUENCE, where RACH_ROOT_SEQUENCE is broadcasted as part of the System Information. Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order is cyclic: the logical index 0 is consecutive to 837. The relation between a logical root sequence index and physical root sequence index u is given by Tables 5.7.2-4 and 5.7.2-5 for preamble formats 0 – 3 and 4, respectively.

The uth root Zadoff-Chu sequence is defined by

xu?n??e?j?un(n?1)NZC,0?n?NZC?1

where the length NZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the uth root Zadoff-Chu sequence, random access preambles with zero correlation zones of length NCS?1are defined by cyclic shifts according to

xu,v(n)?xu((n?Cv)modNZC)

where the cyclic shift is given by

?vNCS??Cv??0?RARA??dvn?(vmodn)NCSstartshiftshift????v?0,1,...,??NZCNCS???1,NCS?0for unrestricted setsNCS?0for unrestricted sets

RARARAfor restricted setsv?0,1,...,nshiftngroup?nshift?1and NCS is given by Tables 5.7.2-2 and 5.7.2-3 for preamble formats 0-3 and 4, respectively. The parameter High-speed-flag provided by higher layers determines if unrestricted set or restricted set shall be used. The variable du is the cyclic shift corresponding to a Doppler shift of magnitude 1TSEQ and is given by

?1?0?u?1modNZC?NZC2?umodNZC du???1?N?umodNotherwiseZC?ZCThe parameters for restricted sets of cyclic shifts depend on du. ForNCS?du?NZC3, the parameters are given by

RAnshift??duNCS?RAdstart?2du?nshiftNCSRAngroup??NZCdstart?

RARAnshift?max(NZC?2du?ngroupdstart)NCS,0????ForNZC3?du?(NZC?NCS)2, the parameters are given by

3GPP

Release 8 34

RAnshift??(NZC?2du)NCS?RAdstart?NZC?2du?nshiftNCSRAngroup??dudstart?3GPP TS 36.211 V8.5.0 (2008-12)

RARARAnshift?minmax(du?ngroupdstart)NCS,0,nshift??????For all other values ofdu, there are no cyclic shifts in the restricted set.

Table 5.7.2-1: Random access preamble sequence length.

Preamble format 0 – 3 4 NZC 839 139

Table 5.7.2-2: NCS for preamble generation (preamble formats 0-3).

NCS configuration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NCS value Unrestricted set Restricted set 0 15 13 18 15 22 18 26 22 32 26 38 32 46 38 55 46 68 59 82 76 100 93 128 119 158 167 202 279 237 419 -

3GPP

Release 8 35 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.2-3: NCS for preamble generation (preamble format 4).

NCS configuration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NCS value 2 4 6 8 10 12 15 N/A N/A N/A N/A N/A N/A N/A N/A N/A

3GPP

Release 8 36 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3.

Logical root sequence number 0–23 24–29 30–35 36–41 42–51 52–63 64–75 76–89 90–115 116–135 136–167 168–203 204–263 264–327 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779 2, 837, 1, 838 56, 783, 112, 727, 148, 691 80, 759, 42, 797, 40, 799 35, 804, 73, 766, 146, 693 31, 808, 28, 811, 30, 809, 27, 812, 29, 810 24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703 86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818 95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688 217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825 12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616 228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830 7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621 152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833 5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689 225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835 3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613 230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515 323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580 237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517 330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605 257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518 346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598 231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523 293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576 242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510 317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578 236, 603, 303, 536, 356, 483 355, 484, 405, 434, 404, 435, 406, 433 235, 604, 267, 572, 302, 537 309, 530, 265, 574, 233, 606 367, 472, 296, 543 336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610 328–383 384–455 456–513 514–561 562–629 630–659 660–707 708–729 730–751 752–765 766–777 778–789 790–795 796–803 804–809 810–815 816–819 820–837

3GPP

Release 8 37 3GPP TS 36.211 V8.5.0 (2008-12)

Table 5.7.2-5: Root Zadoff-Chu sequence order for preamble format 4.

Logical root sequence number 0 – 19 20 – 39 40 – 59 60 – 79 80 – 99 100 – 119 120 – 137 138 – 837 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 1 11 21 31 41 51 61 138 128 118 108 98 88 78 2 12 22 32 42 52 62 137 127 117 107 97 87 77 3 13 23 33 43 53 63 136 126 116 106 96 86 76 4 14 24 34 44 54 64 135 125 115 105 95 85 75 5 15 25 35 45 55 65 134 6 124 16 114 26 104 36 94 46 84 56 74 66 N/A 133 123 113 103 93 83 73 7 17 27 37 47 57 67 132 122 112 102 92 82 72 8 18 28 38 48 58 68 131 121 111 101 91 81 71 9 19 29 39 49 59 69 130 120 110 100 90 80 70 10 129 20 119 30 109 40 99 50 89 60 79 - -

5.7.3 基带信号生成

The time-continuous random access signal s(t) is defined by

s?t???PRACHNZC?1NZC?1??k?0n?0?jxu,v(n)?e2?nkNZC1?ej2??k???K?k0?2???fRA?t?TCP?

where0?t?TSEQ?TCP, ?PRACH is an amplitude scaling factor in order to conform to the transmit power PPRACH specified in Section 6.1 in [4], and k0RARARBULRB?nPRBNsc?NRBNsc2. The location in the frequency domain is controlled

by the parameternPRB is derived from section 5.7.1. The factor K??f?fRA accounts for the difference in subcarrier

spacing between the random access preamble and uplink data transmission. The variable?fRA, the subcarrier spacing for the random access preamble, and the variable?, a fixed offset determining the frequency-domain location of the random access preamble within the physical resource blocks, are both given by Table 5.7.3-1.

Table 5.7.3-1: Random access baseband parameters.

Preamble format 0 – 3 4 ?fRA 1250 Hz 7500 Hz ? 7 2

5.8 调制与上变频

6

6.1

下行链路

概述

下行传输最小时频单元记作资源单元,在6.2.2节中定义。

6.1.1 物理信道

A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211. The following downlink physical channels are defined:

3GPP

Release 8 38 3GPP TS 36.211 V8.5.0 (2008-12)

- 物理下行共享信道, PDSCH - 物理广播信道, PBCH - 物理多播信道, PMCH

- 物理控制格式指示信道, PCFICH - 物理下行控制信道, PDCCH - 物理混合ARQ 指示信道, PHICH

6.1.2 物理信号

不携带高层信息的物理信号 - 参考信号 - 同步信号

6.2

6.2.1

时隙结构和物理资源单元

资源格

DLRBDLDL每时隙中资源格定义为NRBOFDM符号。 NRB取决于高层配置的下行带宽,满足 Nsc个子载波和Nsymbmin,DLDLmax,DL6?NRB?NRB?NRB?110

DL参见表6.2.3-1。 Nsymb多天线传输情况下,每个天线端口定义一个资源格。天线端口由相应的参考信号定义。所支持的天线端口集取决于小区内参考信号配置。

- 小区专用参考信号CRS,用于非MBSFN传输, 支持1个、2个或4个天线端口的配置,这里天线端口号

p 应分别满足p?0, p??0,1?和p??0,1,2,3?。 - MBSFN 参考信号, 用于MBSFN 传输, 在天线端口p?4上传输。 - UE专用参考信号DRS,在天线端口p?5上传输。

6.2.2 资源单元

(p)DLRBDLNsc?1,l?0,...,Nsymb天线端口p对应的资源格中资源单元记为?k,l?,k?0,...,NRB?1,对应复值ak,l。

3GPP

Release 8

One downlink slotTslot39 3GPP TS 36.211 V8.5.0 (2008-12)

DLNsymbOFDM symbolsDLRBk?NRBNsc?1Resource blockDLRBresource Nsymb?NscelementssubcarrierssubcarriersDLRBNRB?NscBNsRcResource element(k,l)k?0l?0DLl?Nsymb?1

Figure 6.2.2-1: Downlink resource grid.

6.2.3 资源块

资源块用于物理信道到资源单元的映射,包括物理资源块和虚拟资源块。

RBDLDLRB物理资源块定义为时域Nsymb个连续OFDM符号以及频域Nsc个连续子载波,故包含Nsymb个资源单?NscRBDL元,对应时域的一个时隙以及频域的180 kHz 带宽。Nsymb和Nsc有表6.2.3-1给出。

表6.2.3-1: 物理资源块参数

配置 常规CP 扩展CP RBNsc DLNsymb?f?15 kHz ?f?15 kHz ?f?7.5 kHz 12 24 7 6 3

虚拟资源块和物理资源块具有同样的大小,两种类型的虚拟资源块定义如下:

3GPP

Release 8 40 3GPP TS 36.211 V8.5.0 (2008-12)

- 局部类型虚拟资源块 - 分布类型虚拟资源块

一个子帧两个时隙虚拟资源块对的序号,统一记为nVRB。

6.2.3.1 局部类型虚拟资源块

就是物理资源块

6.2.3.2 分布类型虚拟资源块

Virtual resource blocks of distributed type are mapped to physical resource blocks as described below.

Table 6.2.3.2-1: RB gap values

System BW (N6-10 11 12-19 20-26 27-44 45-49 50-63 64-79 80-110 DLRB) Gap (Ngap) 1 Gap (Ngap,1) DL/2? ?NRBst2 Gap (Ngap,2) N/A N/A N/A N/A N/A N/A 9 16 16 nd4 8 12 18 27 27 32 48

DLThe parameter Ngap is given by Table 6.2.3.2-1. For 6?NRB?49, only one gap value Ngap,1 is defined and

DLNgap?Ngap,1. For 50?NRB?110, two gap values Ngap,1 and Ngap,2 are defined. Whether Ngap?Ngap,1 or

Ngap?Ngap,2is signaled as part of the downlink scheduling assignment as described in [3].

DLVirtual resource blocks of distributed type are numbered from 0 toNVRB?1, where

DLDLDLDLDLDL for Ngap?Ngap,1 and NV for NVRB?NVRB,gap2??NRB/2Ngap??2NgapRB?NVRB,gap1?2?min(Ngap,NRB?Ngap)Ngap?Ngap,2.

DLDLDLConsecutive NVRB VRB numbers compose a unit of VRB number interleaving, where NVRB?NVRB for Ngap?Ngap,1 DLand NVRB?2Ngap for Ngap?Ngap,2. Interleaving of VRB numbers of each interleaving unit is performed with 4

~~~DLcolumns and Nrow rows, where Nrow?NV, and P is RBG size as described in [4]. VRB numbers are RB/(4P)?P?~?written row by row in the rectangular matrix, and read out column by column. Nnull nulls are inserted in the last

~DLNnull/2 rows of the 2nd and 4th column, where Nnull?4Nrow?NVRB. Nulls are ignored when reading out. The

VRB numbers mapping to PRB numbers including interleaving is derived as follows: For even slot number ns;

3GPP

Release 8 41 3GPP TS 36.211 V8.5.0 (2008-12)

~DL~?N~mod2?1~,N?0andn?Nandn?n?N?PRBnullVRBVRBnullVRBrow~DL?n~??N?N/2,N?0andn~?N~mod2?0andn?PRBrownullnullVRBVRB?NnullVRB~, nPRB(ns)??~~DL~~???Nnull/2,Nnull?0andnVRB?NVRB?NnullandnVRBmod4?2?nPRB~????nPRB, otherwise~DL~DL~??2N??n~mod2??n~/2?Nwhere n?n/N?VRB?VRBVRBVRB, PRBrowVRB~DL~DL~???N??n~mod4??n~/4?Nand n?n/N??PRBrowVRBVRBVRBVRBVRB,

~DL~?nmodNwhere nVRBVRBVRB and nVRB is obtained from the downlink scheduling assignment as described in [4].

????For odd slot number ns;

~DL~DL~DL~DL~(n)?n~(n?1)?Nn/2modN?N?n/NPRBsPRBsVRBVRBVRB?VRBVRB?

??Then, for all ns;

~DL~(n)~n,?n(n)?NPRBsPRBsVRB/2. nPRB(ns)??~~DL~DL~n(n)?N?N/2,nPRB(ns)?NVRB/2gapVRB?PRBs

6.2.4 资源单元组

资源单元组用于定义控制信道到资源单元的映射。

A resource-element group is represented by the index pair (k?,l?) of the resource element with the lowest index k in

the group with all resource elements in the group having the same value of l. The set of resource elements (k,l) in a resource-element group depends on the number of cell-specific reference signals configured as described below with

RBDL, 0?nPRB?NRB. k0?nPRB?Nsc- In the first OFDM symbol of the first slot in a subframe the two resource-element groups in physical resource

block nPRB consist of resource elements (k,l?0) with k?k0?0, k0?1,..., k0?5 and k?k0?6, k0?7,..., k0?11, respectively. - In the second OFDM symbol of the first slot in a subframe in case of one or two cell-specific reference signals configured, the three resource-element groups in physical resource block nPRB consist of resource elements (k,l?1) with k?k0?0, k0?1,..., k0?3, k?k0?4, k0?5,..., k0?7 and k?k0?8, k0?9,..., k0?11, respectively. - In the second OFDM symbol of the first slot in a subframe in case of four cell-specific reference signals configured, the two resource-element groups in physical resource block nPRB consist of resource elements (k,l?1) with k?k0?0, k0?1,..., k0?5 and k?k0?6, k0?7,..., k0?11, respectively. - In the third OFDM symbol of the first slot in a subframe, the three resource-element groups in physical resource block nPRB consist of resource elements (k,l?2) with k?k0?0, k0?1,..., k0?3, k?k0?4, k0?5,..., k0?7 and k?k0?8, k0?9,..., k0?11, respectively. - In the fourth OFDM symbol of the first slot in a subframe in case of normal cyclic prefix, the three resource-element groups in physical resource block nPRB consist of resource elements (k,l?3) with

k?k0?0, k0?1,..., k0?3, k?k0?4, k0?5,..., k0?7 and k?k0?8, k0?9,..., k0?11, respectively.

3GPP

Release 8 42 3GPP TS 36.211 V8.5.0 (2008-12)

- In the fourth OFDM symbol of the first slot in a subframe in case of extended cyclic prefix, the two resource-element groups in physical resource block nPRB consist of resource elements (k,l?3) with

k?k0?0, k0?1,..., k0?5 and k?k0?6, k0?7,..., k0?11, respectively. Mapping of a symbol-quadruplet z(i),z(i?1),z(i?2),z(i?3) onto a resource-element group represented by resource-element (k?,l?) is defined such that elements z(i) are mapped to resource elements (k,l) of the resource-element

group not used for cell-specific reference signals in increasing order of i and k. In case a single cell-specific reference signal is configured, cell-specific reference signals shall be assumed to be present on antenna ports 0 and 1 for the purpose of mapping a symbol-quadruplet to a resource-element group, otherwise the number of cell-specific reference signals shall be assumed equal to the actual number of antenna ports used for cell-specific reference signals. The UE shall not make any assumptions about resource elements assumed to be reserved for reference signals but not used for transmission of a reference signal.

6.2.5 半双工FDD操作的保护周期

For half-duplex FDD operation, a guard period is created by the UE by not receiving the last part of a downlink subframe immediately preceding an uplink subframe from the same UE.

6.2.6 TDD 操作保护周期

For frame structure type 2, the GP field in Figure 4.2-1 serves as a guard period.

6.3 下行物理信道一般性结构

This section describes a general structure, applicable to more than one physical channel.

The baseband signal representing a downlink physical channel is defined in terms of the following steps: - 对将要在物理信道上传输的每个码字中已编码比特进行加扰。 - 对加扰比特进行调制,生成复值调制符号。

- 映射复值调制符号到一个或若干个传输层 (transmission layers)

- 对每传输层上的复值调制符号进行预编码,以便在天线端口(可以是多个端口)上传输。 - 映射每个天线端口上的复值调制符号到资源单元(每个单元就是一个符号占用的时频资源)。 - 每个天线端口上生成复值时域OFDM信号。

code wordslayersantenna portsScramblingModulation mapperLayermapperPrecodingResource element mapperOFDM signal generationScramblingModulation mapperResource element mapperOFDM signal generation

Figure 6.3-1: Overview of physical channel processing.

6.3.1

加扰

3GPP

Release 8 43 3GPP TS 36.211 V8.5.0 (2008-12)

6.3.2 调制

Table 6.3.2-1: Modulation schemes

Physical channel Modulation schemes PDSCH QPSK, 16QAM, 64QAM PMCH QPSK, 16QAM, 64QAM

6.3.3 层映射

The complex-valued modulation symbols for each of the code words to be transmitted are mapped onto one or several (q)layers. 复值调制符号d(q)(0),...,d(q)(Msymb?1) for code word q shall be mapped onto the

layerlayerlayersx(i)?x(0)(i)...x(??1)(i), i?0,1,...,Msymb is the number of ?1 where ? is the number of layers and Msymb??Tmodulation symbols per layer.

6.3.3.1 单天线端口传输层映射

单天线端口传输采用单层,即??1,映射定义如下

layer(0). x(0)(i)?d(0)(i),Msymb?Msymb6.3.3.2 空分复用层映射

对于空分复用,应根据表6.3.3.2-1执行层映射,层数量?应少于或等于物理信道传输使用的天线端口数量P。

The case of a single codeword mapped to two layers is only applicable when the number of antenna ports is 4.

Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multiplexing

层数 1 2 22 13 2CW 1CW 2PrecoderCW 1CW 2码字个数 (数据流个数) 1 PrecoderCodeword-to-layer mapping layeri?0,1,...,Msymb?1 x(0)(i)?d(0)(i) x(0)(i)?d(0)(i) Precoderlayer(0) Msymb?Msymblayer(0)(1) Msymb?Msymb?Msymbx(i)?d(i) x(0)(i)?d(0)(2i) x(1)(i)?d(0)(2i?1)(1)(1)CW 1 layer(0)Msymb?Msymb2 x(0)(i)?d(0)(i) x(1)(i)?d(1)(2i) (2)(1)x(i)?d(2i?1)x(0)(i)?d(0)(2i) (1)(0)x(i)?d(2i?1)layer(0)(1)Msymb?Msymb?Msymb2 4 2CW 1CW 2Precoder x(2)(i)?d(1)(2i) (3)(1)x(i)?d(2i?1)layer(0)(1)Msymb?Msymb2?Msymb2

6.3.3.3 发射分集层映射

对于发射分集,应根据表 6.3.3.3-1完成层映射,这里仅支持一个码字,且层数?等于天线端口数P。

3GPP

Release 8 44 3GPP TS 36.211 V8.5.0 (2008-12)

表6.3.3.3-1: 发射分集码字-层映射

Number of layers Number of code words Codeword-to-layer mapping layeri?0,1,...,Msymb?1 x(0)(i)?d(0)(2i)2 1 x(i)?d (1)(0)(2i?1) layer(0)Msymb?Msymb2 x(0)(i)?d(0)(4i)x(1)(i)?d(0)(4i?1)4 1 M layersymbx(2)(i)?d(0)(4i?2)x (3)(0)(0)?Msymb4if Msymbmod4?0? ??(0)(0)??Msymb?24 if Msymbmod4?0??(i)?d(0)(4i?3)If Msymb(0)mod4?0 two null symbols shall be (0)(0)(Msymb?1) appended to d

6.3.4 预编码

layer预编码器将输入向量块x(i)?x(0)(i)...x(??1)(i), i?0,1,...,Msymb?1转化生成新的向量块

ap?1 以映射到每个天线端口资源,这里y(p)(i)表示天线端口p上符号。 y(i)?...y(p)(i)..., i?0,1,...,Msymb??T??T6.3.4.1 单天线端口传输预编码

单天线端口上的传输预编码定义为:

y(p)(i)?x(0)(i)

apaplayer这里p??0,4,5?是物理信道传输使用的单天线端口编号,i?0,1,...,Msymb. ?Msymb?1, Msymb6.3.4.2 空分复用预编码

空分复用预编码仅和6.3.3.2节中描述的空分复用的层映射联合应用。空分复用支持2个或4个天线端口,即p??0,1?或p??0,1,2,3?。

6.3.4.2.1 不带 CDD的预编码

无循环延迟分集 (CDD)的空分复用预编码定义为

?y(0)(i)??x(0)(i)?????????W(i)??? ?y(P?1)(i)??x(??1)(i)?????apaplayer这里预编码矩阵W(i)大小为P??,i?0,1,...,Msymb。 ?Msymb?1,Msymb对于空分复用, W(i)通过选择码本中的预编码矩阵得到,码本由表6.3.4.2.3-1或表6.3.4.2.3-2给出。

6.3.4.2.2 大时延 CDD预编码

对于大时延CDD,空分复用预编码定义为

3GPP

Release 8 45 3GPP TS 36.211 V8.5.0 (2008-12)

?y(0)(i)??x(0)(i)?????????W(i)D(i)U??? ?y(P?1)(i)??x(??1)(i)?????apaplayer其中预编码W(i)大小为P??,i?0,1,...,Msymb。???对角阵D(i)和???矩阵U由表?Msymb?1,Msymb6.3.4.2.2-1给出。

表6.3.4.2.2-1: 大时延循环时延分集

层数? 2 U 1?1?1??j2?2? 2?1e?11??11?1e?j2?3e?j4?3??? 3??j4?3e?j8?3??1e?111??1??j2?4e?j4?4e?j6?4?1?1e??j4?4?j8?4?j12?4 ?ee2?1e??j6?4?j12?4?j18?4?1eee??D(i) 0??1?0e?j2?i2? ??3 4 ?1?0e?j2?i4??00?0?000??1?0e?j2?i30??? ?0e?j4?i3??0?0000e?j4?i40?0?? 0??e?j6?i4?W(i)从表6.3.4.2.3-1或表6.3.4.2.3-2中选择:

? ?

2天线端口,W(i)?C1,C1对应表6.3.4.2.3-1中码字索引0对应的码字。

4天线端口,W(i)?Ck,k??????mod4???1,k=1,2,3,4,C1,C2,C3,C4为表6.3.4.2.3-2中码字

??i??????索引12~15对应的码字。

6.3.4.2.3 预编码码本

对于在两个天线端口上的传输,p??0,1?,预编码矩阵W(i)应从表 6.3.4.2.3-1中或其子集中选择。对于文献[4]中所定义的闭环空分复用传输模式,码本序号0在层数??2的情况下禁用。

Table 6.3.4.2.3-1: 天线端口?0,1?上的传输预编码码本

码字索引 0 1 2 3 层数? 1 2 1?1??? 2?1?1?1??? 2??1?1?1??? 2?j?1?1???j? 2??1?10??? 2?01?1?11??? 2?1?1?1?11??? 2?j?j?-

{s}对于四个天线端口p??0,1,2,3?上的传输,预编码矩阵W应从表 6.3.4.2.3-2 或其子集中选择。Wn表示由 HHWn?I?2unununun矩阵的{s}列向量构成的矩阵,这里I 是 4?4单位矩阵,un由表6.3.4.2.3-2给出。

3GPP

Release 8 46 3GPP TS 36.211 V8.5.0 (2008-12)

表 6.3.4.2.3-2: 在天线端口?0,1,2,3?上传输的预编码码本

码字索引 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 un 1 {1} W0层数? 2 {14}W03 4 u0??1?1?1?1?T u1??1?j1u3??1j?T 2 2 2 2 2 2 2 2 {124}W03 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 {1234}W02 W1{1} {1} W2{1} W3{1} W4W1{12}{12}W2W1{123}{123}W2{123}W3{124}W4{124}W5{134}W6{134}W7W1{1234}2 {3214}W22 u2??11?11?T j1?j?T u4?1(?1?j)u5u6u7???1??1??12?j(1?j)2j(?1?j)2 2 2 2 (1?j)(1?j)(?1?j)??W3{12}{14}W4W3{3214}2 {1234}W42 TT{1} W5{1} W6{1} W72?j(?1?j)2j(1?j)??W5{14}{13}W6{13}W7W5{1234}2 {1324}W62 {1324}W72 TTu8??1?111?T u9??1?j?1?j?T u10??111?1?T u11??1j?1j?T u12??1?1?11?T u13??1?11?1?T u14??11?1?1?T u15??1111?T W8{1} {1} W9{1} W10{1} W11{1} W12{1} W13{1} W14W8{12}W9{14}{13}W10{13}W11{12}W12{13}W13{13}W14{12}W152 2 2 2 W8{124}{134}W9{123}W10{134}W11{123}W12{123}W13{123}W14{123}W15W8{1234}2 W9{1234}2 {1324}W102 {1324}W112 {1234}W122 {1324}W132 {3214}W142 2 2 2 {1} W152 {1234}W152

6.3.4.3 发射分集预编码

Precoding for transmit diversity is only used in combination with layer mapping for transmit diversity as described in

Section 6.3.3.3. The precoding operation for transmit diversity is defined for two and four antenna ports. For transmission on two antenna ports, p??0,1?, the output y(i)?y(0)(i)precoding operation is defined by

?ap?1 of the y(1)(i), i?0,1,...,Msymb?T?y(0)(2i)??x(0)(i)??(1)??(1)*?y(2i)1?????x(i)?

(1)?y(0)(2i?1)?2?x(i)??(1)??(0)*?y(2i?1)??????x(i)??layeraplayerfori?0,1,...,Msymb。注意,资源映射在频域分配y,即SFBC编码,不是STBC。 ?1 with Msymb?2MsymbFor transmission on four antenna ports,p??0,1,2,3?, the output y(i)?y(0)(i)api?0,1,...,Msymb?1 of the precoding operation is defined by

?y(1)(i)y(2)(i)y(3)(i),

?T3GPP

Release 8 47 3GPP TS 36.211 V8.5.0 (2008-12)

?y(0)(4i)??x(0)(i)??(1)???y(4i)0?????y(2)(4i)???x(1)*(i)??(3)????y(4i)??0??y(0)(4i?1)??x(1)(i)??(1)????y(4i?1)??0??y(2)(4i?1)??x(0)*(i)?????(3)?y(4i?1)?1?0??(0)???? y(4i?2)02?????y(1)(4i?2)??x(2)(i)??(2)????y(4i?2)??0??y(3)(4i?2)???x(3)*(i)??(0)????y(4i?3)??0??(1)??(3)??y(4i?3)??x(i)??y(2)(4i?3)??0??(3)??(2)*?y(4i?3)???x(i)?for i?0,1,...,

layerapMsymb?1 with Msymblayer(0)?if Msymbmod4?0?4Msymb. ??layer(0)??4Msymb?2if Msymbmod4?0??6.3.5 映射到资源单元

ap对于每个用于物理信道传输的天线端口,复值符号块y(p)(0),...,y(p)(Msymb?1) 需要映射到不用于PCFICH,

PHICH,PDCCH,PBCH,同步信号和参考信号传输的虚拟资源块对应的资源单元?k,l?中。

6.4 物理下行共享信道PDSCH

PDSCH由6.3节内容操作,以下例外:

- 在不传输UE专用RS的资源块中,PDSCH采用与PBCH同样的天线端口集,即?0?,?0,1?或?0,1,2,3? - 在传输UE专用RS的资源块中,PDSCH应在天线端口?5?上传输。

6.5 物理组播信道PMCH

The physical multicast channel shall be processed and mapped to resource elements as described in Section 6.3 with the following exceptions: - 不采用发射分集方案

- Layer mapping and precoding shall be done assuming a single antenna port and the transmission shall use antenna port 4. - In the subframes where PMCH is transmitted on a carrier supporting a mix of PDSCH and PMCH transmissions, up to two of the first OFDM symbols of a subframe can be reserved for non-MBSFN transmission and shall not be used for PMCH transmission. In a cell with 4 cell-specific antenna ports, the first two OFDM symbols of a subframe are reserved for non-MBSFN transmission in the subframes in which the PMCH is transmitted. The non-MBSFN symbols shall use the same cyclic prefix as used for subframe #0. PMCH shall not be transmitted in subframes 0 and 5 on a carrier supporting a mix of PDSCH and PMCH transmission

3GPP

Release 8 48 3GPP TS 36.211 V8.5.0 (2008-12)

6.6

6.6.1

物理广播信道PBCH

加扰

~b(i)??b(i)?c(i)?mod2

传输块b(0),...,b(Mbit?1)在调制前通过加扰得到:

cell这里加扰序列c(i)参见 7.2,在每个满足nfmod4?0的无线帧中初始化cinit?NID,常规CP中,Mbit?1920,扩展CP中,Mbit?1728。

6.6.2 调制

采用QPSK调制。

6.6.3 层映射和预编码

采用单端口或发射分集层映射和预编码。

6.6.4 Mapping to resource elements

The block of complex-valued symbolsy(p)(0),...,y(p)(Msymb?1) for each antenna port is transmitted during 4 consecutive radio frames starting in each radio frame fulfilling nfmod4?0 and shall be mapped in sequence starting with y(0) to resource elements ?k,l?. The mapping to resource elements ?k,l? not reserved for transmission of

reference signals shall be in increasing order of first the indexk, then the index l in slot 1 in subframe 0 and finally the radio frame number. The resource-element indices are given by

DLRBNRBNsck??36?k', k'?0,1,...,71 2l?0,1,...,3这里计算不包括参考信号预留资源,UE应假设天线端口0-3资源都已预留,即使不是,也假设不用于PDSCH传输。

6.7 物理控制格式指示信道PCFICH

PCFICH用于指示PDCCH一个子帧中OFDM符号个数,如表6.7-1所示。当OFDM符号个数大于零,需要传输PCFICH。

3GPP

Release 8 49 3GPP TS 36.211 V8.5.0 (2008-12)

表6.7-1: PDCCH中OFDM符号个数

子帧 帧格式2中子帧1和6 支持PDSCH和PMCH的载波上的MBSFN子帧,1或2个小区专用天线端口 支持PDSCH和PMCH的载波上的MBSFN子帧,4个小区专用天线端口 不支持PDSCH的载波上的MBSFN子帧 所有其他情况 DLNRB?10时符号个数 DLNRB?10时符号个数 1, 2 1, 2 2 0 1, 2, 3 2 2 2 0 2, 3, 4 6.7.1 加扰

~b(i)??b(i)?c(i)?mod2

~~比特块b(0),...,b(31)通过加扰获得b(0),...,b(31):

这里加扰序列 c(i)参见7.2节,初始化cinitcellcell。 ???ns2??1??2NID?1?29?NID??6.7.2 调制

~~加扰比特b(0),...,b(31)采用表6.7.2-1进行调制,得到调制符号d(0),...,d(15)。

表6.7.2-1: PCFICH调制方案

Physical channel Modulation schemes PCFICH QPSK 6.7.3 层映射与预编码

(0)采用单天线端口和发射分集两种层映射和预编码方式,参见 6.3.3.1或6.3.3.3,Msymb?16,6.3.4.1或.3.4.3,

与PBCH使用同样天线端口集。

6.7.4 映射到资源单元

The mapping to resource elements is defined in terms of quadruplets of complex-valued symbols. Let

z(p)(i)?y(p)(4i),y(p)(4i?1),y(p)(4i?2),y(p)(4i?3) denote symbol quadruplet i for antenna portp. For each of

the antenna ports, symbol quadruplets shall be mapped in increasing order of i to the four resource-element groups in the first OFDM symbol in a downlink subframe with the representative resource-element as defined in Section 6.2.4 given by

z(p)(0)is mapped to the resource-element group represented byk?kz(p)(1)DLRBis mapped to the resource-element group represented byk?k?NRB2?Nsc2z(p)(2)is mapped to the resource-element group represented byk?k?z(p)(3)is mapped to the resource-element group represented byk?k?DLRBNsc , where the additions are modulo NRB??DLRB2??Nsc?2NRBDLRB2??Nsc?3NRB22

RBcellDLk?Nsc2?NIDmod2NRB

celland NID is the physical-layer cell identity as given by Section 6.11.

????3GPP

Release 8 50 3GPP TS 36.211 V8.5.0 (2008-12)

6.8

6.8.1

物理下行控制信道 PDCCH

PDCCH 格式

PDCCH承载调度分配和其他控制信息。物理控制信道在一个或多个控制信道单元CCE上传输,一个CCE包含9个资源单元组(36个资源单元)。所有可用CCE总数为NCCE??NREG/9?,NREG为不分配给PCFICH或 PHICH的资源单元组个数。PDCCH支持多个格式,如表6.8.1-1所示。包含n个连续CCE的PDCCH可以从满足imodn?0的CCE i开始, 这里i为CCE序号。 一个子帧中可以传输多个PDCCH。

表6.8.1-1: 可支持的PDCCH 格式(QPSK调制)

PDCCH 格式 0 1 2 3 CCEs数量 1 2 4 8 资源单元组数量 9 18 36 72 PDCCH 比特数量 72 144 288 576

6.8.2 PDCCH 复用与加扰

(i)(i)The block of bitsb(i)(0),...,b(i)(Mbit is ?1) on each of the control channels to be transmitted in a subframe, where Mbitthe number of bits in one subframe to be transmitted on physical downlink control channel number i, shall be multiplexed, resulting in a block of

(nPDCCH-1)(0)(1)bitsb(0)(0),...,b(0)(Mbit?1),b(1)(0),...,b(1)(Mbit?1),...,b(nPDCCH?1)(0),...,b(nPDCCH?1)(Mbit?1), where nPDCCH is the

number of PDCCHs transmitted in the subframe.

(nPDCCH-1)(0)(1)The block of bits b(0)(0),...,b(0)(Mbit?1),b(1)(0),...,b(1)(Mbit?1),...,b(nPDCCH?1)(0),...,b(nPDCCH?1)(Mbit?1) shall be

scrambled with a cell-specific sequence prior to modulation, resulting in a block of scrambled bits ~~b(0),...,b(Mtot?1)according to

~b(i)??b(i)?c(i)?mod2

where the scrambling sequence c(i) is given by Section 7.2. The scrambling sequence generator shall be initialised

cellwith cinit??ns2?29?NID at the start of each subframe.

CCE 序号n对应比特b(72n),b(72n?1),...,b(72n?71)。需要的话, If necessary, elements shall be inserted in the block of bits prior to scrambling to ensure that the PDCCHs starts at the CCE positions as described in [4] and to ensure that the length Mtot?8NREG??nPDCCH?1i?0(i) of the scrambled block of bits matches the amount of resource-Mbitelement groups not assigned to PCFICH or PHICH.

6.8.3 Modulation

仅采用QPSK调制方式

6.8.4 层映射和预编码

(0)仅采用单天线端口和发射分集两种层映射和预编码方式,参见 6.3.3.1或6.3.3.3,Msymb?16,6.3.4.1

或.3.4.3,与PBCH使用同样天线端口集。

3GPP

本文来源:https://www.bwwdw.com/article/bs6o.html

Top