On Stationary, Self-Similar Distributions of a Collisionless, Self-Gravitating, Gas
更新时间:2023-06-12 00:05:01 阅读量: 实用文档 文档下载
- onion推荐度:
- 相关推荐
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
OnStationary,Self-SimilarDistributions
ofaCollisionless,Self-Gravitating,Gas
R.N.HenriksenandLawrenceM.Widrow
arXiv:astro-ph/9412047v1 14 Dec 1994DepartmentofPhysicsQueen’sUniversity,Kingston,CanadaDecember14,1994AbstractWestudysystematicallystationarysolutionstothecoupledVlasovandPoissonequa-tionswhichhave‘self-similar’orscalingsymmetryinphasespace.Inparticular,we ndanalyticallyallsphericallysymmetricdistributionfunctionswherethemassdensityandgravitationalpotentialarestrictpowerlawsinr,thedistancefromthesymmetrypoint.Wetreatasspecialcases,systemsbuiltfrompurelyradialorbitsandsystemsthatareisotropicinvelocityspace.Wethendiscusssystemswitharbitraryvelocityspaceanisotropy ndinganewandverygeneralclassofdistributionfunctions.Thesedistributionsmayproveusefulinmodellinggalaxies.Distributionfunctionsincylin-dricalandplanargeometriesarealsodiscussed.Finally,westudyspatiallyspheroidalsystemsthatagainexhibitstrictpower-lawbehaviourforthedensityandpotentialand
ndresultsinagreementwithresultspublishedrecently.
1
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
1Introduction
Starclusters,darkmattergalactichalos,andclustersofgalaxiesareessentiallycol-lisionlessself-gravitatingsystemsobeyingthecoupledPoisson-Vlasovequationsandthereforeequilibriumsolutionstotheseequationsareofgreatimportance.Whilesub-stantialprogresshasbeenmadethroughnumericalsimulation,therehasalsobeenapersistentschoolofanalysisthatseekstoobtainexact,analyticresults,particularlyinasymptoticor‘stationary’limits.
Onebranchofthislatterschoolhasstudiedtheevolutionofcollisionlessmatterinanexpandinguniverse(Fillmore&Goldreich1984;Bertschinger1985;Gurevich&Zybin1988,1990;Ryden1993).Thesolutionsaretimedependentofnecessitybutshowsteadyoratleastadiabaticbehaviouratlatetimes.Thetreatmentsmakeuseofanintuitiveself-similarsymmetrywhichcanseemratheradhoc(evenifexceedinglyclever)andso,di culttoaccessandgeneralize.Moreover,therearesomeremaininginconsistenciesinthevariouspublishedresults.Ourintentionhereistostudysuchcollisionlessself-similarityinasimpleandsystematicway,beginningwithstrictlystationaryexamples.Self-similarsymmetryhasalsobeenfoundinthestudyofcollisionalsystemssuchasthecoresofglobularclusters(e.g.Lynden-Bell1967;Lynden-BellandEggleton1980;InagakiandLynden-Bell1983,1990).Thesesystemsallowthestudyoftheevolutiontowardscore-halocon gurationsbutneveryieldtruethermodynamicequilibriaintheformsayofstationarypowerlawbehaviour.Neverthelessinvariousintermediate(spa-tiallyandtemporally)stagessimplepowerlawdoappearandmayinfactcorrespondtothesolutionswe ndforstationarycollisionlesssystems.Itiswellknowninthehydro-dynamicliterature(e.g.BarenblattandZel’dovitch1972,hereafterBZ)thatself-similarsolutionsariseasintermediateasymptoticsbetweenboundaries,anditisprobablyforthisreasonthattheyarefoundinthepreandpostcollapsephasesofthecollisionalsystems.Onemightspeculatethattheyareascloseto‘equilibrium’assuchsystemsget.Inadditiontoglobularclusters,thesesystemsmayariseintheintermediatestagesofcollapseofastarclustertoablackholeandintheultimatestateofcollisionlessdarkmatterhalos.
Inthispaperwestudysystematicallythefamilyofdistributionsthatareexactlystation-aryandthatpossessbothprecisegeometric(usuallyspherical)andscalingsymmetries.ThesedistributionsaresolutionstothecoupledVlasovandPoissonequations:
3 H
i=1 xi H vi
=0(1.1)
2Φ=4πGfd3v.(1.2)
Herefistheusualmassdistributionfunction,Φisthegravitationalpotential,HistheHamiltonianandvi,xiarecanonicalpairs.Thesolutionswe ndincludetheintermediateasymptoticlimitsoftherelevantprecedingstudies.Theyoverlapdirectly
2
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
withtherecentworkofEvans(1994,hereafterE94)on“powerlawgalaxies”andtoalesserextentwiththe‘η’modelsofTremaineetal.(1994).Theselattermodelsaresimilarinspirittoourownbutarenotstrictlyscalefreeandsoprovetoberathermorecomplicatedtoexpressanduse.Neverthelesstheysharetheobservationallyimportantpropertyofacuspedcentraldensityandpossessthesubstantialadvantageofhaving nitemass.
Thepower-lawgalaxiesofE94(seealsoEvansanddeZeeuw1994,hereafterEdZ)arescaleinvariantandthereforesimpletouse.Theywereconstructedtoprovideafamilyofversatilemodelsofgalaxiesthatcouldbeusedtoanalyseobservablepropertiesofgalaxiessuchaslinepro lesfromstellarabsorption-linespectra.Ourapproachismoresystematicandinfact,forthecaseofsphericalsymmetrywithvelocityspaceanisotropy,yieldsamoregeneralclassofsolutions.WemostlyleaveapplicationssuchasthosefoundinvanderMarel&Franx(1993),E94andEdZforfuturepublications.
Wealsousethispapertointroducetotheastronomicalcommunityasystematicmethodofclassifyingscalingorself-similarsymmetry rstgivenbyCarterandHenriksen(1991,hereafterCH)inaratherformalstyle.Thetechniqueiseasytouseandyieldsthereducedequations(withmanifestscalingsymmetry)inastandardform.Inaddition,themethodincludesthevariousscalingsymmetriesthatproduceirrationalpowerlawsformerlyreferredtoasscalingsymmetriesofthe‘second’kind(e.g.BZ).
2RadialOrbitsinSphericalSymmetry;
AnIntroductiontotheCHAnalysisoftheVlasov-PoissonEquationsWeintroducethecanonicaldistributionfunctionFwhere
F(r,vr)f(r,v)≡
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
where
Lk≡kj j≡δr r+νvr vr(2.5)
istheLiederivativewithrespecttothe(phasespace)vectoroperatork.Inotherwords,kisthescalingdirectioninphasespace.Itisconvenientintheseformulaetoimaginethatrandvrarescaledintermsof ducialvalues(nottobeconfusedwithrealconstantlengths).
Equation(2.4)holdssolongasF=F(ζ)whereζ≡r(ν/δ)/vr.Thedimensionlessrealnumberδ/νgivesthesimilarity‘class’ofthesymmetryinthesenseofCHanditisgenerally xedonlybyboundaryconditionsorbythedimensionsofconservedquantities.
Our rststepistochoosenewphasespacecoordinatestoreplacerandvr.FollowingCHwede neanew‘radial’coordinateR(r)suchthat
Lk=kj j≡ R.
kj jR=1andweobtainthetransformationlaws
r|δ|=eδR,
and
dR(2.7)(2.6)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
andmass.ThereisthenathreeparametermultiplicativerescalinggroupwithelementsA≡(eδ,eν,eµ)thatdescribesthescalingsofdimensionalquantities.Alternatively,ifweconsiderchangesinthelogarithmsofthesequantities,wehaveanadditiverescalinggroupwithelementsa=(δ,ν,µ).ThevectorcomponentsofAoracorrespondtothescalinginlength,velocityandmassrespectively.
EachdimensionalquantityΨintheproblemhasitsdimensionsrepresentedbyadi-mensionality(co)vectordΨinthedimensionspace,andthechangeinthelogarithmofthequantityisgivenby(CH)
LkΨ= RΨ=(dΨ·a)Ψ.(2.10)
Strictlyspeaking,thevectorkshouldcorrespondtotherescalingvectora.Inotherwords,weshouldreplaceequation(2.5)with
kj j=δr r+νvr vr+µm m.(2.11)
Howeveraswewillsoonsee,theinvarianceofGunderrescalingimpliesthatmassrescalingisnotindependentoflengthandvelocityrescaling.Thisallowsustoreduceourscalingalgebraelementtoa=(δ,ν).
ThedimensionalquantitiesinthecurrentproblemF,ΦandGhavethefollowingdimensionalitycovectorsinthechosendimensionspace(length,velocity,mass);
dF=( 1, 1,1),
dΦ=(0,2,0),
dG=(1,2, 1).(2.12)
TherequirementthatGbeinvariantundertherescalinggroupactionimpliesa·dG=0,oronperformingthescalarproduct(directmultiplicationsincedisacovector)
µ=2ν+δ.(2.13)
Consequentlythedimensionspacemaybereducedtothesub-spaceof(length,velocity)whereintherescalinggroupelementbecomesa=(δ,ν)and
dF=(0,1),
dΦ=(0,2).
5(2.14)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
Thesub-spacealgebraelementanowcorrespondstoourchoiceofthescalingvectork.ThescalingsymmetrycanbeimposedonFandΦbyequation(2.10)which,withequation(2.14)requires
F(X,R)=
Φ(X)e2νR.(2.15)
Theseequationscanbesimpli edfurtherbynotingthatat xedrthepotentialisindependentofvrorequivalently
F
X2+2
ν+2 ν 2
F=C|X2+2
Φe2R=
a
whereΦahasunitsofvelocity2andreplaces 2/δ(2.20)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
C=2|δ+2|
Φ(orequivalentlyΦa)mustbenegativeandthereforeδ< 2.
Formallyδ>0and
2> 3.Inaddition,thevelocitymomentsofthedistributionfunctionalsofollowsimplepowerlaws:δ
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
masslessparticlesthatneverthelessaredistributedinenergyspaceaccordingtoequation(2.19).
Havingillustratedourmethodindetailinthissimpleexamplewithradialorbits,weproceedtogiveourresultsbrie yforothercasesofinterest.
3IsotropicOrbitsinSphericalSymmetry
Here,thefull3Ddistributionfunctionhasthefunctionalformf=f(r,v),where222v2=vr+vθ+vφ.TheVlasovandPoissonequationsarenowrespectively(vr=0)
v rf ( rΦ) vf=0,
1(3.1)
f(X)e (2δ+ν)R,
Φ=
Φ=constant.Substitutingintoequations(3.1)and(3.2)yields
dln
dX
and
8(2δ+1)XΦ= (3.5)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
2
2(δ+2)
Equation(3.5)easilyintegratesandwe ndf(X)dX.(3.6)
Φ| (δ+1/2).
Itbecomesclearfromthislastequationthatforaboundsystem((3.7)
Φ(|δ|r)2/δ≡Φa r
Φ.ThenormalizationconstantCisdeterminedfromthePoissonequation:
(1+δ/2)(1 δ)Γ(1 δ)C=Ga2.(3.10)
Itisinterestingtonotethatthecorrespondingdensitylawhasthesamefunctionalformasinthepureradialcasediscussedabove.Moreover,
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
Wenotethatonceagainthelimitδ= 2correspondstoaninvariantcentralmasssurroundedbymasslessparticles.ThisistheKeplerian,andpossiblythecentralblackhole,limit.
4SystemswithCylindricalandPlanarSymmetry
Itisstraightfowardtoextendthepreviousanalysistosystemswithcylindricalandplanarsymmetry.Suchsolutionsmightprovideinsightintothe lamentsandsheetsseenbothinN-bodysimulationsandinlarge-scalegalaxysurveys.OursolutionsshouldcorrespondtothosefoundinFillmoreandGoldreich(1984)thoughoursolutionsarestationaryanddonotincludecosmologicalexpansion.
Forsystemswithcylindricalsymmetry,wechoosethecanonicaldistributionfunction
f(r,v)≡F( ,v )
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
2 zΦ=G Fdvz.(4.7)
Inthiscase,thefamilyofsolutionsis
f∝|E|(1 2δ)/2Φ∝z2/δ.(4.8)
1<δ<2isenoughtoinsurethatthedensitywilldecreasewithincreasingzandthemassperunityareawillvanishforz→0.
5AnisotropicOrbitsinSphericalSymmetry
Thisexampleismorechallengingthentheotherstreatedinthispaperandthere-sultsaresomewhatsurprising.Thedistributionfunctiondependsonthreephasespace22coordinates(r,vr,j2)wherej2≡r2(vθ+vφ)isthesquareofthetransverseangularmomentum(Fujiwara1983).TheVlasovandPoissonequationsbecomerespectively
vr rf+j2
X(ζ)×vre R,
11i(5.4)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
where
andX(1)=1
f(X,Y)e(1 λ)R,
Φ=
Φ=constant.
TheVlasovandPoissonequationsnowbecome
(2δ+1)
2f 2(1+δ)Y Yδ+2X2(δ3Y 2f=0,f(X,Y)=0.(5.9)(5.10)
where
λ=2(1+δ)(5.11)
followsfromtherequirementthattheseequationsbeindependentofR.Weseefromequation(5.10)thatδ< 2forthesystemtobebound.
Equation(5.9)isaquasi-linear, rst-orderpartialdi erentialequationthatcanbesolvedexactly.Thecharacteristicequationsare
d
(2δ+1)=XdX
Φ),(5.12) 2(1+δ)Y
the rstofwhichisclearlyintegrableandgives
F(ξ)Y 2δ+1
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
whereξisafunctionconstantontheintegralcurvesofthesecondequationof(5.12).Thissecondequationmaybeintegratedbyintroducingthevariablesu,ssuchthat
s≡X2+2
ds+(2+δ)u+(1+δ)s=0,(5.16)
whichisofatypealreadyknowntoLeibnitzin1691.Thesolutionisimmediatefors=0bychangingthedependentvariabletosayy≡u/s.We ndtherebythatthequantityξ(X,Y)maybetakentobe
ξ=Y 1|δ2Y+X2+2
F(ξ).The
constant
Φ
Inthisformula 1δ2 =4πG2 2 2f. 2(5.18)
δ+1)
F(ξ),equations(2.20)and(2.22)continuetogivethe
F(ξ)potentialanddensitypowerlaws.Theamplitude
throughequation(5.18)andonemustinsurethattheintegralsinthisequationexist.Equation(5.20)representsanewclassofdistributionfunctionswithvelocityspaceanisotropy.Modelswith
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
f=Cja|E|b(5.21)
whereaandbarerelatedtoαandδinasimpleway.(Actually,distributionswithenergyandangularmomentumdependencegivenbyequation(5.21)were rstdiscussedbyCamm(1952).There,thespatialdependenceofthemassdensityandpotentialaregivenbysolutionstotheEmden-Fowlerequationwithappropriateboundaryconditions.)AsdiscussedbyE94,itisstraightfowardtocalculatevelocitymomentsforthesedistributionfunctions.Forexample,onecancalculatethevelocityspaceanisotropyparameter
2:vrβ≡1
β=2δ+1
F(ξ)aretheystable?FridmanandPolyachenko(1984)
showthattheCammmodelsarelinearlyunstableforsu cientlylargeanisotropy,butarestabletowardstheisotropiclimit.Butlinearstabilityisnotthesameasnon-linearstabilitywhichhasreallytodowiththeexistenceorotherwiseofasymptoticdistribu-tionstowardswhichftends.Bystudyingthestabilityofourstationarysolutionswemightdiscoverahintastohowtode neauseful‘entropy’functionthatcharacterizes
14
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
suchasymptoticequilibria.ThislatterquestionhasrecentlybeengivennewlifebythestudiesofTremaineetal.(1986),Wiechenetal.(1988)andAly(1989,1993).Thislastauthorhasshownforexamplethatthe‘softened’Plummermodelwithδ= 4inournotationactuallyattainstheminimumenergysubjecttoa xedmassanda xedvalueofthe‘entropy’.Ifthisvalueisusednaivelyinourmodels,oneobtainsρ∝r 5/2andΦ∝r 1/2.FinallyonemightaskhowcloselycanastablemodelapproachMaxwelliantypedistributions.
6AxiallySymmetricSolutionswithEllipsoidal
andHyperboloidalSymmetries
InordertomakecontactwiththerecentstudiesofE94andofEdZweshowherehowourmethodyieldsthestrictlyscalingsubsetoftheiraxiallysymmetricsolutionsinaverydirectway.Thescalingsymmetryinphasespaceforthiscaseisactuallysimplerthanthatfortheanisotropicsphericalgeometrydealtwithabove.Weusecylindricalcoordinates ,φ,zandwritetheVlasovequationinthesymmetricform
2vφ vφf zΦ vzf=0,(6.1)v f+vz zf+
whilethePoissonequationbecomes
1
q2.(6.3)
Wedi erfromE94inthatwedonotintroducea‘core’radiusintotheproblem,sincestrictlyspeakingthiswouldprohibittheexistenceoftruegeometricallyscalingsolutions.Itwillbeclearhoweverfromourmethodthatonecanaddacoreradiussquaredtou2withoutchangingthesolution,providedthatitisignoredinthescalingsymmetry.ThusoursolutionsaswellasthoseofE94donot‘really’knowofitsexistenceandsoweprefertosuppressit.Itisamusingtonotealsothatthesubstitutionsq2→ q2andu→vwherez222v≡
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
WeproceedwithadirectsubstitutionofΦ=Φ(u)intotherighthandsideof(6.2)followedbyacollectionoftermsinequalpowersof todiscoverthenecessityforadistributionfunctionintheansatzform
f=f1(u,v ,vφ,vz)+f2(u,v ,vφ,vz) 2.
HencethePoissonequationsplitsintothetwoequations
2Φ′,4πGf1dv dvφdvz=q2 14πGf2dv dvφdvz=(6.5)(6.6a)u3 Φ′′
f2=f22 2vz+Φ,v ,vφ ,
2+Φ ≡f1(E).(6.8)
Thevanishingofthecoe cientof yieldsthendirectlyforf2
2f2=vφF2(E),(6.9)
afterwhichthecoe cientofthelasttermin 3vanishesidentically.ConsequentlyweconcurwithE94thatthenecessaryansatz(6.5)isinfactoftheform
22f=f1(E)+ 2vφF2(E)≡f1(E)+jzF2(E),(6.10)
althoughatpresentf1andF2arearbitraryfunctionsoftheenergyE.TheVlasovequationisnowidenticallysatis ed,inaccordancewithJeans’theoremforstationarysolutions.
16
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
Asintheprevioussectionsweturnnowtotheimpositionofascalingsymmetryinphasespace.TheLiederivativewillbealongthevector
kj j≡uδ u+v v +vφ vφ+vz vz≡ R,
whereR=R(u)andsoasusual
u=
dueRδ(6.13)(6.11)=e Rδsgn(δ).
ProceedingexactlyasbeforetosolvefortheinvariantsX(i)fromkj jX(i)=0givestheconvenientchoices
X(1)≡e Rv ,
X(2)≡e Rvφ,
X(3)≡e Rvz.(6.14)
Moreoverstartingonceagainwiththedimensionspacecovectora≡(δ,ν,µ),preservingG(butnotanycharacteristiclength)and ndingthedimensionvectorsoff1,F2andΦinthereduceddimensionspacegives
f1=
F2(X(i))e (4δ+3ν)R,
Φ=(6.15)
2+E(X(j))e2R.(6.16)
Thenthecompatibilityofequations(6.8)and(6.15)(togetherwiththeisotropicchar-acteroff1invelocityspace)requires
f1(E)=
f1(
f1(kx)=kα
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
α= (δ+1/2).(6.18)
Inonedimensionsuchahomogeneousfunctionisapowerlawofpowerαsothat
4πGB f1(X(j))e (2δ+1)R+jz2EαdX(1)dX(2)dX(3)=,Φ q21
Φ<0,werequire
δ<sgn(A)1(6.23)
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
andbyequation(6.24) 1
Φbothpositive,wenotethatδshouldbepositiveifthegravitationalaccelerationistobedirectedinwards.
Theevaluationoftheintegrals(6.24)and(6.25)hasbeenextensivelydiscussedbyE94andEdZandareeasilydonebychangingvariablesto
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
Insection5wehavefoundthepower-lawsolutionsthataresphericallysymmetricthoughanisotropicinvelocityspace.Asubsetofthesemodelsarethe‘power-lawgalaxies’ofE94.However,ourmodelsaremoregeneralasillustratedinFigures2(a)-2(d).Themodelsthereforeallowformorefreedominmodellinggalaxiesand ttingobservablessuchasabsorption-linespectratotheoreticalpredictions.
Finallysection6hasenabledustodemonstratetheeasewithwhichthespheroidalso-lutionsmaybefoundwhenthespatialsymmetryandthescalingsymmetryareimposedseparately.OurconclusionsarethesameasthoseofE94andofEdZ94,althoughwedopointoutthatthecoreradiusisnotactuallyplayingaroleinthesesolutionsanditisapparentthatthesesolutionsformpartofthewiderfamilyofsolutionsdiscussedinthispaper.Wealsoremarkthathyperboloidalsolutionsofthistypeobviouslyalsoexist.
FutureworkwillfocusonthetimedependentsolutionswithandwithoutanexpandingbackgroundpartlyinhopesofobtainingtheresultsofFillmoreandGoldreich(ibid)withoutthesingularitiesinthedensity,butalsoinordertomakeasurveysimilartothepresentsurveyofthestationarysolutions.Moredetailedinvestigationofthestabilityandotherpropertiesofthesolutioninsection5isalsorequired.
Acknowledgements
ItisapleasuretoacknowledgehelpfulconversationswithDrsW-YChau,MartinDun-can,andScottTremaine.
20
We study systematically stationary solutions to the coupled Vlasov and Poisson equations which have `self-similar' or scaling symmetry in phase space. In particular, we find analytically {\it all} spherically symmetric distribution functions where the mass
References
AlyJ.-J.,1989,MNRAS241,15
AlyJ.-J.,1994,”ErgodicConceptsinStellarDynamics”,V.G.GurzadyanandDPfen-niger(eds),Springer-Verlag,p226
BarenblattG.E.andYa.B.Zel’dovich1972,Ann.Rev.FluidMech.4,285(BZ)BertschingerE.,1985,ApJS,58,39
BinneyJ.,TremaineS.,1987,GalacticDynamics.PrincetonUniv.Press,Princeton,NJ,Ch.4(BT)
CarterB.,HenriksenR.N.,1991,J.Math.Phys.,32,2580(CH)
EvansN.W.,1994,MNRAS,267,333(E94)
EvansN.W.,deZeeuwP.T.,1994,MNRAS,271,202(EdZ)
FillmoreJ.A.,GoldreichP.,1984,ApJ,281,1
FridmanA.M.,PolyachenkoV.L.,1984,PhysicsofGravitatingSystemsI.Springer-Verlag,NY,Ch.3
FujiwaraT.,1983,PASJ,35,547
GurevichA.V.,ZybinK.P.,1988,Zh.Eksp.Teor.Fiz.,94,3
GurevichA.V.,ZybinK.P.,1990,Sov.Phys.JETP,70,10
Lynden-Bell,1967,MNRAS,136,101
Lynden-BellD.,EggletonP.P.,1980,MNRAS,191,483
InagakiS.,Lynden-BellD.,1983,MNRAS,205,913
21
正在阅读:
On Stationary, Self-Similar Distributions of a Collisionless, Self-Gravitating, Gas06-12
2012第十六届中国烘焙展招展方案05-26
肚皮舞教程-全10-03
中外常用钻井液处理剂名称对照及主要用途05-07
中药鉴定学 第4章02-02
冬日下的枫树湾作文400字06-26
决定冷库质量的主要因素06-09
独自绽放的精彩800字02-14
第十章 排序03-09
- 1Part I Self-introduciton
- 2Writing A Letter To Your Future Self
- 3(self)it-one-ones-the-one-the-ones-that-those
- 4英语作文A Letter of Self-recommendation
- 5Supporting Student Self-Regulated Learning in
- 68.28朗读材料--Self-esteem
- 7Section B (3a-self-check)
- 8A multistage camera self-calibration algorithm
- 9Unit5 Self-check
- 10Self-organized transient facilitated atomic transport in PtA
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Self
- Distributions
- Collisionless
- Gravitating
- Stationary
- Similar
- Gas
- 交通事故与工伤双赔偿
- 公务员考试《申论》把握公文写作原则和解答方法
- 世界古代史 Microsoft Word 文档 (3)
- 增减倍数口译+昂立unit5
- 中南大学人工智能报告
- 高一年级物理期末考试模拟试题
- 安装个人网上银行的控件教程
- 1.1--89C51单片机概述
- 再生水处理工艺对有机微污染物去除效果的研究
- 2013考研词汇先导班(邵宁)
- 中国股票市场收益率分布特征探索
- 2011年物业管理师《基本制度与政策》考试大纲
- 小学语文(讲课)面试技巧
- 园林绿化施工方案范本_secret
- 港口装卸作业过程中不安全行为的产生与预防通用范本
- 波纹管补偿器在热网工程的应用
- 2015高考化学全国卷一(高清+答案)
- 结合当前国内的形势谈谈你对腐败的看法
- REQUIREMENTS COMMUNICATION CULTURE IN MOBILE SERVICES DEVELOPMENT
- 如何提高汽车涂装工艺设计的水平