中考初中数学知识点总结11页

更新时间:2023-03-08 04:45:16 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1

初中数学知识点总结

一、基本定理

1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于 180° 18、推论 1 直角三角形的两个锐角互余

19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等

22~26、证全等的方法:边角边、角边角、角角边、边边边、斜边-直角边 27、定理 1 在角的平分线上的点到这个角的两边的距离相等 28、定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论 3 等边三角形的各角都相等,并且每一个角都等于 60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

2

35、推论 1 三个角都相等的三角形是等边三角形

36、推论 2 有一个角等于 60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理 1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于 360° 49、四边形的外角和等于 360°

50、多边形内角和定理 n 边形的内角的和等于(n-2)×180° 51、推论 任意多边的外角和等于 360°

52、平行四边形性质定理 1 平行四边形的对角相等 53、平行四边形性质定理 2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理 3 平行四边形的对角线互相平分

56、平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理 2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理 1 矩形的四个角都是直角 61、矩形性质定理 2 矩形的对角线相等

62、矩形判定定理 1 有三个角是直角的四边形是矩形 63、矩形判定定理 2 对角线相等的平行四边形是矩形 64、菱形性质定理 1 菱形的四条边都相等

65、菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即 S=(a×b)÷2

3

67、菱形判定定理 1 四边都相等的四边形是菱形 68、菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理 1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理 1 关于中心对称的两个图形是全等的

72、定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论 2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷ 2 S=L×h

如果 ad=bc ,那么 a:b=c:d

83、(1)比例的基本性质:如果 a:b=c:d,那么 ad=bc

84、(2)合比性质:如果 a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性质:如果 a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例, 那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)

4

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS) 94、判定定理 3 三边对应成比例,两三角形相似(SSS)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理 2 相似三角形周长的比等于相似比 98、性质定理 3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理 不在同一直线上的三点确定一个圆。

110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论 1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论 2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形

114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理 一条弧所对的圆周角等于它所对的圆心角的一半

5

117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论 2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线 L 和⊙O 相交 ②直线 L 和⊙O 相切 ③直线 L 和⊙O 相离

d=r d﹥r

d﹤r

122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理 圆的切线垂直于经过切点的半径 124、推论 1 经过圆心且垂直于切线的直线必经过切点 125、推论 2 经过切点且垂直于切线的直线必经过圆心

126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理 弦切角等于它所夹的弧对的圆周角

129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条 线段长的比例中项

133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离

④两圆内切

d﹥R+r

②两圆外切

d=R+r③两圆相交

d﹤R-r(R﹥r)

R-r﹤d﹤R+r(R﹥r)

d=R-r(R﹥r) ⑤两圆内含

136、定理 相交两圆的连心线垂直平分两圆的公共弦 137、定理 把圆分成 n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正 n 边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正 n 边形的每个内角都等于(n-2)×180°/n

140、定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141、正 n 边形的面积 Sn=pnrn/2

p 表示正 n 边形的周长

6

142、正三角形面积√3a/4 a 表示边长

143、如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360°,因此 k× (n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n 兀 R/180

145、扇形面积公式:S 扇形=n 兀 R^2/360=LR/2 146、内公切线长= d-(R-r)

外公切线长= d-(R+r)

二、基本知识

2.1 数与代数

2.1.1 数与式

2.1.1.1 有理数

有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示 0(原点),选取某一长度作为单位长度, 规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一 个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧, 并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于 0, 负数小于 0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝 对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是 0。两个负数比较大小, 绝对值大的反而小。 有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为 0; 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一 个数与 0 相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与 0 相乘得 0。③乘 积为 1 的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0 不能作除数。

乘方:求 N 个相同因数 A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次 数。

7

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2.1.1.2 实数

无理数:无限不循环小数叫无理数

平方根:①如果一个正数 X 的平方等于 A,那么这个正数 X 就叫做 A 的算术平方根。 ②如果一个数 X 的平方等于 A,那么这个数 X 就叫做 A 的平方根。③一个正数有 2 个平方根/0 的平方根为 0/负数没有平方根。④求一个数 A 的平方根运算,叫做开平方,其中 A 叫做被开方数。

立方根:①如果一个数 X 的立方等于 A,那么这个数 X 就叫做 A 的立方根。②正数的 立方根是正数、0 的立方根是 0、负数的立方根是负数。③求一个数 A 的立方根的运算叫开立方,其中 A 叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有 理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

2.1.1.3 代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同 类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

2.1.1.4 整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项 式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) ,(AM)N=AMN , (A/B)N=AN/BN

除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字 母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 两条公式:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在 被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式, 先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因

8

式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式 A 除以整式 B,如果除式 B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为 0。

②分式的分子与分母同乘以或除以同一个不等于 0 的整式,分式的值不变。分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为 0 的解称为原方程的增根。

2.1.2 方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是 1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为 0)一个代数式, 所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是 1 的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为 2 的方程

1) 一元二次方程的二次函数的关系

一元二次方程是二次函数的一个特殊情况,就是当 Y=0 的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中图象与 X 轴的交点。即该方程的解。

2) 一元二次方程的解法

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

本文来源:https://www.bwwdw.com/article/bq6.html

Top