数学分析 第五讲 积 分

更新时间:2023-10-04 06:56:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第五讲 积 分

一、知识框架:

?定积分的定义:分割、近似、求和、取极限??必要条件??可积条件??充要条件??充分条件????线性组合性????区间可加性????不等式性?积分性质???绝对值性定积分??积分中值定理?????斯瓦茨不等式???牛顿莱布尼茨公式(不定积分)???定积分的计算?换元法???分部积分????对称性? ?变限积分??非正常积分二、重要结论:

三、例题赏析:

1例9.设m,n?0为整数,求积分xm(1?x)ndx的值.

?0 解:

1设I(m,n)=?xm(1?x)ndx,则由分部积分法有0m?111xm?1xm?1nnxn?1I(m,n)=?(1-x)d?(1?x)|??n(1?x)(?1)dx?I(m?1,n?1).0m?1m?1m?1m?100n 1从而

I(m,n)?

nnn?1nn?11I(m?1,n?1)?I(m?2,n?2)????I(m?n,0)m?1m?1m?2m?1m?2m?nn!1m!n!即得解。 ??(m?n)!m?n?1(m?n?1)!m!aa(利用余元公式、换元、?函数更为简单)

f(x)例10.设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则?dx??f(x)dx. x1+e?a0证明:由f(x)是定义在[-a,a]上的连续的偶函数知f(?x)?f(x),从而令x??t有

f(x)f(?t)etf(t)dx??(?dt)??dt x?tt?1+e1?e1?e?aa?aaaaaa?aaf(x)1f(x)etf(t)1从而?dx?(dx?dt)?f(x)dx xxt???1+e2?a1+e1?e2?a?a?a11?[?f(x)dx??f(x)dx]?[?f(x)dx??f(x)dx]??f(x)dx得证。 2?a20000设实值函数f(x)及其一阶导数在区间[a,b]上连续,而且f(a)=0,则bx?[a,b]b120aaaa例11.max|f(x)|?b?a(|f'(t)|2dt),?a

?a1f(x)dx?(b?a)2?|f'(t)|2dt.2a2b证明: 我们先来证明一个不等式,一般的称为Cauchy---Schwarz不等式,即

bb2定理1

?f(x)g(x)dx?(?faa(x)dx)(?g2(x)dx)(f,g是[a,b]上的可积函数)

a1b212设h(x)?f(x)?tg(x),则h2(x)?f2(x)?2tf(x)g(x)?t2g2(x),两边从a到b取积分,有b2b2bb?h(x)dx??faab(x)dx?2t?f(x)g(x)dx?t2?g2(x)dx

aab22b由等式右边对?t??都成立,知??(2?f(x)g(x)dx)?4?f(x)dx?g2(x)dx?0.即证.aaa下面我们来证明题目:(1)设max|f(x)|?|f(x0)|,则有Newton?Leibniz公式有x?[a,b]x0x02x0|f(x0)|?|f(a)|??|f(t)|dt??|f(t)|dt即|f(x0)|?(?|f(t)|dt)2

aaax02x02x02b??|f(t)|dt?1dt?(x0?a)?|f(t)|dt?(b?a)?|f(t)|2dtaaaa两边开方即得证。

(2)同样,由Newton-Leibniz公式有xx2x2x2xf(x)?f(a)??f'(t)dt??f'(t)dt即f(x)?(?f'(t)dt)??f'(t)dt?12dtaaaaab2bx等式两边x从a到b积分有?f'(x)dx??[(x?a)?f'2(t)dt]dxaaaxb(x?a)2(x?a)2b(x?a)222??[?f'(t)dt]d??f'(t)dt|??f'(x)dxaa222aaa2bx

(b?a)2?2b?f'(t)dt又得证。a2?dx(?1)n?1例12.计算积分? 的值,并证明它也等于数项级数?的和。31+x3n?2n?101解:设I=1dx ,3?01+x111dxdx111x?2则I????(?)dx32??0(1?x)(1?x?x2)1?x31?x3x?x?1001112x?1?31?ln(1?x)|??2dx060x?x?131111112?ln2?ln(x?x?1)|??2dx020x?x?1362x?1)13123313?3?ln2??ln2?arctan?ln2?2x?12333?333901?()31

d((?1)n?1为证明?=I,我们先来证明一个定理:

n?13n?2?Rn?1定理2 设f(x)??anx在|x|

n?1n?0n?0?n?R?0Rn?1 f(x)dx??ann?1n?0?事实上,f(x)在(?R,R)上收敛,从而内闭一致收敛,对于任何x?(-R,R),都有xn?1f(t)dt???antdt???antdt??an,?n?1n?00n?000n?0nn??xn?1Rn?1即有幂级数?an在(?R,R)上收敛,而?an也收敛,n?1n?1n?0n?0?xx??x

从而在[0,R]上一致收敛,和函数在x=R处左连续,便有R?0?xn?1Rn?1f(x)dx?lim?an??anx??R?0n?1n?1n?0n?0???(?1)n?1回到题目,看数项级数?收敛,设f(x)=?(?1)n?1x3n?3,|x|<1,由定理2即知

n?0n?13n?2(?1)n?1 ?=?f(x)dx=I. n?13n?20?1例13. 设函数f(x)和g(x)在[a,b]内可积,证明:对[a,b]内任意分割

?:a?x0?x1?...?xn?b,??i,?i?[xi,xi?1],i?0,1,2,....有|?|?0lim?f(?i)g(?i)?xi??f(x)g(x)dxi?0an?1b

证明:

根据定义?baf(x)g(x)dx?lim?f(?i)g(?i)?xi|?|?0i?0n?1i?0n?1i?0n?1|?f(?i)g(?i)?xi??f(?i)g(?i)?xi|?|?f(?i)[g(?i)?g(?i)]?xi|i?0n?1?max{|f(?i)|}?|g(?i)?g(?i)|?xiii?0n?1

n?1i?0由于g(x)可积,所以?|g(?i)?g(?i)|?xi???i?xi?0,(?i为振幅)i?0n?1?lim|?f(?i)g(?i)?xi??f(?i)g(?i)?xi|?0,从而得证|?|?0i?0i?0n?1n?1例14.设f(x)在[0,+∞]上连续,?0?(x)dx绝对收敛,证明:

??lim?nx??0??xf()?(x)dx?f(0)??(x)dx

0n证明:

lim?nx??0??xf()?(x)dx?f(0)??(x)dx0nn??因为??(x)dx绝对收敛,当n足够大的时候??(x)dx???(x)dx

由于?的任意性,所以命题成立例15.设

πf?x?在?0,π?上连续,证明

ππ⑴xf?sinx?dx??20⑵若则

?f?sinx?dx

0f?x??0,x??0,π?,且?f?x?dx?0,

0πf?x??0,x??0,π?,

π 证 记I??xf?sinx?dx

0ππ (1) 令x?π?t,则

πI??xf?sinx?dx??(π?t)f?sint?dt?π?f?sint?dt?I

000ππ因此,左?I?2?f?sint?dt?右

0(2)(用反证法)若不然,则?x0??0,π?使得

f?x0??0,

由极限的保号性,存在开区间(a,b)使得x0??a,b???0,π?,且当x?(a,b)时,有

πf(x0), 这与?f?x?dx?0矛盾. f(x)?20ax2?bx?c例16.若不定积分?2dx为有理式,则a,b,c应满足什么条件?

x?x?1?ax2?bx?ccax?b?c解 因2,故 ??2?x?x?1?xx(x?1)?a?0ax2?bx?c当且仅当?时,不定积分?2dx为有理式.

xx?1???b?c?0例17.设F(x)??x?1tlntdt,求F'(0)

xlnxF(x)??x?1tlntdt?F'(x)?xlnx?limF'(0)?limx?0lnx?lnx?lim?0

x?0x??1xx例18、

???1sin2xdx x 2)

???1sinxdx 1x?x???1??1?cos2xsin2xdx??dx1x2x???1??1?cos2xsin2xdx??dx1x2xsin2(x?)sin2(x?)??1????1???44d(x??) ??dx??d(x?) ??dx??1111????2x42x42(x?)?2(x?)?4242??1??sin2x??1??sin2x??dx???dx。发散??dx???dx。发散11?11???2x2x42x?42x?22??例19、证明积分?0??cos(x2)dx在|p|?p0?1上一致收敛 px解:另外可以用积分判别法的Dirichlet定理做

2??cos(x)??cos(x)dx??0xp?0pdxx2??cosx??cosx??dx?p?1?02xadx02x2p?1a??(0,1)2??cosxsinx????asinxdx?|??dx a01?a?02xa02x2x对任意??0,不难证明N足够大的时候:asinx?N2x1?adx?从而得证M?MNMa2sinxdx?sinxdx??N4x2?2a例20设

???af(x)= 0. f(x)dx收敛,且f(x)在?a,???上一致连续,证明xlim???证 因f(x)在?a,???上一致连续,故???0,???0,使得当

t1,t2??a,???且t1?t2??时,有f(t1)?f(t2)?a?n??2,

令un?a?(n?1)??f(x)dx,则由积分第一中值定理得,

a?n??xn??a?(n?1)?,a?n??,使得un?因???aa?(n?1)??f(x)dx??f(xn).

f(x)dx收敛,故级数?un收敛,从而un?0,即

n?1??f(xn)?0,也即f(xn)?0,故对上述的?,存在N???,使得

当n?N时,f(xn)??2.

取X?a?N?,则当x?X时,因

x??a,?????a?(k?1)?,a?k??

k?0?故存在惟一的k???,使得x??a?(k?1)?,a?k??,易见k?N,且

x?xk??,从而

f(x)?f(xk)?f(x)?f(xk)?33?2??2??

例21求曲线x?acost,y?asint(a?0)绕直线y?x旋转所成的曲面的表面积. 解: 这是星形线,充分考虑到对称性(x=0,y=0,x=y,x=-y),有

本文来源:https://www.bwwdw.com/article/bpbd.html

Top