2014中考数学分类汇编:列方程解应用题(一元一次方程不等式)

更新时间:2023-06-07 11:19:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2013中考全国100份试卷分类汇编

列方程解应用题(一元一次方程不等式)

1、(2013 资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人

2、(2013 宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为( )头.

3、(2013 呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?

4、(2013 黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.

(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?

(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买

A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?

5、(2013 莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.

(1)两种跳绳的单价各是多少元?

(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?

6、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.

(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?

(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?

解析:(1)设购买A型学习用品x件,则B型学习用品为

(1000 x). (1分)

根据题意,得20x 30(1000 x) 26000 (2分)

解方程,得x=400.

则1000 x 1000 400 600.

答:购买A型学习用品400件,购买B型学习用品

件. (4分)

(2)设最多购买B型学习用品x件,则购买A型学习用品为(1000 x)件. 根据题意,得20(1000 x)+30x 28000 (6分)

解不等式,得x 800.

答:最多购买B型学习用品800件. (7分)

7、(2013 绥化)为了迎接“十 一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两

(1)求m的值;

(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?

(3)在(

2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?

600

8、(2013 恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.

(1)求这两种商品的进价.

(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

9、(2013 黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准

10、(2013 益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.

(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?

(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.

11、(2013 德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.

(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)

(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值

12、(2013 温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.

(1)求从袋中摸出一个球是黄球的概率;

(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?

13、(2013 泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.

(1)符合题意的组建方案有几种?请你帮学校设计出来;

(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?

14、(2013 眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天. ①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?

②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?

15、(2013 攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.

(1)求购进甲,乙两种钢笔每支各需多少元?

(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?

(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第

(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

16、(2013 自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.

(1)求该校的大小寝室每间各住多少人?

(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?

17、(2013 遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.

(1)若将这批货物一次性运到灾区,有哪几种租车方案?

(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?

18、(2013 牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).

(1)请你设计出进货方案;

(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?

(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.

19、(2013年南京) 某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾 注:300~400表示消费金额大于300元且小于或等于400元,其他类同。

根据上述促销方案,顾客在该商场购物可以获得双重优惠。例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400 (1 80%) 30=110(元)。

(1) 购买一件标价为1000元的商品,顾客获得的优惠额是多少?

(2) 如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?

解析:解:(1) 购买一件标价为1000元的商品,消费金额为800元,

顾客获得的优惠额为1000 (1 80%) 150=350(元)。 (2分)

(2) 设该商品的标价为x元。

当80%x 500,即x 625时,顾客获得的优惠额不超过625 (1 80%) 60=185<226; 当500<80%x 600,即625 x 750时,(1 80%)x 100 226。解得x 630。 所以630 x 750。

当600<80%x 800 80%,即750<x 800时,

顾客获得的优货额大于750 (1 80%) 130=280>226。

综上,顾客购买标价不超过800元的商品,要使获得的优或额不少于226元, 那么该商品的标价至少为630元。 (8分)

20、(2013 天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.

(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?

21、(2013 昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.

(1)求打折前每本笔记本的售价是多少元?

(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?

22、(3-3列不等式(组)解应用题·2013东营中考) (本题满分10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.

(1)求每台电脑、每台电子白板各多少万元?

(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.

22. (本题满分10分)分析:(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:1台电脑+2台电子白板凳3.5万元,2台电脑+1台电子白板凳2.5万元,列方程组即可.

(2)设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系列不等式组解答. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:

x 2y 3.5, 3分 2x y 2.5

解得: x 0.5, 4分

y 1.5

答:每台电脑0.5万元,每台电子白板1.5万元. 5分

(2)设需购进电脑a台,则购进电子白板(30-a)台,

0.5a 1.5(30 a)≥28,则 6分 0.5a 1.5(30 a)≤30

解得:15#a17,即a=15,16,17. 7分

故共有三种方案:

方案一:购进电脑15台,电子白板15台.总费用为0.5 15 1.5 15 30万元; 方案二:购进电脑16台,电子白板14台.总费用为0.5 16 1.5 14 29万元; 方案三:购进电脑17台,电子白板13台.总费用为0.5 17 1.5 13 28万元; 所以,方案三费用最低. 10分

点拨:(1)列方程组或不等式组解应用题的关键是找出题目中存在的等量关系或不等关系。

(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。

23、(2013年潍坊市)为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.

(1)若小明家计划2013年全年的用电量不超过

2520 度,则6至12月份小明家平均每月用电

量最多为多少度?(保留整数)

(2)若小明家2013年6月至12月份平均每月

用电量等于前5个月的平均每月用电量,则小明

家2013年应交总电费多少元?

答案:(1)设小明家6月至12月份平均每月用

电量为x度,根据题意的:

1300+7x≤2520,解得x≤1220≈174.3 7

所以小明家6至12月份平均每月用电量最多为

174度.

(2)小明家前5个月平均每月用电量为1300÷

5=260(度).

全年用电量为260×12=3120(度).

因为2520﹤3120﹤4800.

所以总电费为2520×0.55+(3120-2520)×0.6=1386+360=1746(元).

所以小明家2013年应交总电费为1746元

.

考点:不等式的应用与分段计费问题

点评:根据题意弄清关系,列出不等式,求出整数解是解第一小题的关键.解决第二小题则需要找出正确的计量电费的档位,分段算出全年应缴总电费.

本文来源:https://www.bwwdw.com/article/boi1.html

Top