贝叶斯统计经典统计区别

更新时间:2023-11-23 01:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

贝叶斯统计与经典统计的区别

摘 要:21世纪,贝叶斯统计打破经典统计独树一帜的局面,已经开始应用到各个领域,但是两个学派存在着很多争论。本文从经典统计和贝叶斯统计在基础理论方面是否利用先验信息,在基本性质方面是否把参数当做随机变量、是否重视未出现的样本信息、对概率的理解的不同以及在点估计、区间估计等方面等来分析它们的区别,并比较分析了他们在统计推断中的优缺点。

关键词:贝叶斯统计,经典统计,先验信息,点估计,区间估计,假设检验

一、贝叶斯统计和经典统计基本理论的区别 统计推断所依据的信息不同:

经典统计,即基于总体信息、样本信息所进行的统计推断。它的基本观点是:把数据看成是来自具有一定概率分布的总体,所研究的对象是这个总体而不局限于数据本身。而贝叶斯统计是基于总体信息、样本信息、先验信息进行的统计推断。它最基本的观点是:任一个未知量?%a 都可以看做是一个随机变量,应用一个概率分布去描述对 ?%a的未知状况。这个概率分布是在抽样前就有的关于?%a的先验信息的概率陈述。

经典统计和贝叶斯统计最主要的区别就是在于是否利用了先验信息。贝叶斯推断是基于总体信息、样本信息、先验信息,而经典统计推断只依赖于总体信息和样本信息。 二、贝叶斯统计和经典统计的基本性质不同:

本文来源:https://www.bwwdw.com/article/bogv.html

Top