Tricritical point of lattice QCD with Wilson quarks at finit
更新时间:2023-04-22 02:25:01 阅读量: 实用文档 文档下载
First principle study of QCD at finite temperature $T$ and chemical potential $\mu$ is essential for understanding a wide range of phenomena from heavy-ion collisions to cosmology and neutron stars. However, in the presence of finite density, the critical
4
002 voN 61 3v9105040/tal-ep:hviXraTricriticalpointoflatticeQCDwithWilsonquarksat nitetemperatureanddensity
Xiang-QianLuo
CCAST(WorldLaboratory),P.O.Box8730,Beijing100080,China
DepartmentofPhysics,Zhongshan(SunYat-Sen)University,Guangzhou510275,China
(February1,2008)FirstprinciplestudyofQCDat nitetemperatureTandchemicalpotentialµisessentialforunderstandingawiderangeofphenomenafromheavy-ioncollisionstocosmologyandneutronstars.However,inthepresenceof nitedensity,thecriticalbehaviorlatticegaugetheorywithoutspeciesdoubling,isunknown.Atstrongcoupling,weexaminethephasestructureonthe(µ,T)plane,usingHamiltonianlatticeQCDwithWilsonfermions.Atricriticalpointisfound,separatingthe rstandsecondorderchiralphasetransitions.Suchatricriticalpointat niteThasnotbeenfoundinpreviousworkintheHamiltonianformalismwithKogut-Susskindfermionsornaivefermions.12.38.Gc,11.10.Wx,11.15.Ha,12.38.Mh
PublishedinPhys.Rev.D70,091504(RapidCommun.)(2004).
I.INTRODUCTION
InLagrangianformulationofSU(3)LGTat niteµ,complexactionspoilsnumericalsimulationswithimpor-Oneofthemostchallengingissuesinparticlephysicstancesampling.TherecentyearshaveseenenormousistostudyQCDinextremeconditions.Precisedetermi-e orts[4–6]onsolvingthecomplexactionproblem,andnationoftheQCDphasediagramontemperatureTandsomeveryinterestinginformation[7]onthephasedia-chemicalpotentialµplanewillprovidevaluableinfor-gramforQCDwithKSfermionsatlargeTandsmallmationforquark-gluonplasma(QGP)andneutronstarµhasbeenobtained.Nevertheless,topreciselylocatephysics.
thetricriticalpointandcriticallineatlargeµisstillForQCDwithtwomasslessquarks,severalapproxi-anextremelydi culttask.Onehasalsotoresolvethemationmodels(e.g.linearsigmamodel,Nambu-Jona-contradictionbetweenMonteCarlo(MC)simulationsatLasinomodel,randommatrixmodel,statisticalboot-intermediatecouplingandstrongcouplinganalysisfor1strap)[1]suggesttheexistenceofatricriticalpointonstaggered avor(correspondingto4 avorsinthecontin-the(µ,T)planeseparatingthe rstordertransitionlineuum):MCdata[6]indicatethatthechiralphasetran-atlowerTandlargerµ,andthesecondordertransitionsitionatµ=0andsome niteTCisof rstorder,lineathigherTandsmallerµ.Therehasbeenapro-whilestrongcouplinganalysis[8,9]favorsthesecondor-posal[2]forexperimentalsearchforthetricriticalpoint,dertransition;TheauthorofRef.[9]studiesthephaseviaevent-by-event uctuationsinheavy-ioncollisions.diagramonthe(µ,T)plane,anddiscoversatricriticalLatticegaugetheory(LGT),proposedbyWilson[3]point,whileinMCsimulation[6],onlyalineof rstor-isthemostreliablenon-perturbativeapproachtoQCD,derphasetransitionisfound.Itmightwellbethattheybasedon rstprinciples.Unfortunately,itsu ersprob-belongtodi erentuniversalityclasses.
lemslikethecomplexactionat niteµandspeciesdou-QCDatlargeµisofparticularimportanceforneu-blingwithnaivefermions.
tronstarorquarkstarphysics.Hamiltonianformula-Kogut-Susskind(KS)’sapproachtolatticefermionstionofLGTdoesn’tencounterthenotorious“complexthinsthedegreesoffreedom,andpreservestheremnantactionproblem”.Recently,weproposedaHamiltonianofchiralsymmetry,butitdoesn’tcompletelysolvetheapproachtoLGTwithnaivefermionsat niteµ[10,11],speciesdoublingproblem;Itbreaksthe avorsymme-andextendedittoWilsonfermions[12].Thechiralphasetryaswell.Wilson’sapproachtolatticefermions[3]transitionatT=0andsome niteµCwasfoundtobehasbeenextensivelyusedinhadronspectrumcalcula-of rstorder.InRefs.[13,14],theauthorsstudiedthetionsaswellasinQCDat nitetemperature;ItavoidsphasediagramofQCDwithKSfermionsfor2and4 a-thespeciesdoublingandpreservesthe avorsymmetry,vorsandnaivefermionsfor4 avors.Alineofsecondbutitexplicitlybreaksthechiralsymmetry,oneoftheorderphasetransitionwasfoundinbothcases,butnomostimportantsymmetriesoftheoriginaltheory;Non-tricriticalpointwasfoundatany niteT.
perturbative ne-tuningofthebarefermionmasshastoInthispaper,westudythephasediagramusingHamil-bedone,inordertode nethechirallimit.
tonianlatticeQCDwithWilsonfermions.Atstrongcou-
First principle study of QCD at finite temperature $T$ and chemical potential $\mu$ is essential for understanding a wide range of phenomena from heavy-ion collisions to cosmology and neutron stars. However, in the presence of finite density, the critical
plingandinthenon-perturbativelyde nedchirallimit,we ndatricriticalpointonthe(µ,T)plane.Therestofthepaperisorganizedasfollows.InSec.II,wederivethee ectiveHamiltonianat niteTandµ.InSec.III,weanalyzetheQCDphasediagram.Theresultsaresum-marizedinSec.IV.
II.EFFECTIVEHAMILTONIANATTHE
STRONGCOUPLING
A.Theµ=0case
AccordingtoEq.(3)andfollowingtheprocedureinSec.IIA,theroleoftheHamiltonianatstrongcouplingisnowplayedby
µHeff=Heff µN.
(5)
ThevacuumenergyistheexpectationvalueofH µN
initsgroundstate| ,andalsotheexpectationvalueofµHeffinitsgroundstate| eff ,givenby
µ
E = |H µN| = eff|Heff| eff .
(6)
WebeginwithQCDHamiltonianwithWilson
fermionsatµ=0on1dimensionalcontinuumtimeandd=3dimensionalspatialdiscretizedlattice,
¯(x)ψ(x)H=Mψ
x
C.ResultsforlargeNc
+
1
d xj=1
AsshowninRef.[12],underthemean- eldapproxima-tion,i.e.,byWick-contractingapairoffermion eldsin
thefourfermiontermsinHeff,onecanobtainabilinearHamiltonianinleadingorderof1/Nc
µµ¯(x)ψ(x)ψHeff~HMFA=A
x
2a
1
αα
Ej(x)Ej(x)
+(B µ)
whereA=M
a4aNc
Kd
v
2
2
x
ψ (x)ψ(x)+C,
(7)
a
,(2)
m,a,randgarerespectivelythebarefermionmass,
spatiallatticespacing,Wilsonparameter,andbarecou-plingconstant.U(x,k)isthegaugelinkvariableatsite
.Theconventionγ k= γkisused.xanddirectionk
αEj(x)isthecolor-electric eldatsitexanddirectionjandUpistheproductofgaugelinkvariablesaroundanelementaryspatialplaquette.
For1/g2<<1,onecanintegrateoutthegauge eldsandderivethee ectiveHamiltonianHeff,consistingoftermswithtwofermionsandfourfermions[15,16].
B.TheT=0andµ=0case
(1+r)v (1 r)¯v
22
NsNf.(8)
Thecoe cientAplaystheroleofdynamicalmassof
¯quark.v¯andv arerespectivelytheexpectationofψψ
andψ ψin| eff ,pidedbyNsandNf,i.e.,thetotalnumberoflatticesitesandthenumberof avors.
K=
1
Inthecontinuum,thegrandcanonicalpartitionfunc-tionofQCDat niteTandµis
Z=Tre β(H µN),
β=(kBT) 1,
(3)
aNc
v¯.
(10)
wherekBistheBoltzmannconstantandNisparticle
numberoperator
N=ψ (x)ψ(x).(4)
x
Inthechirallimit,thereareonlytwofreeparameters
left:randµinEq.(7).Thevacuumenergyis2
First principle study of QCD at finite temperature $T$ and chemical potential $\mu$ is essential for understanding a wide range of phenomena from heavy-ion collisions to cosmology and neutron stars. However, in the presence of finite density, the critical
¯ 1) E =2NcNfNsMchiral(n+n
a
2 Kd
n+n¯2+1 2¯n+
Kdr2
′2TC
1
′2TC
1
1
,
1+3r2
(15)
nlnn+(1 n)ln(1 n)
a
+n¯lnn¯+(1 n¯)ln(1 n¯),
whichisdepictedbythedottedlineforr=1inFig.4.
Inthelowerandleftcorner,thechiralcondensateanddynamicalmassofquarkarenon-zero.Intheotherside,theyvanishidentically.
′
Belowsome niteT3,thesituationisdi erent.Thereisa rstorderchiralphasetransitionline
2
µ′C=1+2r.
(16)
(13)
istheentropy.
Oncenandn¯areknown,thechiralcondensateandquarknumberdensityintheleadingorderof1/Nccandirectlybeobtained
¯ |xψ(x)ψ(x)| ¯ = ψψ
v
2NcNfNs
1→
′
fromsome niteT3downtoT′=0.thisisillustratedbythesolidlineforr=1inFig.4.Chiralcondensateanddynamicalmassofquarkjumpfromnon-zeroforµ′<µ′C
′′
tozeroforµ>µC.Thisisconsistentwiththedataob-tainedbyminimizingΦ,asshowninFigs.1,2and3.µ′Cislargerthanthedynamicalmassoffermionatzerotem-perature.Thereason,asexplainedindetailsinRef.[12],isduetothefactthatWilsonfermionsbreakexplicitlythechiralsymmetry.Thisseemscounter-intuitive,sincefromathermodynamicalpointofview,atransitionisex-pectedwhenthechemicalpotentialequalsthedynamicalfermionmass.Itwouldbeinterestingtoseewhetherthedi erencedisappearsinthecontinuumlimit.
ThepointswhentwolinesdescribedbyEq.(15)and
′′′′′′
Eq.(16)joinare(µ′3,T3)and(µ3,T).(µ3,T3)isthetri-criticalpoint,whiletheotheroneathightemperatureisjustacriticalpointonthesecondorderphasetransitionline.TableIgivesthelocationofthetricriticalpointfor
′
variousr.Forr=1,we nd(µ′3,T3)=(3,0.4498),i.e.thecircleinFig.4.Thephasestructureforanyr=0isqualitativelythesame.Notethatthesystemalongthe
+
lineµ′=µ′3+0experiencesaninvertedbehavior:For
′
T′∈[0,T3),thesystemisinthechiral-symmetricphase;
′
WhileforT∈(T3,T′′),thesystementersintothechiral-brokenphase;ForT′>T′′,thesystemisagaininthechiral-symmetricphase.ThevalueofT′′isalsogiveninTab.I.Suchabehaviorexistsevenfornaivefermions,thoughthereisnotricriticalpointat niteTwhenr=0.Figure5showstheresultsforthechiralcondensateandquarknumberdensity(14)asafunctionµ′forT′=1andr=1,abovethetricriticalpoint;Theresultsin-dicatethereisasecondorderchiralphasetransitionatµ′=3.1770.Figure6showsthoseforT′=0.25andr=1,belowthetricriticalpoint;Thereisa rstorderchiralphasetransitionatµ′=3.Figure7showsthechiralcondensateforµ′=0andr=1;ThereisasecondorderchiralphasetransitionatT′=2.TheseresultsareobtainedbylocatingtheminimumofΦ,andthecriticalpointisconsistentwiththepredictionofEqs.(15)and(16).
3
First principle study of QCD at finite temperature $T$ and chemical potential $\mu$ is essential for understanding a wide range of phenomena from heavy-ion collisions to cosmology and neutron stars. However, in the presence of finite density, the critical
IV.DISCUSSIONS
Intheprecedingsections,wehaveinvestigatedtheQCDphasediagraminHamiltonianlatticeformulationwithWilsonfermions.Atthestrongcoupling,we ndatricriticalpointonthe(µ,T)plane,whichhasnotbeenfoundinpreviousworkintheHamiltonianfor-malismwithKogut-Susskindfermionsornaivefermions.Our ndingsimplythatonthe(µ,T)phase,thephasestructureofQCDwithWilsonfermions(withoutspeciesdoubling)mightbequalitativelydi erentfromnaiveorKogut-Susskindfermions(withspeciesdoubling).Fur-therdetailedlatticestudywillbeveryimportantforun-derstandingtheQCDphasediagram.
r=1,µ′=0,T′=0.4
2NcNfNs
-1.5-2.0-2.5-3.0
0.20.4
n0.60.8
10.80.6¯0.4n
0.2
10
ACKNOWLEDGMENTS
FIG.1.3Dplotofthegrandthermodynamicpotentialasafunctionofnandn¯atr=1,µ′=0,andT′=0.4,wherethesystemisinthechiral-broken
phase.
IthankV.Azcoiti,Y.Fang,S.Guo,S.Katz,liena,andM.Lombardoforusefuldiscussions.ThisworkissupportedbytheKeyProjectofNationalSci-enceFoundation(10235040),andNationalandGuang-dongMinistriesofEducation.
Φ
r=1,µ′=3.5,T′=0.4
2NcNfNs
-6.6-6.8-7.0
0.20.4
n0.60.8
10.80.6¯0.4n
0.2
10
FIG.3.ThesameasFig.1,butforr=1,µ′=3.5,andT′=0.4,wherethesystemisinthechiral-symmetricphase.
4
First principle study of QCD at finite temperature $T$ and chemical potential $\mu$ is essential for understanding a wide range of phenomena from heavy-ion collisions to cosmology and neutron stars. However, in the presence of finite density, the critical
r=1
2.52
-<ψψ>
1.5T′
10.50
r=1,T′=0.25
00.511.5
2
µ′
2.533.54
µ′
FIG.4.Phasediagram.Thesolidanddottedlinesstandrespectivelyforthe rstandsecondordertransitions.Thecircleisthetricriticalpoint.
r0.0
1.02
0.2
1.18
0.4
1.50
0.6
1.98
0.8
2.62
1.0
′T30.0000
1.2
0.3504
0.0087
0.4269
0.0489
2Nc
10.80.60.40.200
0.5
1
1.5
2
2.5
0.5771
0.1336
0.7979
0.2670
1.0867
0.4498
FIG.7.ChiralcondensateasafunctionofT′atr=1andµ′=0.Eq.(15)predictsasecondorderchiralphase
′
transitionatTC=2.
1
0.90.80.70.60.50.40.30.20.10
2Nc
00.511.522.533.54
FIG.5.Chiralcondensateandquarknumberdensityasafunctionofµ′atr=1andT′=1.Eq.(15)predictsasecondorderchiralphasetransitionatµ′C=3.1770.
5
nq
¯
正在阅读:
Tricritical point of lattice QCD with Wilson quarks at finit04-22
机械设计课程设计计算说明书-螺旋输送机传动装置 - 图文10-30
大工19春《马克思主义基本原理》在线测试3(资料)09-29
对联的种类10-14
电力建设工程质量控制(第一章监理工程师对工程质量的控制)09-30
建立良好的师幼关系对策研究03-24
新教师拜师方案01-09
最新大学老师实习报告范文精选02-22
- 1QCD改善活动的培训(20070319)
- 2Wilson and Sperber--Relevance Theory
- 3Wilson and Sperber--Relevance Theory
- 4(3) Stress at a Point and Stress Field
- 5Anomalous Single Production of the Fourth Generation Quarks at the LHC
- 6Multiple Description Vector Quantization with Lattice Codebooks Design and Analysis
- 7Unit2 language point1
- 8Anomalous critical behavior near the quantum critical point
- 9Multiple Description Vector Quantization with Lattice Codebooks Design and Analysis
- 10FXSZ 富士施乐 QCC QCD 改善案例 02
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Tricritical
- lattice
- Wilson
- quarks
- point
- finit
- with
- QCD
- 2014年下半年宁德事业单位考试时间
- 舒筋活络胶囊抗类风湿性关节炎作用及机理研究
- 说优点、讲不足_手拉手_同进步课件
- 盐酸安全技术说明书(MSDS)
- 承包商综合能力评估表
- 五年级数学 综合算式100题.
- 使用WINPE启动盘安装WIN7
- 东莞居民消费结构调查报告
- 超星尔雅《大学生心理健康教育》题库
- 水氯失衡对连续重整催化剂性能的影响
- 财经法规与会计职业道德练习第四章
- 2022安全员C证考试最新题库及答案
- 常用家居风水吉祥物(下)
- 《腾飞的润基》宣传片策划文案
- 【医学精品课件】结合细菌耐药性监测谈抗菌药物的临床应用
- 咱俩不熟(染指你是个意外)(全文+番外,完结)_作者 红九
- 中国证监会上市公司行业分类指引
- 七年级数学下册期末模拟试题(一)北师大版
- 运动技能乒乓球教学
- 小学生必背名言警句