高考求函数值域及最值得方法及例题 - 训练题(3)
更新时间:2023-09-22 22:21:02 阅读量: 经管营销 文档下载
- 高考函数值域怎么考推荐度:
- 相关推荐
函数专题之值域与最值问题
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为 .
点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。
点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。
练习:若√x为实数,则函数y=x2+3x-5的值域为 ( ) A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞) (答案:D)。 六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。 例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。 解:原函数化为 -2x+1 (x≤1) y= 3 (-1
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。利用函数的图象 求函数的值域,体现数形结合的思想。是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。 七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。 例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。 练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3}) 八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则 x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2. 所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。 练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4} 九.构造法
根据函数的结构特征,赋予几何图形,数形结合。 例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。 解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位 正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 , KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共 线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2}) 十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。 解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数) ∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。 当k=-3/5时,x=3/5,y=-4/5时,zmin=1。 函数的值域为{z|z≥1}.
正在阅读:
高考求函数值域及最值得方法及例题 - 训练题(3)09-22
药检所实习心得12-31
2022年关于幼儿园元旦活动策划方案范文03-25
一起写作业作文1000字02-05
中国民主政治建设的成就和存在的问题11-17
维修电工技师自制试题库03-10
日处理污水10000吨污水处理厂建设项目报告书 - 图文10-26
经典古诗词大全12-05
2014-2020年中国刷卡机市场全景调查与投资战略分析报告08-23
物流客户服务试卷06-06
- 教育局拟征求中考升学奖励制度
- 2020房地产销售主管年终工作总结
- 虚拟多台位互感器检定装置投资项目可行性分析
- 车间工人辞职报告范本
- 溴投资项目可行性分析
- 改名字申请书怎么写
- 忧与爱作文素材
- 溴苯腈投资项目可行性分析
- 2020清华大学考研复试时间:3月6日至22日
- 2020年蚌埠高考查分系统网址
- 2020年二建《建筑工程实务》测试题及答案(13)
- 生死感悟——人间世观感一
- 武陵源区军地小学观看魏书生《如何当好班主任》讲座录像
- 全球10大安全旅游国出炉日本排名第9
- 企业策划书模板
- 高中英语教师工作总结3篇
- 法定代表人证明范本
- 大学助学金申请书范文1700字
- 案外人申请不予执行仲裁裁决司法解释施行首份申请书递交齐齐哈尔...
- 环球国际房地产开发项目策划
- 值域
- 例题
- 函数
- 值得
- 训练
- 高考
- 方法
- 论苏州园林政策法规与管理
- 节水及水平衡在线自测答案
- 2013-2014第二学期二年级品德与生活教案 - 图文
- 部编二年下册语文3、4单元试卷
- 新1-6年级阅读推荐书目
- 西南交大基础工程B离线作业
- 电弧炉烟气特性研究现状
- 期货套利交易模拟实验报告
- 安徽省淮南市潘集区2014-2015学年八年级下学期期中教学质量检测数学试题沪科版
- 计算机会计信息系统与手工会计系统的比较
- 2014年3月思想汇报多篇
- 生活饮用水的主要处理工艺流程
- 论中小企业人性化管理
- 推荐精品小学语文人教版六年级下册6北京的春天
- 2016届二轮复习 人教版 作文审题 专项突破训练(1)doc
- 秦皇岛市中长期教育改革和发展规划纲要
- 人教版2017-2018一年级上册数学期末测试题及答案修改
- 控制输血不良反应与输血感染方案
- 飞机构造基础
- 论文-打开孩子写话天窗