化工原理设计经典实例

更新时间:2024-05-13 21:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《化工原理课程设计》报告

48000吨/年乙醇~水 精馏装置设计

年级 专业 设计者姓名 设计单位

完成日期

年 月 1

目 录 一、概述 ···············································································································4 1.1 设计依据 ································································································ 4 1.2 技术来源 ································································································ 4 1.3 设计任务及要求 ····················································································· 5 二:计算过程 ·······································································································6 1. 塔型选择 ·································································································· 6 2. 操作条件的确定 ······················································································· 6 2.1 操作压力 ························································································· 6 2.2 进料状态 ························································································· 6 2.3 加热方式 ························································································· 6 2.4 热能利用 ························································································· 7 3. 有关的工艺计算 ······················································································· 7 3.1 最小回流比及操作回流比的确定 ··················································· 8 3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算 ···························· 9 3.3 全凝器冷凝介质的消耗量 ······························································ 9 3.4 热能利用 ························································································· 9 3.5 理论塔板层数的确定 ···································································· 10 3.6 全塔效率的估算 ··········································································· 11 3.7 实际塔板数NP············································································· 12 4. 精馏塔主题尺寸的计算 ·········································································· 12 4.1 精馏段与提馏段的体积流量 ························································ 12 4.1.1 精馏段 ················································································ 12 4.1.2 提馏段 ················································································ 14 4.2 塔径的计算 ··················································································· 15 4.3 塔高的计算 ··················································································· 17 5. 塔板结构尺寸的确定 ············································································· 17 5.1 塔板尺寸 ······················································································· 17 5.2 弓形降液管 ··················································································· 18 5.2.1 堰高 ···················································································· 18 5.2.2 降液管底隙高度h0 ····························································· 19 5.2.3 进口堰高和受液盘 ····························································· 19 5.3 浮阀数目及排列 ··········································································· 19

2

5.3.1 浮阀数目 ············································································ 19 5.3.2 排列 ···················································································· 20 5.3.3 校核 ···················································································· 20 6. 流体力学验算 ························································································· 21 6.1 气体通过浮阀塔板的压力降(单板压降)hp ·································· 21 6.1.1 干板阻力hc ········································································ 21 6.1.2 板上充气液层阻力h1 ························································· 21 6.1.3 由表面张力引起的阻力h?················································· 22 6.2 漏液验算 ······················································································· 22 6.3 液泛验算 ······················································································· 22 6.4 雾沫夹带验算 ··············································································· 23 7. 操作性能负荷图 ····················································································· 23 7.1 雾沫夹带上限线 ··········································································· 23 7.2 液泛线 ··························································································· 23 7.3 液体负荷上限线 ··········································································· 24 7.4 漏液线 ··························································································· 24 7.5 液相负荷下限线 ··········································································· 24 7.6 操作性能负荷图 ··········································································· 25 8. 各接管尺寸的确定 ················································································· 26 8.1 进料管 ··························································································· 27 8.2 釜残液出料管 ··············································································· 27 8.3 回流液管 ······················································································· 27 8.4 塔顶上升蒸汽管 ··········································································· 28 8.5 水蒸汽进口管 ··············································································· 28 3

一、概述 乙醇~水是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。因其良好的理化性能,而被广泛地应用于化工、日化、医药等行业。近些年来,由于燃料价格的上涨,乙醇燃料越来越有取代传统燃料的趋势,且已在郑州、济南等地的公交、出租车行业内被采用。山东业已推出了推广燃料乙醇的法规。 长期以来,乙醇多以蒸馏法生产,但是由于乙醇~水体系有共沸现象,普通的精馏对于得到高纯度的乙醇来说产量不好。但是由于常用的多为其水溶液,因此,研究和改进乙醇`水体系的精馏设备是非常重要的。 塔设备是最常采用的精馏装置,无论是填料塔还是板式塔都在化工生产过程中得到了广泛的应用,在此我们作板式塔的设计以熟悉单元操作设备的设计流程和应注意的事项是非常必要的。 1.1 设计依据 本设计依据于教科书的设计实例,对所提出的题目进行分析并做出理论计算。 1.2 技术来源 目前,精馏塔的设计方法以严格计算为主,也有一些简化的模型,但是严格计算法对于连续精馏塔是最常采用的,我们此次所做的计算也采用严格计算法。 4

1.3 设计任务及要求 原料:乙醇~水溶液,年产量48000吨 乙醇含量:35%(质量分数),原料液温度:45℃ 设计要求:塔顶的乙醇含量不小于90%(质量分数) 塔底的乙醇含量不大于0.5%(质量分数) 表1 乙醇~水溶液体系的平衡数据 液相中乙醇的含量(摩尔分数) 汽相中乙醇的含量(摩尔分数) 液相中乙醇的含量(摩尔分数) 汽相中乙醇的含量(摩尔分数) 0.0 0.004 0.01 0.02 0.04 0.06 0.08 0.10 0.14 0.18 0.20 0.25 0.30 0.35 0.0 0.053 0.11 0.175 0.273 0.34 0.392 0.43 0.482 0.513 0.525 0.551 0.575 0.595 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.894 0.90 0.95 1.0 0.614 0.635 0.657 0.678 0.698 0.725 0.755 0.785 0.82 0.855 0.894 0.898 0.942 1.0 5

二:计算过程 1. 塔型选择 根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为6667kg/h,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用浮阀塔。 2. 操作条件的确定 2.1 操作压力 由于乙醇~水体系对温度的依赖性不强,常压下为液态,为降低塔的操作费用,操作压力选为常压 其中塔顶压力为1.01325?105Pa 塔底压力[1.01325?105?N(265~530)]Pa 2.2 进料状态 虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取饱和液体进料 2.3 加热方式 6

精馏塔的设计中多在塔底加一个再沸器以采用间接蒸汽加热以保证塔内有足够的热量供应;由于乙醇~水体系中,乙醇是轻组分,水由塔底排出,且水的比热较大,故可采用直接水蒸气加热,这时只需在塔底安装一个鼓泡管,于是可省去一个再沸器,并且可以利用压力较底的蒸汽进行加热,无论是设备费用还是操作费用都可以降低。 2.4 热能利用 精馏过程的原理是多次部分冷凝和多次部分汽化。因此热效率较低,通常进入再沸器的能量只有5%左右可以被有效利用。虽然塔顶蒸汽冷凝可以放出大量热量,但是由于其位能较低,不可能直接用作为塔底的热源。为此,我们拟采用塔釜残液对原料液进行加热。 3. 有关的工艺计算 由于精馏过程的计算均以摩尔分数为准,需先把设计要求中的质量分数转化为摩尔分数。 原料液的摩尔组成: xf?nCH3CH2OHnCH3CH2OH?nH2O?35/4635/46?65/18?0.1740 同理可求得:xD?0.7790,xW?0.0002 原料液的平均摩尔质量: Mf?xfMCH3CH2OH?(1?xf)MH2O?0.174?46?0.826)?18?22.3kg/kmol

同理可求得:MD?39.81kg/kmol,MW?18.1kg/kmol 45℃下,原料液中?HO?971.1kg/m3,?CHCHOH?735kg/m3 232 7

由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表2。 表2 原料液、馏出液与釜残液的流量与温度 名称 xf/% xf(摩尔分数) 原料液 35 0.1740 22.3 83.83 馏出液 90 0.7790 39.81 78.62 釜残液 0.5 0.0002 18.1 99.38 摩尔质量kg/kmol 沸点温度t/℃ 3.1 最小回流比及操作回流比的确定 由于是泡点进料,xq?xf?0.174,过点e(0.174,0.174)做直线x?0.174交平衡线于点d,由点d可读得yq?0.516,因此: Rmin(1)?xd?yqyq?xq?0.779?0.5160.516?0.174?0.769 又过点a(0.779,0.779)作平衡线的切线,切点为g,读得其坐标为xq'?0.55,yq'?0.678,因此: Rmin(2)?xD?yq'yq'?xq'?0.779?0.6780.678?0.55?0.789 所以,Rmin?Rmin(2)?0.789 可取操作回流比R?1(R/Rmin?1.27) 8

3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算 以年工作日为300天,每天开车24小时计,进料量为: F?48000?103300?24?22.3?299kmol/h 由全塔的物料衡算方程可写出: V0?F?D?W y0?0(蒸汽) D?65.85kmol/h V0y0?Fxf?DxD?WxW W?364.85kmol/h W?L'?L?qF?RD?qF q?1(泡点) V0?131.7kmol/h 3.3 全凝器冷凝介质的消耗量 塔顶全凝器的热负荷:QC?(R?1)D(IVD?ILD) 可以查得IVD?1266kJ/kg,ILD?253.9kJ/kg,所以 QC?(1?1)?65.85?39.81(1266?253.9)?5.306?106kJ/h 取水为冷凝介质,其进出冷凝器的温度分别为25℃和35℃则 平均温度下的比热cpc?4.174kJ/kg?oC,于是冷凝水用量可求: WC?QCcpc(t2?t1)?5.306?1064.174?(35?25)?127120kg/h 3.4 热能利用 以釜残液对预热原料液,则将原料加热至泡点所需的热量Qf可记 9

为:Qf?Wfcpf(tf2?tf1) 其中tfm?83.83?452?64.4oC 在进出预热器的平均温度以及tfm?64.4oC的情况下可以查得比热cpf?4.275kJ/kg?oC,所以, Qf?48000?103300?24?4.275?(83.83?45)?1.107?106kJ/h 釜残液放出的热量Qw?Wwcpw(tw1?tw2) 若将釜残液温度降至t2w?55oC 那么平均温度twm?99.38?552?77.2oC 其比热为cpw?4.191kJ/kg?oC,因此, Qw?364.85?4.191?(99.38?55)?1.228?106kJ/h 可知,Qw?Qf,于是理论上可以用釜残液加热原料液至泡点 3.5 理论塔板层数的确定 精馏段操作线方程: yn?1?RR?1xn?xDR?1?0.5xn?0.39 提馏段操作线方程: yn?1?WV0xm?WV0xw?2.77xm?0.0054 q线方程:x?0.174 10

在y~x相图中分别画出上述直线,利用图解法可以求出 NT?18块(含塔釜) 其中,精馏段13块,提馏段5块。 3.6 全塔效率的估算 用奥康奈尔法(O'conenell)对全塔效率进行估算: 由相平衡方程式y??xy(x?1)可得?? 1?(??1)xx(y?1)根据乙醇~水体系的相平衡数据可以查得: y1?xD?0.779 x1?0.741(塔顶第一块板) yf?0.516 xf?0.174(加料板) xw?0.002 yw?0.026(塔釜) 因此可以求得: ?1?1.232,?f?5.06,?w?13.32 全塔的相对平均挥发度: ?m?3?1??f??w?31.232?5.06?13.32?4.36 全塔的平均温度: tm?tD?tf?tW3?78.62?83.83?99.3832?87.30oC 在温度tm下查得?HO?0.327mPa?s,?CHCHOH?0.38mPa?s 32因为?L??xi?Li 11

所以,?Lf?0.174?0.38?(1?0.174)?0.327?0.336mPa?s 全塔液体的平均粘度: ?Lm?(?Lf??LD??LW)/3?(0.327?0.38?0.327)/3?0.344mPa?s 全塔效率ET?0.49(??L)?0.245?0.49?1(4.36?0.344)0.245?45% 3.7 实际塔板数NP NP?NT/ET?18/0.45?40块(含塔釜) 其中,精馏段的塔板数为:13/0.45?29块 4. 精馏塔主题尺寸的计算 4.1 精馏段与提馏段的体积流量 4.1.1 精馏段 整理精馏段的已知数据列于表3(见下页),由表中数据可知: 液相平均摩尔质量:M?Mf?M12??22.3?38.72?30kg/kmol 液相平均温度:tm? tf?tD283.83?78.622?81.2oC 表3 精馏段的已知数据 12

位置 进料板 塔顶(第一块板) x'f?0.35 质量分数 y1'?xD'?0.9 x1'?0.885 y1?xD?0.779 y'f?0.732 xf?0.174 摩尔分数 yf?0.516 MLf?22.3 摩尔质量/kg/kmol x1?0.41 MLf?38.7 MVf?32.45 温度/℃ 83.83 MVl?39.81 78.62 在平均温度下查得?HO?971.1kg/m3,?CHCHOH?735kg/m3 232液相平均密度为: 1?'xLm?Lm?CHCHOH32?'1?xLm?HO2 0.35?0.8852?0.603 '其中,平均质量分数xLm?所以,?Lm?814kg/m3 精馏段的液相负荷L?RD?65.85kmol/h Ln?LM?65.85?30814?2.43m3/h ?Lm同理可计算出精馏段的汽相负荷。 精馏段的负荷列于表4。 13

表4 精馏段的汽液相负荷 名称 平均摩尔质量/kg/kmol 平均密度/kg/m 体积流量/m/h 33汽相 30 814 3液相 36.13 1.251 32.43(0.000625m/s) 3804(1.056m/s) 4.1.2 提馏段 整理提馏段的已知数据列于表5,采用与精馏段相同的计算方法可以得到提馏段的负荷,结果列于表6。 表5 提馏段的已知数据 位置 塔釜 'xW?0.005 进料板 x'f?0.35 y'f?0.732 xf?0.174 质量分数 'yW?0.065 xW?0.002 摩尔分数 yW?0.026 yf?0.516 MLf?22.3 MLW?18.1 摩尔质量/kg/kmol MLV?18.7 温度/℃ 99.38 表6 提馏段的汽液相负荷 MVf?32.45 83.83 14

名称 平均摩尔质量/kg/kmol 平均密度/kg/m 体积流量/m/h 33液相 20.2 911 8.09(0.00225m/s) 3汽相 25.6 0.816 4132(1.15m/s) 3 4.2 塔径的计算 由于精馏段和提馏段的上升蒸汽量相差不大,为便于制造,我们取两段的塔径相等。有以上的计算结果可以知道: 汽塔的平均蒸汽流量: VS?(VSJ?VST)2?1.056?1.152?1.103m3/s 汽塔的平均液相流量: LS?(LSJ?ST)2?0.000675?0.0022521.251?0.8162814?9112?0.00146m3/s 汽塔的汽相平均密度: ?V??VJ??VT2??1.0335kg/m3 汽塔的液相平均密度: ?L??LJ??LT2??863kg/m3 塔径可以由下面的公式给出: D?4VS?u 由于适宜的空塔气速u?(0.6~0.8)umax,因此,需先计算出最大允 15

许气速umax。 umax?C?L??V ?V取塔板间距HT?0.4m,板上液层高度h1?60mm?0.06m,那么分离空间: HT?h1?0.4?0.06?0.34m 功能参数:(LSVS)?L0.00146863??0.0382 ?V1.1031.0335从史密斯关联图查得:C20?0.073,由于C?C20(均表面张力: 全塔平均温度TD?TF?TW330.741?0.174?0.0023?76.2?83.83?99.38?20)0.2,需先求平在此温度?86.5oC,下,乙醇的平均摩尔分数为临界温度: ?0.307,所以,液体的Tc??xiTic?0.307?(273?243)?(1?0.307)?(273?342.2)?609K 设计要求条件下乙醇~水溶液的表面张力?1?26dyn/m2 平均塔温下乙醇~水溶液的表面张力可以由下面的式子计算: ?2T?T21.2609?(273?86.5)1.2?(mc),?2?[]?26?19.95dyn/cm ?1Tmc?T1609?(273?25)所以: C?0.073(umax?C

19.920)0.2?0.073 ?L??V863?1.0335?0.073??2.11m/s ?V1.033516

u?0.7?2.11?1.476m/s D?4?1.103?0.951m ??1.476根据塔径系列尺寸圆整为D?1000mm 此时,精馏段的上升蒸汽速度为: uJ?4VSJ?D24VST?4?1.056??12?1.345m/s 提馏段的上升蒸汽速度为: uT??D2?1.464m/s 4.3 塔高的计算 塔的高度可以由下式计算: Z?HP?(N?2?S)HT?SHT?HF?HW 已知实际塔板数为N?40块,板间距HT?0.4m由于料液较清洁,无需经常清洗,可取每隔8块板设一个人孔,则人孔的数目S为:

S?408?1?4个 取人孔两板之间的间距HT?0.6m,则塔顶空间HD?1.2m,塔底空间HW?2.5m,进料板空间高度HF?0.5m,那么,全塔高度: Z?1.2?(40?2?4)?0.4?4?0.6?0.5?2.5?20.2m 5. 塔板结构尺寸的确定 5.1 塔板尺寸 17

由于塔径大于800mm,所以采用单溢流型分块式塔板。 取无效边缘区宽度WC?40mm,破沫区宽度WS?70mm, 查得lW?705mm 弓形溢流管宽度Wd?146mm 弓形降液管面积Af?0.0706m2 Af/AT?0.0706/0.7854?0.09 R?D/2?WC?0.5?0.04?0.46m x?D/2?Wd?WS?0.5?0.146?0.07?0.284m 验算: 液体在精馏段降液管内的停留时间 ?J?AfHTLSJ?0.0706?0.40.000675?41.8s?5s 液体在精馏段降液管内的停留时间 ?T?AfHTLST?0.0706?0.40.00225?12.6s?5s 5.2 弓形降液管 5.2.1 堰高 采用平直堰,堰高hw?h1?how 取h1?60mm,how?10mm,则hw?60?10?50mm 18

5.2.2 降液管底隙高度h0 若取精馏段取h0?15mm,提馏段取为25mm,那么液体通过降液管底隙时的流速为 精馏段: '? u0LSJlwh0?0.0006750.7?0.015?0.0643m/s 提馏段: '? u0LSTlwh0?0.002250.7?0.025?0.129m/s 'u0的一般经验数值为0.07~0.25m/s 5.2.3 进口堰高和受液盘 本设计不设置进口堰高和受液盘 5.3 浮阀数目及排列 采用F1型重阀,重量为33g,孔径为39mm。 5.3.1 浮阀数目 4VS浮阀数目N??u020 F气体通过阀孔时的速度u0??v19

取动能因数F?11,那么u0N?1.103?4111.0355?10.82m/s,因此 ??0.039?10.822?86个 5.3.2 排列 由于采用分块式塔板,故采用等腰三角形叉排。若同一横排的阀孔'中心距t?75mm,那么相邻两排间的阀孔中心距t计为: ' t计?AaNt ?180?xRAa?2[xR2?x2?R2sin?1]?0.462sin?10.2840.46] ?2[0.284?0.462?0.2842? =0.487m2't计??180?0.48786?0.075?75.5mm 取t'?80mm时画出的阀孔数目只有60个,不能满足要求,取t'?65mm画出阀孔的排布图如图1所示,其中t?75mm,t'?65mm 图中,通道板上可排阀孔41个,弓形板可排阀孔24个,所以总阀孔数目为N?41?24?2?89个 5.3.3 校核 4VS气体通过阀孔时的实际速度:u0??d02N?10.38m/s 20

实际动能因数:F0?10.38?1.0335?10.55(在9~12之间) 开孔率: 阀孔面积塔截面积?100%??d02N4AT?100%???(0.039)2?894?0.7854?13.5% 开孔率在10%~14之间,满足要求。 6. 流体力学验算 6.1 气体通过浮阀塔板的压力降(单板压降)hp 气体通过浮阀塔板的压力降(单板压降)hp?hc?h1?h? 6.1.1 干板阻力hc 浮阀由部分全开转为全部全开时的临界速度为uoc: uoc?1.82573.1/?V1.82573.1/1.0335?10.32m/s 因为uoc?uo?10.38m/s 2?Vu01.0335?10.382?5.34??0.0367m 所以hc?5.342?Lg2?863?9.816.1.2 板上充气液层阻力h1 取板上液层充气程度因数??0.5,那么: h1??hL?0.5?0.06?0.03m 21

6.1.3 由表面张力引起的阻力h? 由表面张力导致的阻力一般来说都比较小,所以一般情况下可以忽略,所以: hp?0.0367?0.03?0.667m?0.667?863?9.81?564.7Pa 6.2 漏液验算 动能因数F0?5,相应的气相最小负荷VSmin为: VSmin??4d02Nu0min 其中u0min?F所以VSmin??4?V?5/1.0335?4.92m/s 2?0.0390?89?4.92?0.523m3/s?1.103m3/s 可见不会产生过量漏液。 6.3 液泛验算 溢流管内的清液层高度Hd?hp?hd?hL?h? 其中,hp?0.0667m,hL?0.06m 所以,Hd?0.667?0.06?0.003?0.1297m 为防止液泛,通常Hd??(HT?hw),取校正系数??0.5,则有:?(HT?hw)?0.5?(0.4?0.05)?0.225m 可见,Hd??(HT?hw),即不会产生液泛。

22

6.4 雾沫夹带验算 ?V?L??VVS?1.36LSZL泛点率=KCFAb 查得物性系数K?1.0,泛点负荷系数CF?0.097 ZL?D?2Wd?1?2?0.146?0.708m Ab?AT?2Af?0.7854?2?0.0706?0.6442m2 所以, 1.103?1.0335?1.36?0.00146?0.708863?1.0335?63.4%?80% 1?0.097?0.6442泛点率=可见,雾沫夹带在允许的范围之内 7. 操作性能负荷图 7.1 雾沫夹带上限线 取泛点率为80%代入泛点率计算式,有: VS0.8??V?L??V?1.36LSZL?VSKCFAb1.0335?1.36?0.708LS863?1.0335 0.097?0.6442整理可得雾沫夹带上限方程为: VS?1.444?27.8LS 7.2 液泛线

23

2/3液泛线方程为aVS2?b?cL2S?dLS 其中,a?1.91?105?V?LN2?1.91?105?1.0335863?86?0.0309 b??HT?(??1??0)?0.5?0.4?(0.5?1?0.5)?0.05?0.15 c?0.153lh22w0?0.1530.705?0.01512/3lw22?192.4 10.7052d?(1??0)E(0.667)?(1?0.5)?1.02?0.667??3.553 2/3代入上式化简后可得:VS2?4.85?6.217L2S?114.9LS 7.3 液体负荷上限线 取??5s,那么 LSmax?AfHT5?0.0706?0.45?0.00565m3/s 7.4 漏液线 取动能因数F0?5,以限定气体的最小负荷: VSmin??4d02N5?0.523m3/s ?V7.5 液相负荷下限线 2.841000LSminlw取how?0.006m代入how的计算式:

24

?1.02?[]2/3?0.006

整理可得:LSmin?2.1m3/h?0.000584m3/s 7.6 操作性能负荷图 由以上各线的方程式,可画出图塔的操作性能负荷图。 根据生产任务规定的气液负荷,可知操作点P(0.00146,1.103)在正常的操作范围内。连接OP作出操作线,由图可知,该塔的雾沫夹带及液相负荷下限,即由漏液所控制。由图可读得: (VS)max?1.65m3/s,(VS)min?0.57m3/s 所以,塔的操作弹性为1.65/0.57?2.89 有关该浮阀塔的工艺设计计算结果汇总于表7 表7 浮阀塔工艺设计计算结果 项目 塔径D,m 数值与说明 1.0 备注 25

板间距HT,m 塔板型式 空塔气速u,m/s 溢流堰长度lW,m 溢流堰高度hW,m 板上液层高度hL,m 降液管底隙高度h0,m 浮阀数N,个 阀孔气速u0,m/s 阀孔动能因数F0 临界阀孔气速u0c,m/s 孔心距t,m 排间距t',m 单板压降?p,Pa 液体在降液管内的停留时间?,s 降液管内的清液高度Hd,m 泛点率,% 气相负荷上限(VS)max 气相负荷下限(VS)min 开孔率,% 操作弹性 0.4 单溢流弓形降液管 1.476 0.705 0.05 0.01 0.025 89 10.38 5 10.32 0.075 0.065 564.7 41.8 12.6 0.1297 63.4 1.65 0.57 13.5 2.89 分块式塔板 等腰三角形叉排 同一横排的孔心距 相临二横排的中心线距离 精馏段 提馏段 雾沫夹带控制 漏夜控制 8. 各接管尺寸的确定 26

8.1 进料管 FMf299?22.3911.3进料体积流量VSf??f??7.32m3/h?0.00203m3/s 取适宜的输送速度uf?2.0m/s,故 dif?4VSf?4?0.002032??0.036m ?u经圆整选取热轧无缝钢管(YB231-64),规格:?45?3mm 实际管内流速:uf?8.2 釜残液出料管 釜残液的体积流量: VSW?WMw?364.85?18.1958.4?6.89m3/h?0.00191m3/s 4?0.00203??0.0392?1.7m/s ?w取适宜的输送速度uW?1.5m/s,则 d计?4?0.001911.5??0.04m 经圆整选取热轧无缝钢管(YB231-64),规格:?45?3mm 实际管内流速:uW?8.3 回流液管 回流液体积流量 4?0.00194??0.0392?1.6m/s 27

VSL?LML?L?66.85?39.81747?3.51m3/h?0.000975m3/s 利用液体的重力进行回流,取适宜的回流速度uL?0.5m/s,那么 d计?4?0.0009750.5??0.05m 经圆整选取热轧无缝钢管(YB231-64),规格:?57?3.5mm 实际管内流速:uW?8.4 塔顶上升蒸汽管 塔顶上升蒸汽的体积流量: VSV?(1?1)?65.85?39.811.398?3750m3/h?1.042m3/s 4?0.00194??0.0392?1.6m/s 取适宜速度uV?2.0m/s,那么 d计?4?1.04220??0.258m 经圆整选取热轧无缝钢管(YB231-64),规格:?273?5mm 实际管内流速:uSV?8.5 水蒸汽进口管 通入塔的水蒸气体积流量: VSO?131.7?180.597?3971m3/h?1.103m3/s 4?1.042??0.2632?19.2m/s 取适宜速度u0?2.5m/s,那么 28

d计?4?1.10325??0.237m 经圆整选取热轧无缝钢管(YB231-64),规格:?245?5mm 实际管内流速:u0?4?1.103??0.2352?25.43m/s 课程设计评价 本设计是前人科学成果以及经验公式的前提下进行设计的,并且参考资料中有完全相同的类型的设计同计算,所以计算过程上不会出现太大的公式选择错误.而且在反复的设计过程中,也对公式应用也有了比较大理解和进步. 本设计在理论塔板的确定上采用图解法,因为其简单而且明了,全塔效率采用前人经验公式,在选择回流比的时候采用了试差法,先计算出几种回流比下的总花费,然后再确定最佳回流比. 本设计的的最佳回流比我个人认为选择的比较好,因为通过理论塔板以及塔顶冷凝水的耗费计算,我发现在我的物性参数下,理论塔板数变化走向在1.3倍Rmin以下变化很大,在1.3Rmin到1.5Rmin之间变化中等.在1.8Rmin到2.0Rmin之间理论塔板数完全相等.而且在1.3Rmin和1.2Rmin时,冷却水用量己经很接近.相差己经很近.而塔板数却斗增.说明再把回流比取小取小己经没有多意义了,再小的话塔板数可能会增到无法采用.而且又不会比1.2Rmin节约到哪里. 回流比与总耗费的关系基本如下图:

29

1.2Rmin 经过计算发现塔顶的塔径是最大的,这主要是在同样的摩尔流量下,塔顶无论气相还是液相密度都比较小(乙醇比较含量高).所以造成在塔顶的气液相负荷都很高. 换热器的传热速率取值较高,但合理.因为现代科学发展有很多精细化学品能处理污垢问题.所以稍稍取大点不影响实际应用结果. 对于塔板负荷性能图,操作线比较陡,主要是因为回流比比较小,所以较小的液相流量变化就会引起较大的气相流量变化.液泛线比较低但这是物性自身与塔径共同决定的,与塔板本身无关. 所以综上所述.我认为本次设计算得上一个成功的课程设计. 课程设计心得 通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。并且对以前学习化工原理的枯燥感有了新的认识. 参考文献 [1]夏清、陈常贵.化工原理(上.下)[M].天津大学出版社.2007年8月第8版 [2]郑秋霞.化工原理实验.[M].中国石化出版社. [3]贾绍义、柴诚敬.化工原理课程设计[M].天津:天津大学出版社,2002、

30

[4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1 [5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6 [6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1 [7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1 [8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7 [9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002 [10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002

31

[4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1 [5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6 [6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1 [7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1 [8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7 [9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002 [10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002

31

本文来源:https://www.bwwdw.com/article/bic7.html

Top