Simulating the Electroweak Phase Transition in the SU(2) Higgs Model
更新时间:2023-05-11 20:14:01 阅读量: 实用文档 文档下载
- simulation推荐度:
- 相关推荐
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
4
9
9
1
ep
S
2
2
2
v
71
9
4
9
/
t
al
-
ep
:hv
i
X
r
aDESY94-159SimulatingtheelectroweakphasetransitionintheSU(2)HiggsmodelZ.Fodor ,J.Hein,K.Jansen,A.Jaster,I.Montvay DeutschesElektronen-SynchrotronDESY,Notkestr.85,D-22603Hamburg,GermanyAugust,1994AbstractNumericalsimulationsareperformedtostudythe nitetemperaturephasetran-sitionintheSU(2)Higgsmodelonthelattice.InthepresentlyinvestigatedrangeoftheHiggsbosonmass,below50GeV,thephasetransitionturnsouttobeof rstorderanditsstrengthisrapidlydecreasingwithincreasingHiggsbosonmass.Inordertocontrolthesystematicerrors,wealsoperformstudiesofscalingviolationsandof nitevolumee ects.
1Introduction
ThemassesofelementaryparticlesintheStandardModelaregeneratedviatheHiggsmecha-nismbythenon-zerovacuumexpectationvalueofthescalarHiggs eld.Athightemperatures,abovethescaleofthevacuumexpectationvalue,theHiggsmechanismisnotoperative,thesymmetryofthevacuumgetsrestored[1].Infact,intheearlyuniverse,accordingtothebigbangcosmology,matter rstexistedinthesymmetryrestoredphase.Asaconsequenceofex-pansionandcooling,anon-zerovacuumexpectationvalueofthescalar eldwasdevelopedinthephasetransitionbetweenthesymmetricphaseathightemperaturesandtheHiggsphaseat
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
lowertemperatures.Thepropertiesofthiselectroweakphasetransitionmighthaveasubstan-tialin uenceonthelaterhistoryoftheUniverse.Forinstance,sincethenumberofbaryonsisnotconservedintheminimalstandardmodel[2],thesmallbaryonasymmetryoftheUni-versecouldperhapsbecreatedinnon-equilibriumprocessesduringastrongenough rstorderelectroweakphasetransition[3,4].Thiso ersthepossibilitythatthebaryonasymmetrycanbeexplainedwithintheminimalstandardmodel.Theresolutionofthisquestionisthereforeamajorchallengeforelementaryparticlephysics.
Thestandardcalculationalmethodforthestudyofthesymmetryrestoringelectroweakphasetransitionisresummedperturbationtheory[5,6,7,8].IntheHiggsphaseperturbationtheoryisexpectedtoworkwellfornotveryhighHiggsbosonmasses,sincethecouplingsaresmall.Inthehightemperaturesymmetricphase,however,thesituationissimilartohightemperatureQCD:irreparableinfraredsingularitiesoccurwhichpreventaquantitativecontrolofgraphresummation[9].Sincethecalculationofphysicalquantitiescharacterizingthephasetransitionrequirestheknowledgeofbothphases,thereisapriorynoreasonwhyperturbationtheorycouldprovideaquantitativetreatmentoftheelectroweakphasetransition.Indeed,theresultsofperturbationtheoryshowbadconvergence.
Forabetterunderstandingseveralnon-perturbativemethodshavealsobeentried.Forsimplicity,fermionsandtheU(1)gauge eldareoftenomitted.Thiscanbeexpectedongeneralgroundstobeareasonable rstapproximation.InthiswayoneisleftwiththeSU(2)Higgsmodeldescribingtheinteractionofafour-componentHiggsscalar eldwiththeSU(2)gauge eld.Possiblenon-perturbativeapproachesincludeablockspinprocedureleadingtoevolutionequationsforaverageactions[10],the -expansionat4 spatialdimensions[11]and,ofcourse,numericalsimulations.Afterpioneeringworks[12,13],recentnumericalsimulationsconcentratedontheunderstandingofthe nitetemperaturebehaviouroftheSU(2)HiggsmodelatlargeHiggsbosonmassesnearandabovetheW-bosonmass[14].Anothernon-perturbativeapproachisbasedondimensionalreduction,studyingthethree-dimensionale ectiveHiggstheory,whichisobtainedinthehigh-temperaturelimit[15,16,17].Afurthersimpli cationleadstoane ectivescalartheory[18],whichhasalsobeenstudiednumericallyinthereducedmodel[19].
Thenon-perturbativeinvestigationsoftheelectroweakphasetransitiondidnotyetleadtoaconvincinguniquepicture.Therefore,wedecidedtoperformalargescalenumericalsimulationofthesymmetryrestoringphasetransitionintheSU(2)Higgsmodel.Westayintheoriginalfour-dimensionaltheorywithoutreduction.Thishastheadvantageofkeepingthenumberofbareparameterssmallandnotintroducinganyfurtherapproximationsbeyondthelatticeregularization.Firstresultshavebeenpublishedinarecentletter[20].Herewegiveadetaileddescriptionofthetechniquesusedandincludeadditionalresults.Asitisknownfrompreviousstudies[14],forHiggsbosonmassesnearandabovetheW-bosonmassthenumericalsimulationsintheoriginalfour-dimensionalmodelaretechnicallydi cult.ThereforewerestrictthepresentcalculationstosmallerHiggsbosonmassesbelow50GeV.Sincethisregionofparametersof
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
theminimalstandardmodelisalreadyexcludedbyexperiments,ourpresentscopeismerelytheoreticalbecausewewouldliketocheckthevalidityofsomeothertheoreticalapproximationschemes,e.g.resummedperturbationtheory.WeplantoextendthisinvestigationtoheavierHiggsbosonmassesinfuturepapers.
1.1Latticeaction
ThelatticeactionoftheSU(2)Higgsmodelisconventionallywrittenas
S[U, ]=β 1 1
pl
2Tr( +x x)+λ 1
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
l2forlowλandLt=2;
l3forlowλandLt=3;
h2forhighλandLt=2;
h3forhighλandLt=3.
Inthenextsectionthenumericalsimulationmethodswillbediscussed.Animportanttoolfortheorientationinbareparameterspacewillbetheinvariante ectivepotentialintroducedinsection3.Thendi erentgroupsofnumericalsimulationresultswillbediscussed:thelocationofthephasetransitionpointsinsection4,massesandcorrelationlengthsinsection5,therenormalizedgaugecouplingandtherenormalizationgrouptrajectoriesinsection6,thelatentheatinsection7and nallytheinterfacetensioninsection8.Thelastsectionisdevotedtothediscussionofresultsandtoasummary.
2MonteCarlosimulation
InthissectionsomeaspectsoftheappliedMonteCarlosimulationtechniquesarediscussed.Thiscanbeskippedbyreadersnotinterestedintechnicaldetails.
ThesimulationshavebeenperformedontheAleniaQuadricscomputersofDESY.TheQuadricsQ16isamassiveparallelmachinewithSIMD1architecturewhichconsistsof128processors(nodes).Dependingonthegoalsandfeaturesoftherespectivesimulation,weusedi erentstrategies:
Alatticeisassignedtoeachnode.Notimeiswastedforthecommunicationsbetweenthenodes.Limitationsofmemoryallowthisonlyforsmallenoughlatticeextensions. TheQ16maybeswitchedtoconsistof16independent23tori.
Thewholemachineisarrangedasathree-dimensionaltorus.
Inthiswaythelatticeisdistributedover1,8or128nodesandoneobtains128,16or1independentdatasetsfromonerun,respectively.Ofcourse,thelatticeextensionshavetobemultiplesofthecorrespondingtori.
TheQuadricso ers32bit oatingpointarithmetics.Thisissu cientformostofourpurposes,exceptforbuildingglobalaverages,whenweuseasimplevariantofsoftwarebaseddoubleprecisionarithmeticsforsummation.
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
2.1Updating
InaMonteCarlosimulationtheautocorrelationofsubsequentcon gurationsisoneofthemainproblemsonehastodealwith.Theautocorrelationisusuallyworseatphasetransitions.Thisphenomenoniscalledcriticalslowingdown.Unfortunately,thecontinuumlimithastobeperformedinthisregionofparameterspace(inourcaseκ,βandλ).
Duetothesmallλ-valuesweuse,large uctuationsofthesquaredHiggs eldlengthρ2x≡1
bx,m≡ 42Tr+ νUxν+Ux ν ,ν x ν ν=1iκ +x ,
ζb
xx,j 2 +λ ρ2x 1
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Thiscubicequationcannotbesolvedfastenoughinanupdating.Startingfromtheobservationζx=1for|bx|=1,wesplitζxinζx=1+εxandgetthefollowingapproximateexpressionfortheoptimalζx:
ζx=1 2λ+2λ·|bx|2+O(ε2(6)x,εxλ).
Thisapproximationworksverywellinasu cientrangeof|bx|.Inpracticetheaverageaccep-tanceofthisalgorithmturnedouttobelargerthan98%.
FortheSU(2)-variablesUxµandαx≡ x/ρxweusestandardoverrelaxationmethods[22,24].Becausetheabovedescribedheatbathalgorithmfor xo ersalsoanergodicupdatefortheangularpartαxofthescalar eld x,weneedanergodicupdateforUxµonly.Forthispurposeweusetheheatbathalgorithmdescribedin[25,26].
Inallupdatings,therandomnumbergeneratorproposedandimplementedbyMartinL¨uscher[27]isapplied.ItisbasedonanalgorithmofMarsagliaandZaman[28].ThelatteralgorithmisknownbythenameRCARRY,iftheparametershavebeenchosenappropriately.RCARRYo ersanextremlongperiod>10171,butunfortunatelyitownssomeshortrangecorrelations.Asithasbeenshown[27],onlongrange,achaoticnatureofthealgorithmcomestolight.Skippingfromtimetotimesomehundredsofnumbersinthesequencethecorre-lationispracticallyeliminated.Duetotheskipthisrandomnumbergeneratorisrelativelyslow.Inordertobene tfromtheparallelarchitecture,therandomnumbergeneratorhastobeinitializedindependentlyonthenodesofthemachine.
Forupdatingthe eldcon gurationsacombinationoftheabovedescribed vealgorithmsisused.Wechoosesomebasicsequenceofelementaryupdatingsforthedi erentsetsof eldvariables,whichisrepeatedperiodicallymanytimes.Thewholesequence,whichvisitseveryvariableatleastoncebutusuallymanytimes,willbecalledsweep.Theoptimizationofthisbasicsequencemakingupasweepisadi cultbutimportanttask,whichwillbediscussedinthenextsubsection.
2.2Autocorrelations
LetusconsidertheautocorrelationofaquantityQ[Uxµ, x]measuredonasequenceof eldcon gurations.QnisthevalueofQ[Uxµ, x]measuredonthen-thcon gurationand Nn=1Qnistheaverageoverthecon gurations.TheautocorrelationfunctionforthisquantityN
isde nedas: 1QQn ΓQ(t)≡limN→∞
∞ ΓQ(t)
2t= ∞
2
N
(Q).(9)
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure1:AnexampleofautocorrelationfunctionintheHiggsphaseatT=0.
(t)andΓCf(t)coincide.ThecurvesforΓρ2x
Weinvestigatedtheintegratedautocorrelationtimeforfourcharacteristicquantities:ρ2x,
2ρ2(x+Lt/2)ρx,UplandthelargestcalculatedWilsonloop.Thesecondquantitycharacterizesthecorrelationfunctionofρ2atthelargestdistance.InzerotemperaturesimulationsthelargestWilsonloophadthesizeLs/2 Lt/2,withLsandLtdenotingtheextensionsofthelatticeintimeandspacedirection,respectively.At nitetemperatureonlythe1 1Wilsonloopwasconsidered.ForWilsonloopsnoteveryorientationwastaken:twosideswerealwaysinthedirectionofthelargestlatticeextension.Furtheron,werefertothecorrelationfunctionasCfandtotheWilsonloopasWl.Ifequation(8)isevaluatedona nitesequenceofcon gurations,onehastodecidewheretotruncatethesumovert.Asmentionedbefore,thelargestτint-values
(t).werefoundforρ2x,sowetruncatedatthe rstzeroofΓρ2x
Onlargerlatticesweusuallyhad16independentcon gurationsinthecomputer.Theywereevaluatedseparatelyandanestimateforthestatisticalerroroftheintegratedautocorrelationtimewasobtainedfromthevariance.
Wemadesomeinvestigationshowtooptimizetheautocorrelationbychangingthenumberofcallsofthevariousupdatingsinthecompletesweepsbutwedidnottrytooptimizetheorderingofthealgorithms.Ofcourse,weoptimizedtheautocorrelationinCPUtimesincetheabovechangesa ectthetimerequirementsofthecompletesweeps.Itshouldbementionedthattheoptimalnumberofcallsdependsonlatticesizeandparameterrange.Themeasurementroutineswerecalledaftereachsweep.
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure2:Autocorrelationfunctionsatthephasetransitionlineona3·242·96lattice.Theleftpicturereferstothesymmetricphase,therightonetotheHiggsphase.Evaluatedsweeps:32000sweepsinthesymmetricphaseand80000sweepsintheHiggsphase.Inbothcasesthesameupdatingschemewasapplied.Inthe
=217±66=21±4sweepsandintheHiggsphaseτint,ρ2symmetricphaseτint,ρ2xx
sweeps.
TheautocorrelationfunctionwasinvestigatedintheHiggsphasebothforT=0andfor nitevaluesofT.Inthesymmetricphaseonly niteTwasconsidered.Atypicalexampleof
(t)isautocorrelationintheHiggsphaseisshownby g.1.TheautocorrelationfunctionΓρ2x
toagoodapproximationasingleexponential.Thereisnosigni cantdi erencebetweenΓCf(t)
(t).TheautocorrelationfunctionsforquantitiesdependingonlyonUxµshowafastfallandΓρ2x
o fortvaluesverysmallcomparedtoτint,ρ2.Forlargervaluesofttheexponentialdescentof
.Wealwaysfoundtheinitialfallo tobelargerforΓUpl(t)andΓWl(t)isthesameasofΓρ2x
ΓWl(t)thanforΓUpl(t).
Acomparisonofautocorrelationsinthetwophasesisgivenin g.2.Inthesymmetricphaseat niteTwefoundtheautocorrelationtimeforthequantitiesUplandWltobelessthan1.Thelefthandsideof gure2displaystheextremelyfastdescentoftheseautocorrelation
(t)di ersfromthebehaviourintheHiggsphase,becausetherefunctions.ThebehaviourofΓρ2x
isastrongcurvatureinthelogarithmicplot.Thiscouldbeasignalforadensespectrumofstates.TheintegratedautocorrelationtimeinthesymmetricphaseisusuallymuchsmallerthantheoneintheHiggsphaseatthesameparametersandlatticeextensions.
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
ofρ2Table1:Integratedautocorrelationtimeτint,ρ2xfor5di erentupdatingx
schemes.Thelatticesizeis163·32,theparametersareβ=8andλ=0.0005.The rstitemisatκ=0.12885andalltheothersareatκ=0.1289.Foreachitemmorethan32000sweepswereevaluated.
heatbath
Uxµ
1
3
1
1
16333160.5±6.228.0±2.1τint,ρ2xαx3133.3±2.319.6±1.3insweeps11.4±0.4
Ona163·32latticewithparametersβ=8,κ=0.1289andλ=0.0005wecomparedfourdi erentcompositionsofthecompletesweep.TheseparametersgiveapointintheHiggsphase.
aregivenintable1insweepsandinCPUTheresultsforthelargestautocorrelationtimeτint,ρ2x
secondsofQ16,assumingthatthelatticeisdistributedonthewholemachine.AcomparisonofthethirdandfourthrowsshowsthatmoreworkontheSU(2)variableshasnoin uenceontheautocorrelation:theautocorrelationtimeinsweepsisaboutthesameforbothupdatingschemes.Thefactthatmoreoverrelaxationforρxdoesnotleadtoabetterautocorrelationisplausible[22].
Theautocorrelationmeasuredinsweepsdecreasessigni cantlyifmoreheatbathiscalledbut,duetothetimeneededfortheheatbathalgorithms,thereisnosigni cantdi erencebetweenthesecondandthethirdrowoftable1,iftheautocorrelationtimeismeasuredinCPUtime.
Theupdatingschemeinthe rstrowoftable1isthebestcombinationwefound.Itwasthereforeusedinmanypoints.BecauseofthelargeautocorrelationsintheHiggsphaseat nitetemperatures,whichweretypicallyabout10timeslongerinsweepsthanatT=0,wecouldnotcomparedi erentupdatingschemesthere.Anothercomparisonofupdatingschemeswasperformedona183·36latticewithparametersβ=8.15,κ=0.1281andλ=0.00011.Theconclusionswereverysimilar.
2.3Multicanonicalsimulation
AnimportantproblemofMonteCarlosimulationsofasystemwith rstorderphasetran-sitionisthesupercriticalslowingdown.Atthetransitionpointthetunnelingratebetweenthetwophasesisexponentiallysuppressedforanylocalupdatealgorithm(e.g.overrelaxation,
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
heatbath).Toovercomethisproblemthemulticanonicalalgorithmwasdeveloped[29].Thebasicideaisanenhancementofthemixedstates,whicharesuppressedduetotheadditionalfreeenergyoftheinterfaces.Thisenhancementisreachedbyanextratermintheaction,i.e.S→S+f(O).ThistermcanbeafunctionofanyorderparameterO.Theeasiestwayistousetheactionandacontinuousfunctionf(S)=βkS+αkwithconstantβk,αkforSintheintervalIk=(Sk,Sk+1].Infact,insteadofthelatticeactionineq.(1),weusedasanorderparameterthemodi edaction
Slog≡S[U, ] 3 xlog(ρx),(10)
whichisnaturaltotakeifρxisusedasanintegrationvariableinthepathintegral.Thischoiceisparticularlyconvenient,sincealltheoverrelaxationalgorithms(ρx,αx,Uxµ)canbeusedwithoutchanges.TheintervalsIkandtheparametersαkandβkarechoseninsucha
mcisnearly at.ThisisachievedifwaythatthemulticanonicalprobabilitydistributionPL
f(Slog)≈log(PL)betweenthetwomaximaandisconstantelsewhere.HerePListhecanonicalprobabilitydistributionoftheactionSlog.ThedistributionPLisobtainedinamulticanonical
mcsimulationbyreweightingPLwithexp(βkSlog+αk).
Inpracticea rstchoiceforthemulticanonicalparametersismadeandtheyareoptimized
mcafterwards.Ifnecessary,theprocedureisrepeateduntilPLbecomes at.A rstguesscan
beobtainedfromsmallerlattices.InthiswaythedistributionoftheactionSlogandthelinkvariableL ,de nedineq.(24),wasmeasuredon2·42·64and2·42·128latticesatthe“low”valueofthequarticcoupling(λ=0.0001).
Forlargerlatticestwoproblemsarise.Theparametershavetobetunedverypreciselyandtheautocorrelationtimesbecomeevenforoptimallytunedvaluesverylarge,oftheorderofO(10000)sweeps.Tosolvetheseproblemswecombinedthemulticanonicalmethodwiththeconstrainedsimulationmethod[30].Inwhatfollowswecallthiswayofsimulationconstrained-multicanonicalmethod.
WedividetheintervalbetweenthetwomaximaofPLintosubintervals.Thesearechosentohaveanoverlapwiththeirneighbours.Startinginonephasewetunethemulticanonical
mcparameterssuchthatPLis atinagivensubintervalandsuppressedelsewhere.Thismeans
thatf(Slog)isapproximatelyequaltolog(PL)inthissubintervalandincreasesrapidlybeyondtheboundaries.Bymovingthesubintervaloneisgoingfromonemaximumtotheother.Attheendeverysetisreweighted.Incaseoflargeoverlapsbetweenneighbouringintervalstheabsolutenormalizationcanbeobtainedwithsmallerrors.
Toensurethatthismethodyieldsthesameresultasthepuremulticanonicalone,weperformedsimulationsusingbothmethodson2·42·128lattice.Theresultscoincidewithinstatisticalerrors.Onlytheconstrained-multicanonicalalgorithmhasbeenusedforsimulationson2·82·128lattice.
ThetechnicalrealizationofthemulticanonicalapproachbytheMetropolisalgorithmisstraightforward.Asithasbeenemphasizedabove,duetoourspecialchoiceoftheorder
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
parameter,theoverrelaxationalgorithmscanbeusedwithoutchanges.Themodi cationsfortheheatbathalgorithmsaremoreinvolved(seee.g.[31]).AdescriptionofourimplementationofheatbathalgorithmsforUxµand xisgivenintheappendix.Sincetheheatbathalgorithmsaremoree cient,wealwaysusedtheminsteadoftheMetropolisalgorithms.
Inoursimulationstheacceptancerateforthemulticanonicalheatbathalgorithmswasverygood:forthemodi edgaugealgorithmatleast99%andforthe -algorithmatleast96%.Theoverlapsfortheneighbouringintervalswerechosentobeapproximately40%.Thenumberofsubintervalswas5forthe2·42·128latticeand13forthe2·82·128lattice.Theautocorrelationtimeswereonaverageabout500sweepsfortheconstrained-multicanonicalsimulations.Forthetwosmallerlatticeswemeasuredabout2000and7000sweepsasautocorrelationtimeswiththepuremulticanonicalalgorithm.
TheeasiestwaytoparallelizethemulticanonicalalgorithmontheQuadricsQ16machineistosimulateseverallatticesindependentlyoneachnode.Foranyotherimplementationthereisaneedforcommunicationbetweenthedi erentnodesforeachupdatingstep,sincefisafunctionoftheglobalaction.Anotherdisadvantageofpartitioningthelatticewouldbeadecreaseintheacceptancerateduetosimultaneouschangeofseveralvariables.
3Invariante ectivepotential
Intheperturbativeapproachtotheelectroweakphasetransitionthemostimportantquantitytocomputeisthee ectivepotential.Interestingphysicalobservableslikelatentheat,surfacetensionormassescanbeextractedfromit.Ofcourse,theselatterquantitiescanalsobeobtainedfromthenon-perturbativeapproachofnumericallatticesimulationsbymeasuringsuitableobservables.Nevertheless,adirectcomparisonofthee ectivepotentialitselffrombothmethodswouldobviouslybedesirable.Onthelattice,however,theactionisgaugeinvariantandsoaretheobservables,asdemandedbyElitzur’stheorem.Inperturbationtheorythee ectivepotentialiscalculatedindi erentgauges.(ThemostpopularoneistheLandaugauge.)Inordertocomparethiswithlatticeresultsoneoughtto xthegaugeonthelattice,anotoriouslydi culttaskinparticularfornon-abeliangaugegroups.
Awayoutisthestudyofthegaugeinvariante ectivepotentialthathasbeeninitiatedrecently[32,33]2.InthisapproachoneconsiderscompositegaugeinvariantoperatorsinthestandardLegendretransformationframework.Theobviousadvantageofthisapproachisthatthepotentialcanbeevaluatedperturbativelyand,sinceitisgaugeinvariant,itcanbedirectlycomparedtolatticesimulations.Ito ersthereforeaconceptuallycleananddirectlyaccessibletoolofconfrontingresultsobtainedinperturbationtheorywithnumericaldata.Inthispaperwewanttoreportaboutour rstexperienceswiththegaugeinvariantpotential.Wewilluseitmainlyforthedeterminationofthetransitionpoints.Wepostponeadiscussionofits
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
renormalizationandtheextractionofphysicalquantitiestoafuturepublication.
Thestartingpointforthegaugeinvariante ectivepotentialforthelengthsquareoftheHiggs eldisthefreeenergyF(J)inthepresenceofaconstantexternalsourceJ
e F(J)= [dU][d ]e S+J xρ2x,(11)
withStheactioneq.(1)and thelatticevolume.Fromthisthee ectivepotentialisobtainedbyaLegendretransformation
V(¯ρ2)=F(J(¯ρ2)) ρ¯2J,
where
ρ¯2= (12)
+1.2λ
ThelastequationiseasilyinvertedforJ(¯ρ2)andthee ectivepotentialtotreelevelis
Vtree(¯ρ2)=(1 8κ)¯ρ2+λ(¯ρ2 1)2.(16)(17)
Togettheone-loope ectivepotentialwehavetoconsider uctuationsaroundthestationarypoint(16).The uctuationstoone-loopconsistofagaugepartandaHiggspartandatthislevelnomixingappears.Oneobtains
V1 loop=Vtree+ πd4k
2 π 2+m2)+ln(kg1
2κg2ρ¯2,m2φ=4
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Thesolutionofthee ectivepotentialgivenabovecorrespondstothebrokenphaseoftheSU(2)-Higgsmodel.In[33]itwasemphazisedthatthereexistsanotherstationarypointwhichbelongstothesymmetricphaseofthemodelandwhichisgivenbyρ¯=0.Inthiscasethetreelevelpotentialistriviallyzeroandwehavetostartwiththeone-loopformulaforthefreeenergy1 2+m2),ln(k(20)F(J)=04(2π)
withm20=(1 8κ 2λ)/κ+J.Toobtainthee ectivepotentialonehastosolveeq.(13)forJ(¯ρ2).In[33]thesolutionhasbeengivenforthethreedimensionalHiggsmodelinaclosedform.Adescriptionofthee ectivepotentialinthesymmetricphasehasbeenfoundwithaquitecharacteristicasymmetricshape.
Inourcasewehavetoworkwithlatticeintegralsor nitelatticesums.Thenthesolutioncannolongerbegiveninaclosedform.However,onecanperformtheLegendretransformationandsolveeq.(13)numerically.Theresultofthisprocedureforthepointswhereoursimulationsareperformedcon rmthegeneralshapeofthepotentialinthesymmetricphaseandarequalitativelyinagreementwiththepotentialextractedfromthedistributionsofρ2valuesfromthesimulations.However,wedonothaveaquantitativeunderstandingofthesymmetricphaseyet.Wehopetocomebacktothisquestioninafuturepublication.
A nalremarkconcernsthelatticesimulationswherethegaugeinvariante ectivepotentialisobtainedfromadistributionoftheoperatorunderconsideration.Thepotentialcomputedinthiswayistheso-calledconstrainte ectivepotential[35].Inthein nitevolumelimitthispotentialcoincideswiththeonede nedbymeansoftheLegendretransformationabove.Inperturbationtheorybothapproachesdi erinthetreatmentofthezeromodes.Fortheone-loopresult(18)thisamountstoleavingoutthek=0modeinthe nitelatticesumsfortheconstrainte ectivepotential.
4Phasetransitionpoints
AnumericalsimulationoftheSU(2)-Higgsmodelshouldstartby rstdeterminingthephasetransitionpoints.Physicallythetransitionistriggeredbyatemperaturechange.Keepingallotherparameters xed,thiscouldonlybeachievedonthelatticebyasymmetriccouplings,whichispossiblebutcumbersome.Itwillbecomeclearlater(seesections5and6)thatintheparameterrangeweareinterestedinβandλare xing,toagoodapproximation,therenormalizedparameters.Achangeofκisre ectedmainlyinachangeofthelatticespacinga.Thereforeifonecrossesthetransitionat xedβ,λbychangingκ,theessentialchangeisinthephysicaltemperatureT=1/(aLt).(Thephysicalvolumeisassumedtobelargeenoughsuchthatitschangewitha3isnotimportant.)Thuswearelookingforthephasetransitioninthehoppingparameteratκ=κc,for xedβ,λ.
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure3:Thermalcycleexhibitingahysteresisinρ2.Thesolidlineindicatesthevaluesoftheabsolutminimafromthegaugeinvariante ectivepotential,theshortdashedlinetheonesofthefalseminima.Thelongdashedlineonlyconnectsthedatapointstoguidetheeye.
4.1One-loope ectivepotentialandtransitionpoints
Wefoundthatforsearchingthetransitionpointthegaugeinvariante ectivepotentialcanbeveryhelpful.Itcanserveasatooltoprovidequiteaccurateinformationaboutκcwhichhelpstoselecttheκ-valueswheresimulationsarethenperformed.Wede nethetransitionpointκcastheκ-valuewherethesymmetricandbrokenminimaofthegaugeinvariante ectivepotentialaredegenerate.Forthecomputationweusedtheone-loopformulaeq.(18)forthebrokenphaseandthetrivial,ρ2=0,minimumforthesymmetricphase.Althoughthisiscertainlynottheexactvalueforthesymmetricminimum,wewillseeinthefollowingthatforsmallλthetransitionκ′sareinverygoodagreementwithnumericaldata.
Forthecomputationofthegaugeinvariante ectivepotentialona nitelatticeofsizeLx·Ly·Lz·Lttheintegralsin(18)havebeenreplacedbythecorrespondinglatticesums.FollowingtheexperienceinQCD[36],wealsousedthemean eldimprovedgaugecoupling g→g/
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
sise ectswhenthesystemgetsstuckinthewrongminimum.Thereforehysteresise ectsinthermalcyclesareoftentakenasanindicationfora rstorderphasetransition.Thee ectivepotentialallowstocomputethevaluesofρ2alsointhefalsevacuumandshouldhencerepro-ducethehysteresis.In g.3weshowathermalcycleatβ=8,λ=0.0001ona2·42·32lattice.Thedatapoints,connectedbyalongdashedlinetoguidetheeye,showaclearhysteresis.Thesolidlinerepresentsthevaluesofρ2intheabsolutminimumobtainedfromthegaugeinvariante ectivepotential.Theshortdashedlineindicatethevaluesofρ2inthesecondminimum.The guredemonstratesthatthenumericaldataareverywelldescribedbytheone-loopgaugeinvariante ectivepotential.Theagreementgetsworseforthehighpointatλ=0.0005.Herethetransitionpointsfromtheperturbativelyevaluatedpotentialandthesimulationsshowsomediscrepancy,seetable2.
Insection7wewillcomputethelatentheat.Forthisweneedtransitionκ′sforLt=2,...,5.ForthehigherLt=4,5-valuesnumericalsimulationsareverydemandingasonewouldhavetoscaletheotherextensionsofthelatticeaccordingly.Thereforewewillresorttheretothevaluesofκcasobtainedfromthee ectivepotential.Forthispurposeweperformeda nitesizescalinganalysisofκLconvarioussizelattices
νκL+κ∞
c=aVc,(21)
whereV=Lx·Ly·LzandLtiskept xed.WecomputedκLcforvariousVfromthegaugeinvariante ectivepotentialand tteditto(21).Inallthe tsperformed,wefoundavalueofν=1.00(2).Thisagaincon rmsthe rstordernatureoftheelectroweakphasetransitionforHiggsmassesbelow50GeV.Theobtainedresultsforκ∞
cforvariousLt,βandλareplotted
in g.12wherewediscussthelinesofconstantphysics.Thenumericalvaluesinourfour
∞∞basicpointsare:l2:κ∞
c=0.128290(1);l3:κc=0.128082(1);h2:κc=0.128625(1);
h3:κ∞
c=0.128273(1).
4.2Two-couplingmethodandtransitionpoints
Providedhysteresise ectsinthermalcyclesareseenata rstorderphasetransition,thetwo-couplingmethodisusefulforaprecisedeterminationofthepositionofthephasetransitionpoint.
Letusconsiderthelargestextensionofthelatticetobethez-direction.Inthisdirectionthelatticeisdividedintotwohalves.Theideaistochoosedi erentcouplingparametersinbothhalves,toenforceoneparttostayinthesymmetricphaseandtheotheroneintheHiggsphase.Weassumethatthez-directionislongenoughforaccomodatingapairofinterfacesbetweenthephases.(Ifthez-directionisnottoolong,theappearanceofmoreinterfacepairshasanegligibleprobability.)Bywarmingupthecon gurationfarenoughinbothdirectionsfromthetransitionpointonecanachievethatatthebeginningofthesimulationattheenvisagedpairofparametersbothphasesandtheinterfacepairarepresent.Inthiscon gurationthesystemcansensitivelyreacttofreeenergydi erencesbyshiftsoftheinterfacepositionsinthe
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Table2:Hoppingparameterκcatthetransitionpoint,obtainedwiththetwocou-plingmethod.Aslatticesize,thetotalsizeofbothpartsisgiven.Forcomparison,theestimatesobtainedonlatticeswithhalfthesizefromtheone-loopinvariante ectivepotentialarealsogiven.
Lattice
8.0
8.0
8.15
8.15
8.0
8.15λκc0.12840(5)0.12828(2)0.12811(2)0.12811(1)0.12862(1)0.12826(1)
z-direction.Ifthecon gurationstaysformanyautocorrelationtimesinthemixedstatethefreeenergiesofthetwophasesatthechosenparametersaresuchthatthissituationisstableagainsttransitionstoauniquephase.Thustheparametersetsofthetwophasesgivealowerandanupperboundonthetransitionparameters.Infact,duetotheadditionalfreeenergyassociatedwiththeinterfaces,thephasetransitionfromatwo-phasesituationtoauniquephaseoccurssomewhatearlierthantheequalityofthefreeenergiesofthetwophases.Thisparametershiftgoes,however,exponentiallytozeroforincreasinglatticevolumes.
Ofcourse,thetwo-couplingmethodforthedeterminationofthetransitionpointworksonlyifoneisabletotellonephasefromtheother.Apossiblewayistoperformhysteresisrunsonlatticeswiththesameextensionsashalfofthelatticeforthetwo-couplingmethod.Thehysteresisplotsareusedforthedistinctionofthetwophasesatagivenκ.
Asstatedintheintroductionofthissection,weareinterestedinthepositionofthephasetransitioninthehoppingparameteratκ=κcfor xedβandλ.Thustheonlyparameterchosendi erentlyinbothpartsofthelatticeisthehoppingparameter.Ateachpairofκthesystemwasobservedforatleast10autocorrelationtimes.κcwasde nedasthemeanvalueofthebestlowerandupperbounds.Thebestestimatesforthetransitionpointκcobtainedwiththismethodaregivenintable2.4.3Multicanonicalmethodandtransitionpoints
Themostprecisewaytodeterminethetransitionpointhasbeenprovidedbyacombinationofthemulticanonicalmethodandκ-reweighting[37].Inthismethod rstanorderparameterdistributionisgeneratedthroughaMonteCarlosimulation.Thisdistributionisthenextrap-olatedtonearbyκ’sto ndthetransitionpoint.Theactionwiththeadditionallogarithmicterm(Slogineq.(10))andthelink-variable(L ineq.(24))havebeenconsideredasorder
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure4:Thedistributionoftheactiondensityobtainedfromaconstrained-multicanonicalsimulationon2·82·128lattice.Notethatthelefthandpeakcorre-spondstotheHiggsphaseandtherighthandonetothesymmetricphase.
parameters.Thetransitionpointisdeterminedbytheequalheightsignal:κcisthehoppingparametervalueforwhichtheheightsofthetwopeaksinthedistributionareequal.Thesystematicuncertaintyofκccanbeestimatedbycomparingitsvaluesobtainedbyequalheightsignalandequalareasignalfordi erentorderparameters.
Themulticanonicalsimulationhasbeenperformedatκ=κv,closetotherealtransitionpoint(|κv κc|=O(10 5)).Theapproximatetransitionpointκvwasdeterminedbytheone-loopinvariante ectivepotential.Thedistributionofanorderparameteratanearbyκ′,withallothercouplings xed,canbeobtainedbyattachingaweight
w(L )=e8 L (κ κv)′(22)
tothedi erentcon gurations.
Theactiondensitydistributionatthelowpointforκv=0.1283onalatticewith =2·82·128sitesisshownin g.4.Thedistributioninneighbouringpointsisobtainedbyeq.(22).Thetwopeaksareofequalheightatκc=0.128307( g.5).Asitcanbeseen,notonlytheheightsareequalbutalsothewidthsofthetwopeaksarequitesimilar,thustheequalheightconditionforκcisroughlyequivalenttotheequalareacondition.Atthesametimethe atregimebetweenthepeaksisalmostconstant.Thismeansthatinamulticanonicalsimulationthetwophasescanmixwitheachotherwithanarbitrarymixingratio.Thesupressionisduetotheinterfacesbetweenthephases.TakingL asanorderparameter,thetransitionpoint
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure5:Thereweighteddistributionoftheactiondensityobtainedfromthedataoftheprevious gureatκ=κc=0.128307.
correspondingtotheequalheightsignalisgivenbyaslightlyhigherκ=0.128308.Thisleadstoatransitionpointatκc=0.128307(2+1),wherethe rstnumberinbracketsdenotesthesystematicthesecondonethestatisticalerrorestimate.Similarlyfor =2·42·128andfor =2·42·64thetransitionpointsareatκc=0.128366(3+1)andκc=0.128367(3+1),respectively.
5Massesandcorrelationlengths
Importantcharacteristicfeaturesofanystatisticalphysicalsystemarethecorrelationlengths.Atzerotemperaturetheirinversesgivethemassesofthelowlyingparticles.Particularlyinterestingarealsothe(inverse)correlationlengthsonthetwosidesofthephasetransition.
5.1Zerotemperaturemasses
1ThephysicalHiggsmassMHcanbeextractedfromcorrelatorsofquantitiesasthesitevariableRx≡
2+Tr(αx+ µUxµαx),L ,xµ≡1
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure6:CorrelationfunctionintheHiggsbosonchannelinpointh2[16/90].Thecurveshownisthebest tfortimeslicesbetween1and11withMH=0.2663andaconstantfactorfH=4.08110 2.Theχ-squareofthis tisχ2=0.54.Thestatisticalerrorofthecorrelationfunctionatdistance1isabout0.5%,atdistance11about6%.
Table3:Theparametervaluesofnumericalsimulationsfordeterminingzerotem-peraturemassesandWilsonloops.
index
123·24
183·36
123·24
163·32
163·32
183·36β0.000100.000110.000500.000500.000500.00051κ1500001250001600006000016000050000
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
Figure7:CorrelationfunctionintheW-bosonchannelinpointh2[16/90].Thecurveshownisthebest tfortimeslicesbetween3and15withMW=0.4522andaconstantfactorfW=1.94610 5.Theχ-squareofthis tisχ2=1.30.Thestatisticalerrorofthecorrelationfunctionatdistance3isabout0.2%,atdistance15about26%.
Table4:TheW-bosonmassMWandHiggsbosonmassMHinthepointsde nedbytheprevioustable.TheirratioisRHW≡MH/MWwhichleadstotheHiggsbosonmassinphysicalunitsgiveninthelastcolumn.
index
l2
h2[12]
h2[16/90]MW1.059(24)0.144(4)0.427(8)0.253(8)0.453(3)
0.175(7)0.587(12)1.153(16)0.614(32)1.171(19)47RHW0.222(12)0.464(2)49MH(GeV)18
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and
TheW-bosonmassMWcanbeobtainedsimilarlyfromthecompositelink elds(r,k=1,2,3)
Wxrk≡1
- 1SU 学习心得
- 2The Bosonic Sector of the Electroweak Interactions, Status a
- 3相位误差phase error question
- 4The transition from freight consolidation to logistics
- 5The transition from freight consolidation to logistics
- 6Model Test One
- 7model combination (tong)
- 8Metal-insulator Transition in a Pyrochlore-type Ruthenium oxide, Hg2Ru2O7
- 9Dirac operator and Ising model on a compact 2D random lattice
- 10Superfluid-Mott Insulator Transition of Spin-2 Cold Bosons in an Optical Lattice in a Magne
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Electroweak
- Simulating
- Transition
- Phase
- Higgs
- Model
- SU
- 第一章 焊接技术概论
- 第1章 建筑内部给水系统
- 医药行业客户关系管理解决方案
- 存货管理专项审计的五个关键环节
- 了解文学名著的故事情节和人物形象
- 人音版六年级下册音乐教案及反思
- 高考英语书面表达作文模板
- Water soluble carbon nanoparticles Hydrothermal synthesis and excellent photoluminescence properties
- 云奇付App有什么用及云奇付App苹果iphone和安卓android手机App应用下载安装
- 最新部编人教版五年级数学上册期末检测题及答案
- 培养良好的学习心态 提高英语课堂教学效率
- 西安工业大学建筑工程学院第四届班级文化秀策划书(2013)
- Matching free trees, maximal cliques, and monotone game dynamics
- 滨海新区土地整理中心土地综合管理系统论文
- 论微博的_双面效应_
- 清华大学经管学院--金融工程1
- 保险增员专题:电脑展示增员法
- 2014届高考化学一轮复习典型易错讲解人教版 (山西专用):第七章 化学反应速率和化学平衡22
- 尔雅网络通识课答案---平时作业以及期末答案合集--南开大学_杨岚_情感哲学与情感教育
- 航空企业标准化工作发展思路初探