第十一章 辐射换热 - 图文

更新时间:2023-03-09 19:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第十一章 辐射换热

英文习题

1. Emission of radiation from a light bulb

The temperature of the filament of an incandescent light bulb is 2500 K. Assuming the filament to be a blackbody, determine the fraction of the radiant energy emitted by the filament that falls in the visible range. Also, determine the wavelength at which the emission of radiation from the filament peaks.

2. Radiation incident on a small surface

A small surface of area A1=3 cm emits radiation as a blackbody at T1=600 K. Part of the radiation emitted by A1 strikes another small surface area A2=5 cm oriented as shown in Fig.11-1. Determine the solid angle subtended by A2 when viewed from A1, and the rate at which radiation emitted by A1 that strikes A2.

2

2

3. Fraction of radiation leaving through an opening

Determine the fraction of the radiation leaving the base of the cylindrical enclosure shown in Fig.11-2 that escapes through a coaxial ring opening at its top surface. The radius and the length of the enclosure are r1=10 cm and L=10 cm, while the inner and outer radius of the ring are r2=5 cm and r3=8 cm, respectively.

FIGURE 11-1FIGURE 11-24. View factors associated with a triangular duct

Determine the view factor from any one side to any other side of the infinitely long triangular duct whose cross-section is given in Fig.11-3.

5. The crossed-strings method for view factors

Two infinitely long parallel plates of widths a=12 cm and b=5 cm are located a distance c=6 cm apart, as shown in Fig.11-4. (a) Determine the view factor F1-2 from surface 1 to surface 2 by using the crossed-strings method, (b) Derive the crossed-strings formula by forming triangles on the given geometry.

6. Radiation heat transfer in a black furnace

Consider the 5 m× 5 m× 5 m cubical furnace shown in Fig. 11-5, whose surfaces closely approximate black surfaces. The base, top, and side surfaces of the furnace are maintained at uniform temperatures of 800 K, 1500 K, and 500 K, respectively. Determine (a) the net rate of radiation heat transfer between the base and the side surfaces, (b) the net rate of radiation heat transfer between the base and the top surface, and (c) the net radiation heat transfer from the base surface.

FIGURE 11-5FIGURE 11-3FIGURE 11-4

FIGURE 11-67. Radiation heat transfer in a furnace

cylindrical

Consider a cylindrical furnace with r0=H=1 m, as shown in Fig.11-6. The top (surface 1) and the base (surface 2) of the furnace has emissivities ε1=0.8 and ε2=0.4, respectively, and are maintained at uniform temperatures T1=700 K and T2=500 K. The side surface closely approximates a blackbody and is maintained at a temperature of T3=400 K. Determine the net rate of radiation heat transfer at each surface during steady-state operation and explain how these surfaces can be maintained at specified temperature.

8. Radiation heat transfer in a triangular furnace

A furnace is shaped like a long equilateral triangular duct, as shown in Fig.11-7. The width of each side is 1 m. The base surface has an emissivity of 0.7 and is maintained at a uniform temperature of 600 K. The heated left-side surface closely approximates a blackbody at 1000 K. The right-side surface is well insulated. Determine the rate at which energy must be supplied to the heated side externally per unit length of the duct in order to maintain these operating conditions.

FIGURE 11-7

工程热力学与传热学

第十一章 辐射换热 习题 习 题

1. 2. 3. 4. 5. 6. 7. 8. 9.

何谓黑体,灰体?引入黑体,灰体的概念对热辐射理论及辐射换热计算有何意义? 何谓发射率(黑度),吸收比?写出其定义式。 何谓辐射力,辐射强度,有效辐射?

何谓光谱辐射力?写出它与辐射力之间的关系式。

何谓漫发射表面?漫发射表面的辐射力与辐射强度有何关系? 简述普朗特定律,维恩位移定律的主要内容。 请写出斯沁藩-玻耳兹曼定律的表达式。

简述基尔霍夫定律的主要内容,写出表达式,说明其适用条件。 有人说:“颜色愈黑的物体发射率愈大”。正确吗?为什么?

10. 太阳能集热器表面一般涂黑色,以加强对太阳辐射的吸收,是否可以将暖气片表面涂成黑色来增加其辐射散热量?

11. 何谓角系数?角系数是物理量还是几何量?

12. 何谓角系数的相对性,完整性和可加性?试用表达式加以说明。

13. 绘出3个灰体表面组成的封闭空腔的辐射换热网络,并说明什么是表面辐射热阻,空间辐射热阻?

14. 简述遮热板的原理。

15. 何谓大气“温室效应”?为什么减少CO2的排放就可以降低温室效应?

16. 发射率分别为0.3和0.5的两个大平行平板,其温度分别维持在800 ℃和370℃,在它们之间放置一个两面发射率均为0.05的辐射遮热板。试计算:

(1) 没有辐射遮热板时,单位面积的辐射换热量是多少? (2) 有辐射遮热板时,单位面积的辐射换热量是多少? (3) 辐射遮热板的温度。

习题课

有效辐射的计算

17. 两块平行放置的平板表面发射率均为0.6,其板间距远小于板的宽度和高度,且两表面温度分别为t1=427 ℃,t2=27 ℃。

试计算:(1)板1的自身辐射;(2)对板1的投入辐射;

(3)板1的反射辐射;(4)板1的有效辐射; (5)板2的有效辐射;(6)板1,2间的辐射换热量。

18. 两块平行放置的钢板之间的距离与其长和宽相比,可以忽略不计,已知它们的温度和发射率分别为t1=427 ℃,t2=27 ℃,ε1=ε2=0.8。试计算两块钢板相对表面处的(1)自身辐射;(2)有效辐射;(3)投入辐射;(4)净辐射换热量。

遮热板的计算

19. 辐射率分别为0.3和0.5的两个大平行平板,其温度分别维持在800 ℃和370℃,在它们之间放一个两面发射率均为0.05的辐射遮热板。试计算: (1)没有辐射遮热板时,单位面积的辐射换热量是多少? (2)有辐射遮热板时,单位面积的辐射换热量是多少? (3)辐射遮热板的温度。

20. 试证明:在两个平行平板之间加上n块遮热板后,辐射换热量将减少到无遮热板时的设各板均为漫灰表面,且发射率相同。

多个灰体间的辐射换热

21. 液氧贮存容器为双壁镀银的夹层结构,外壁内表面温度为tw1=20℃,内壁表面温度为tw2=-183℃,镀银壁的发射率为ε=0.02,试计算由于辐射换热每单位面积容器壁的散热量。

22. 一根直径d=50mm,长度为l=8 m的钢管,被放置于横截面为0.2×0.2 m的砖槽道内。若钢管温度和发射率分别为t1=250 ℃,ε1=0.79,砖槽壁面温度和发射率分别为t2=27 ℃,ε2=0.93,试计算该钢管的辐射热损失。

23. 两块尺寸为1×2m,间距为1m的平行平板置于壁温t3=27 ℃的大厂房内。平板背面不参与换热。已知两板的温度和发射率分别为:t1=827 ℃,t2=327 ℃。ε1=0.2,ε2=0.5。试计算: (1)每个板的净辐射散热量;(2)厂房壁所得到的辐射热量。

2

2

1。n?1习 题 解 答

1. 答:1.—10基本概念(略)。

11. 答:角系数是几何量。只取决于两个物体表面的几何形状,大小和相对位置。 12. 答:(1)角系数的相对性:A1X1,(2)2?A2X2,1;完整性:?Xi,j?XI,1?Xii,2?...?Xi,n;(3):可加性:

i?1nJ3=Eb31A1X1,31A2X2,3,即:X1, A1X1,(2?3)?A1X1,2?A1X1,B(2?3)?X1,2?X1,B13. 答:辐射换热网络图:

热阻包括表面辐射热阻,空间辐射热组

Eb11??1A1?1J11A1X1,2J21??2A2?2Eb214. 答:遮热板的主要作用是削弱换热。在整个辐射换热中净辐射换热量为0。 即遮热板即不向原系统放出热量,也不从中吸收热量,只是在热流通路中增大了原系统的热阻,使换热表面之间的辐射换热受到阻碍。

(1)没有加遮热板时,两块平板间的辐射换热网络图:

Φ1,2Eb11??1A?1J11AX1,2J21??2A?2Eb2

Eb2(2)加遮热板时,辐射换热网络图:

Φ1-3-2Eb1J21??J3’1??3?Eb31??3??J3’’11??1J112AX1,3?AX3??,2A?3?A?3??A?1A?2

15. 答:温室效应是利用玻璃对阳光的吸收较少,而对红外线吸收较多的特性,使大部分太阳能穿过玻璃进入室内,而阻止室内物体发射的辐射能透过玻璃散到室外,达到保温的目的。 16. 解:依题意: X1,2?1,

X1,3?X3,2?1,

Eb1??T14?5.67?10?8?(800?273)4?75146W/m2Eb2??T24?5.67?10?8?(370?273)4?9691W/m2

网络中的热阻为:

1??11?0.3111??2.333,???1,?10.3X1,2X1,3X3,21??31?0.051??21?0.5??19,??1?0.05?0.52 3(1) 无辐射遮热板时:

q1,2?75146?9691?15105W/m22.333?1?1,

(2) 有辐射遮热板时:

q1,3,2?75146?9691?1510.5W/m22.333?1?19?19?1?1

(3) 辐射遮热板的温度: 依能量平衡,列出下列方程式: 75146?Eb375146?9691?2.333?1?192.333?1?19?19?1?1

解之:

Eb3??T34?41411W/m2

因此:

T3?924K?651?C

17. 解:(1)板1的自身辐射 E1=8186W/m2;(2)对板1的投入辐射 G1=J2=4218W/m2;

(3)板1的反射辐射ρ1G1=J1-E1=1687W/m2;(4)板1的有效辐射J1=9855W/m2; (5)板2的有效辐射J2=4218W/m2;(6)板1,2间的辐射换热量q12=5638W/m2。

18.解:(1)自身辐射E1=18579.4kW/m2, E2=367.42kW/m2;(2)有效辐射J1=19430.15kW/m2, J2=4253.45kW/m2;(3)投入辐射G1=4253.45kW/m2, G2=19430.15kW/m2;(4)净辐射换热量q12=15176.7kW/m2。

19. 解:板的温度是:T3=867K。

20. 解(1)没有遮热板时,单位面积的辐射换热量:q12=15105W/m2;(2)有遮热板时,单位面积的辐射换热量:q132=1510.5W/m2;(3)辐射遮热板的温度:T3=924K。 21.证明(略)。

22.解:单位面积容器壁的散热量:q12=4.18W/m2。 23.解:钢管的辐射热损失:Q=3.712kW。

24.解:(1)每个板的净辐射散热量:Q1=32.34kW , Q2=1.822kW;(2)厂房壁所得到的辐射热量:Q3=34.16kW。

25.解:若设大房间为重辐射面,温度较高表面的净辐射散热为:Q1=23.06kW。

本文来源:https://www.bwwdw.com/article/bi8a.html

Top