2018年甘肃陇南中考数学试题及答案

更新时间:2024-07-08 10:24:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年甘肃省陇南市数学试题

本试卷满分150分(前三大题100分,第四大题50分).考试时间120分钟.

一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一

项是符合题目要求的,将此选项的代号填入题后的括号内. 1. 计算:2?9= ( )

A.5

B.3

2 C.?3 D.?1

2. 分解因式:x?4= ( ) A.(x?4)

2

B.(x?2) C.(x?2)(x?2) D.(x?4)(x?4)

23. 下列图形中,能肯定∠1?∠2的是 ( ) 1 1

1 2 1

O 2 2 2

A. B. C. D.

4.衡量一组数据波动大小的统计量是 ( ) A.平均数 B.众数 C.中位数 D.方差 5.如图,在△ABC中,DE∥BC,若

AD1?,DE=4, AB3则BC=( )

A.9 B.10

C. 11 D.12

6. 如图,P是∠?的边OA上一点,且点P的坐标为(3,4), 则sin?= ( )

3 B. 53C. D.

4A. 4 54 3A 7. 顺次连结任意四边形各边中点所得到的四边形一定是 ( ) A.平行四边形 B.菱形 C.矩形 D.正方形 8.不等式组??x?1?0,的解集是 ( )

?3?x?0A. x?3 B. x??1 C.x?3 D.?1?x?3 9.如图,下列图形中,每个正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是 ( )

A. B. C. D.

10.如图,AB是⊙O的直径,AB=4,AC是弦, AC=23,∠AOC= ( ) A.120° B.1300 C.140° D.150°

二、填空题:本大题共8小题,每小题4分,共32分.将答案写在题中的横线上. 11. 方程x2?3x?2?0的根是 .

12.如图,用灰白两色正方形瓷砖铺设地面,第6个图案中灰色瓷砖块数为_________.

第1个图案 第2个图案 第3个图案

13.你吃过兰州拉面吗?实际上在做拉面的过程中就 渗透着数学知识:一定体积的面团做成拉面, 面条的总长度у(cm)是面条粗细(横截面 积)x(cm2)的反比例函数,假设其图象如图所示, 则у与x的函数关系式为__________ .

14.一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1.3, 1.6, 1.3, 1.5, 1.3.则这100条鱼的总质量约为 kg. 15.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标

价为x元,则可列出的方程为 . 16.如图,在△ABC中,∠A=90,分别以B、C为圆心的两个等圆外切,两圆的半径都为

1cm,则图中阴影部分的面积为 cm2.

第16题图 第17题图 第18题图

17.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF= .

18.如图,直线AB、CD相交于点O,∠AOC=300,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm.如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足条件 时,⊙P与直线CD相交. 三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程

或验算步骤.

19.(6分)计算:12?4cos30?(?2).

20. (6分)解方程:

3x?1x?2?12?x?3.

21.(8分)从某市近期卖出的不同面积的商 品房中随机抽取1000套进行统计,并根据结果

绘出如图所示的统计图,请结合图中的信息,解答下列问题: (1)卖出面积为110130m的商品房

有 套,并在右图中补全统计图;

(2)从图中可知,卖出最多的商品房约

%; 占全部卖出的商品房的

(3)假如你是房地产开发商,根据以上提

供的信息,你会多建住房面积在什么范围内的住房?为什么?

22.(8分)如图,在△ABC 中,AB=AC,D是BC边上的一点,

DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE= DF, 并说明理由.

解: 需添加条件是 . 理由是:

23.(10分) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,

解答下列问题:

(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

2

四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程

或验算步骤. 24.(8分)如图,小明想测量塔BC的高度.他在楼底A处测得塔顶B的仰角为60;爬到楼顶D处测得大楼AD的高度为18米,同时测得塔顶B的仰角为30,求塔BC的高度.

25.(10分)“中山桥”是位于兰州市中心、横跨黄河之上的一座百年老桥(图1).桥上有五

个拱形桥架紧密相联,每个桥架的内部有一个水平横梁和八个垂直于横梁的立柱,气势雄伟,素有“天下黄河第一桥”之称.

如图2,一个拱形桥架可以近似看作是由等腰梯形ABD8D1 和其上方的抛物线D1OD8组成,建立如图所示的平面直角坐标系,已知跨度AB=44m,∠A=45°,AC1=4m, D2的坐标为(?13,?1.69),求: (1)抛物线D1OD8的解析式; (2)桥架的拱高OH .

图1 图2

26.(10分)如图,四边形ABCD、DEFG都是正方形,连接AE、CG. (1)求证:AE=CG;

(2)观察图形,猜想AE与CG之间的位置关系,

并证明你的猜想.

27.(10分)如图,点I是△ABC的内心,线段AI的延长线交

△ ABC的外接圆于点D,交BC边于点E. (1)求证:ID=BD;

DE?y,(2)设△ABC的外接圆的半径为5,ID=6,AD?x,

当点A在优弧上运动时,求y与x的函数关系式,

并指出自变量x的取值范围.

128.(12分)如图,抛物线y?x2?mx?n交x轴于A、B两点,交y轴于点C,点P是它的

2顶点,点A的横坐标是?3,点B的横坐标是1.

(1)求m、n的值; (2)求直线PC的解析式;

(3)请探究以点A为圆心、直径为5的圆与直线

PC的位置关系,并说明理由.(参考数:2?1.41,3?1.73,5?2.24)

对于这个特定的已知方程,解法是对的. ……………2分

理由是:一元二次方程有根的话,只能有两个根,此学生已经将两个根都求出来了,所以对. ………………………………………………5分 答案二:

解法不严密,方法不具有一般性.………………2分

理由是:为何不可以2=3×等,得到其它的方程组?此学生的方法只是巧合了,求对了方程的根. ………………………5分

2. 解:因为周长一定(2+3+4+5+6=20cm)的三角形中,以正三角形的面积最大. 取三边尽量接近,使围成的三角形尽量接近正三角形,则面积最大. …………2分 此时,三边为6、5+2、4+3,这是一个等腰三角形.………………3分 可求得其最大面积为610. ……………………………………5分

23

本文来源:https://www.bwwdw.com/article/bgh.html

Top